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Some Classes of Essentially Maximal Operators

J. TERVO

Suppose that L(z, D) is a pseudo-differential operator with the symbol L(z,£), that is,

Lz D) = 20 [ Le RO
R~ )
where F is the Fourier transform from the Schwartz class S onto S. The paper r.onsndcxs the equality of
the minimal and maximal realizations of L(z, D) in the Ly(R")-space. Employmg the symbolic calculus

of Weyl sufficient criteria for the equality are proved. Also some (counter) examples for the mcnuoned
equality are presented.
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1. Introduction

Suppose that L(z, D) is a pseudo-differential operator

© U@ D) = 20 [ L, (Fe) (e ed
. J |

Under suitable conditions (cf. Section 2) L(z, D) maps the Schwartz class S into S and the formal
adjoint L'(z,D): S = S of L(z,D) exists. When L(z, D) maps'S into § and when L'(z, D)
exists we are able to define the minimal realization L = L*" and the maximal realization L'
of L(z,D) in L. The paper seeks sufficient criteria for the equality L = L', that is, for the
essential ma.x:ma.hty of L(z, D). In the case when L' = L, the essential maximality means that
L(z, D) is éssentially self-adjoint.

One knows several classes of operators that are essentially maximal. For partial differential
operators cf. [2 - 4, 10, 12]. For pseudo-differential operators we refer to (7, 11, 13, 14].

Applying the Weyl calculus of pseudo-differential operators (cf. [5]), we show some additional
classes of essentially maximal operators (cf.. Theorem 3.2 and its Corollary, Theorem 3.5 and its
Corollary, Theorem 3. 8; cf. also Section 4). Especially, we remark that (by Corollary 3.3) the
first order partial differential operators

L(z,D)= Y a,(z)D° with [DZa,(z)| < Ca(l + |z{)!~1!
lo|<t

are essentnal]y ma.xxma.l in Lg One sees that the coefﬁcnents a, may.have first degree polynomlal
growth'in z.

In the last section we give various examples. The Example 4.4 shows that Corollary 3.3 is
quite strict. Corollary 3.7 implies that the first order partial differential operators L(z, D) =
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Ylo1<1 80(2)D° with C*-coefficients a, obeying sup, |D2a,(z)| < C, are essentially maximal.
Example 4.6 shows that the corresponding result is not generally true for second order operators.

2. Notations and preliminary notions

2.1. Assume that g, ¢ : R = R is a positive definite quadratic form for any (z,€) € R™.
Then g(; ;) is of the form

9=(¥m = (T(v,n). (v,n),  (v,m)€ R™,

where (-, -) is the usual Euclidean inner product and where T is a symmetric linear mapping

R?" — R such that the eigenvalues of T are positive. The totality g = {9(z.¢)} of positive
definite quadratic forms 9(z.¢) is called a Riemannian metric.

The following definitions are required (cf. [5,pp.141 —'179]). The Riemannian metric g =

" {9(z.¢)} is said to be slowly varyingin R if there exist constants ¢, C > 0 such that 9ze)(v,m) <

¢ implies '

C_lg(r,t) S Is4ve4m) S C 93z) - (2.1)

The positive weight function m : R®® — R is g-continuous, if there exist constants ¢, C >0

such that g, (v, n) < ¢ implies ’ :

C7l'm(z,6) S m(z +y,£ + 1) < Cm(z,6) . (22)

Let ¢ : R x R?™ — R be a quadratic form (a so-called symplectic form) defined by

0((y, '7)1(31 C)) = (771 z) - (yv C)
For any (z,£) € R*™ we define .

g(”,.,g)(y, n).= i lo((y, 7),(z,§))lz/9(:.<)(z,c) :

N

The slowly: varying Riemannian metric g is o-temperate if there exist constants C, N > 0 such
that .

' 9=6 S C gym (14 g0 gz — v, 6 - M)V, (2.3)
for all (2,€),(y,n) € R™. Furthermore, the g-continuous (weight function m : R — R is
(o,9)-temperate, if there are constants C, N > 0 such that

m(z,6) S Cm(y, )1+ gl g(z - €~ )V . (2.49)

for all (z,£),(y,7) € R?". The class S(m, g) of symbols lS defined as follows: The function
L(-,-) € C*(R™)is in §(m,g) if for any k € Np there exists a constant Cy > 0 such that

. k
L0z, €)(h, ., o)l < Cem(z,€) [T lo(e.0(hs))' (23)

1=1

for all (z,£),A,,..., At € R?™. Here L¥)(z,€) is the k'™ differential of L(-,-) at (z,€). We recall
that

L(k)(zl £)(hlv .. 'th'k) = z: hil“ ' . h'hk(all . ahL)(sz)
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when A; = (hyj,...,R2n;). The summation is taken over all distinct k-tuples (j1,...,Ji) of
integers between 1 and 2n inclusive. S(m,g) is a linear subspace of C®°(R2"). Furthermore,
S(m, g) equipped with the topology defined by the semi-norms

L)) = (k) /2
P = s | s LG O hk)l/ H[g(ee)(h }/m(z )

is a Fréchet space.

Remark 2.1. (A) One has the topological inclusions CP(R*™) C S(m,g) C C*(R*™), when
CP(R?") and C*®(R?") are equipped with the standard locally convex topologies. (B) Assume
that Ll('v ') € S(mlyg) and L?('v ) € s(m7vg) Then (LILQ)('ﬁ ) = Ll('s ')LQ(', ) € S(mlm71 g)
(C) §(my,g) C S(ma,g) if and only if m; £ Cma.

2.2 In this subsection we deal with a Riemannian metric of the special separated form

|yl? Inl?

3.8 46

where g; : R? — R are positive functions. This kind of metric occurs often in applications.
One has the following theorem in which

9iz.e)(¥:m) = (2-6)

Uiz.e)e = {(v,7) € R™| |z - y| < cqr(z, ) and € - 1] < ega(z,€)}.

Theorem 2.2. Let g = {g(-¢)} be a Riemannian metric such that g(. ¢) has the form (2.6).
Then:

(i) The metric g is slowly varying if and only if there ezist constants c¢,C > 0 such that
C7'gi(2,6) < gi(v,m £ Cy(z,6) (5 =1,2)

for all (z,€) € R*™™ and (y,1) € Uz ¢).c-
(i) The weight function m : R?™ — R is g-continuous if and only if there ezist constants
¢,C > 0 such that .
C~'m(z,£) < m(y,n) < Cm(z,£)

for all (z,€) € R?™ and (,7) € Utz g).c-
(iii) The metric g is o-temperate if and only if there erxst constants C,N > 0 such that

9i(y.m)/9i(z,€) < C(1 + g3(z,6)lz - y|* + gl(zyf)l'f -9HM (j=1,2)

for all (z,§),(y,n) € R™".
(iv) The weight function m : R™ — R is (o,9)- tcmpemtc if and only if there ezist constants
C,N > 0 such that

m(z,€) < Cm(y,n)(1 + 93(3,6)12 = yf? + 9=, €)I€ - nI})M?

for all (z,€),(y,n) € R™.
(v) The symbol L(-,-) € C®(R?") lxes in the symbol class S(m,g) if and only if for any
a,f € Ng there ezists a constant C, 5 such that

|D2 DS L(z,6)| < Capm(z,€)9;'°\(z,€)97 (2, €)
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for all (z,£) € R,

lsroof. The validity of the claims (i), (ii) and (v) can be obtained by simple conclusions
(which are omitted). The claims (iii) and (iv) follow easily, if one verifies that

9lze)(¥: 1) = 63(2, E)lyI* + (2, &)Inl* . 27
We consider. the relation (2.7). One sees that, with { = ~yg3(z,£) and z = ng}(z, ),

o) (2,00 = Inl’gi(z. €) + lyI°g3(=, €)

and then

v

| ; 2
() 2 lol (200 (g + s )

95(2,8) " 93(z,)
2,2 2,2 2 .
(MWL) _ e, Ol + ol 0l

The converse inequality ” < ” of (27) is easily seen 1

Remark 2.3. Suppose that the Riemannian metric (2.6) is slowly varying. Then the weight .
function m = gRg} is g-continuous, for any R,r € R. The proof follows easily from Theorem
2.2. Similary, one sees that when g is o-temperate, then m = gPgs is (o, g)-temperate.

Example 2.4. (A) Consider the case where
9z, = L+ 1+ 1z and  g}(z,6) = (1+€2P(1+12P).
Suppose that § < 0,6’ < 1and p < 1,p' < 0. Then the metric

lyl? + nl?
(LHIPPQA+12) 7 (14 16221 + [z7)”

is slowly varying: Choose in Theorem 2.2/Part (i) ¢ = ; and assume that (y,7) € U(:.E).%‘ Then
we obtain ‘ '

9(z.6)(¥:0) = (2.8)

4z - yl” < gf(=,6) = (L+ 11 + 21 < (1 + |2]?)
and so 4(1+|2|?) < 14|yl < 4(1+(z|?). Similary, one finds that L(1+]€]?) < 14|n|? < 4(1-;](]7)
for any (y,n) € U(z'()_%. Hence it is easy to see that C~g;(z,€) < g;(v,n) < C 9;(z,€) for all
(v,m) € U(,.()'é with a suitable constant C > 0. (B) Due to Remark 2.3 the weight function
m(z,£) = (14 [£]2)5R+#r (1 4]z|?)¥R+#'" is g-continuous for any R,r € R and § 0,8 <1,p<

1,0’ < 0. Especially, one can choose § = p'=0and p = & = 1. In this case, for example,
L(-,-) € C*(R?) belongs to S(m, g) if and only if R

(D2 DY L)z, )l < Cau(l +.IxI’)R(¥ +IE7 (1 4+ 12?711 + 1g12)-1e0,

It is remarkable to note that the right-hand side may increase polynomially in z. (C) In the case
when §' = p' = 0,6 < 0,p < 1.and m(z,£) = (1 +‘|E|)'/?, one sees that S(m, g) is essentially the

Hérmander class 57, of symbols.

Later we shall consider also the o-temperate criterion for the metric (28)
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2.3 Let g and m be as in the Subsection 2.1. Choose L(-,-) from S(m,g). Deﬁne a pseudo-
differential operator L(z, D) by the formula

[L(z, D)¢)(z) = (27)™" / L(z, €)(Fo)(€)e“"Vde (2.9)
R_n

where F is the Fourier transform from the Schwartz class S mto S and where ¢ belongs to S.
Denote by A : Rz" — R the positive function defined by

h2 = y ) .
(z,8) (::)go[y(:,s)(y 1)/9(z.6(v: )]

In the sequel we shall assume that h < 1. In the case when g is the separated form (2.6), the
function A is 1/g1g2 (cf. (2.7)) and then the condition

919221 ' " O (2.10)

implies that A < 1. We need the following results of {5], which contain some essential tools
concerning the operators (2.9) (for some special case cf. also [1]).

Theorem 2.5. Suppose that Riemannian metric g is o-temperate,

g(x.()(y’ ") = g(z.()(!h _']) for all (Z, 6)’(3" f]) € R* ’ (2'11)

the weight function m is (0, g)-temperate and the symbol L(-,-) € S(m,g). Then the operator
L(z, D) defined by (2.9) maps S contmuously into S (in S we use the standand Fréchet space
topology).

We say that a linear operator L'(z,D): S — S is the formal adjoint of L(z, D) if one has
(¢, L(z, D)) = (L'(z, D)p,¥), forallp,p€S.
Here (-, ), denotes the L, inner product, that is, (u,v)g = fg~ u(z)v(z) dz. One has

Theorem 2.8. Suppose that the Riemannian metric g is o-temperate, (2.11) is valid, the

weight function m is (o, g) -temperate and that the symbol L(-, )E S(m,g). Furthermore assume
that

h<1 T (212)
Then the formal adjoint L'(z,D): S — S of L(z, D) ezists. In addition,

(D))= @0 [ L, (Fe)(Ee€de foralpe s,

where, for any N € No, L'(z,£) has the decomposition

L'(z,€) = L(z,€) + 2 (3°3°L)(z €)+ Rn(z, E)

o<ja|<N
with Rn(-,-) € S(hNm,g).

Theorem 2.7. Suppose that the Riemannian metric giso- temperate, (2 11) is valtd the
weight function m is (0, g)-temperate and that h < 1. Furthermore, assume that m < C and that
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{L;(-,-)} C §(m,g) is a bounded sequence of symbols (that is, {px(L;(-,-))| j € No} is bounded
for any k € Ng). Then there erists a constant C > 0 such that

lL;(z, D)ollo < Clillo  forall p € §,j € No. (2.13)

Theorem 2.8. Suppose that the Riemannian metric g is o-temperate, (2.11) is valid, the
weight functions m; and m; are (0, g)-temperate and that h < 1. Futhermore, assume that the
symbol L(-, ) € 5(my,g) and that {L;(:,-)} C S(ma,g) is a bounded sequence of symbols. Then
the composition L(z, D)o L;(z, D) has the form

((E(z, D)o Li(=, DYel(a) = (2m)™ [ (Lo L;)(z,(Fe)@e€de forallpe S,
R~

where the symbol (L o L;)(:,:) € S(mima2,g). In addition, one has, for any N € Ny,

(LolLj)z,6)= L(z,8)Lj(z,£) + 2 ( ;)

O<jal<N
+ R;n(2,6) (2.14)

where {R; n(:,-)} is a bounded set of symbols in S(mymahV g).

2 4 -Suppose that L : § — S is a {continuous) linear operator such that the formal adjoint

1§ ~ S of L exists, that is, (@, Lyp), = (L'y, Y)o for all p,9 € §. We shall define two
extensions of L in the Ls-space. Define a (dense) linear operator

~Lo : Lg nd Lg, Lo(p = L(,9 for Y E D(Lo) = 5.

One sees that .. .
(s Low)o = (9, L)y = (L'p, %)y = (Lo, ¥y ,

and so § C D(Lj) and Ljp = L'y for ¢ € S. Here L3 is the Lj-adjoint of Lo. Since D(Lg)
is dense in Lj, one gets that Lo is a closable operator and so the smallest closed extension
L:Ly— Lyof Ly ex:sts We recall that D(L) = {u € L2 | 9n — u,Lopn — f for some
f € La {pa} C §} and Lu = f. One knows also that L = Ly, where Lg" is the L, adjoint of
Lg (cf. {6, p. 168]).

" Since (L)’ = L, one can similarly define Ly and L’. In the sequel we denote L'* = L and
L* = Lj. The above conclusions show that 'L C I and L ¢ L. Hence L and L' are (closed)
extensions of L. The operators L and L™ are called a minimal and mazimal L-realization of
L, respectively. In the case when L = L’* we say that L is essentially mazimal in L;. When
L = L' the essential maximality means that L is essentially self-adjoint.

3. On essential maximality of operators whose symbol lie in S(m,g)

3.1 Let 8 be in C§° such that § > 1 and 8(§) = 1 for all |¢| < 1. Define 8, € CL(R")
and ¢; € C§°(R") by the relations 8;(€) = 8(£/j) and ¥;(z,£) = 6, 5 (€)6;(z), respecuvely Let
9;(D) and ;(z, D) be the corresponding pseudo-differential operators with symbols 8;(z,&) =

0 i(€) and ¥;(z,£). Denote by ©; and ¥; the operators 8" and 9", respectively. For any
u € L; one observes that F(O; u)(f) = 6; (E)(Fu)(f) and so Oju € N,50 Hi, C C* where
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Hi, = {u € La| (1 + |£°)*/*(Fu)(€) € L;}. Furthermore, one sees that ¥;u = 6;0,u and so
¥;u € C3°,for any u € L, (in fact it is easy to see that ¥;u = ©;(u + ©;)). Since §;(§) — 1
for any £ € R™ and since |6;(€)| < supg |6(€)| one gets (due to the Dominated Convergence
Theorem)

[18;u - ullo

. 1/2
((2’0"' [F(6;u)(¢) - (Fu)(E)I’df)

1/2
((2r)‘ l(9j(£)—1)(Fu)(E)I’d£) -0

with § — oo. Then we also get A ‘ )
[1¥;4 — ullo < |16; G,u - e,ullo + |91 — yllo — 0 (3.1)

w.ith Jj — oo.

Lemma 3.1. Suppose that gisa Riemannian metric such that, ;m'th c>0,

9w )02 2 cl(g,MP/(1+ [zl + 1€ for all (2,€), (v, m) € R*™.
Futhermore assume that m : R? — R is a weight function obeying, with ¢ > 0,
m(z,£)> ¢ ,forall (z,6) e R™.

Then the sequence {;(-,-)} of symbols is bounded in S(m, g).

Proof. Let 6 G C$(R®) such that 6(z,£) = 0(:)0({) Then ¢;(1 f) = 6((z,€)/7). For any
(a,B) € N2 there exists a constant C, g > 0 such that

(1+ |z| + €)1+ (Dg DEG)(z,€)| < Cas

and so

(D2DE¥). Ol = ,,,,l(ow"ox(z O/ |

< Co.B |°|+w|( +| l+| |) (lal+181)
< ,.ﬁ(1+lz|+|e|) "°'+"’"-
Thus we obtain, for any & E'N,
19z, )Ry hi)l € T [hjal .- hjal (85, - - - 8;,%;)(=. £)I
' < Cilhjl. . lhial(1 + 12| + 1€1)7*
< Celhl.. lhal(1 + |2 + J€])~*
< Cre™Mgl% (b)) g(‘,’;,(hk)
< Ciec™tM=1m(z, c)l‘[g(‘,’i,(hj),
1=1

which implies the assertion
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We shall now state

Theorem 3.2. Suppose that the Riemannian metric ]

90N = 20 2z0

is o-temperate and that there ezist constants ¢,C > 0 such that

Nng22c¢ (3.2)

and .
g;(z, ) <C1+zl+1€}) (7=1,2). (3.3)

Furthermore, suppose that m is a (0, g)-temperate weight function such that
 mm<C. (3.4)
Let L(-,-) be a symbol of the class S(m,g). Then the operator L(z, D) is essentially mazimal.

Proof. Due to Theorem 2. 8 (note that (2.11) is valid and that A < —1— < c“) a.nd to
Lemma 3.1 (in which we choose m(z,£) = 1) we find that

(50 L)(2,€) = ¥;(z,€)L(z,£) + Ry(2,§) (3.5)
and
(Lo#;)(z.€) = L(z,£)%5(z,€) + Ri(z,6),

where {R)(., )} and {R”( -)} are bounded in S(mh 9). Hence by Theorem 2.7 and because
hm < C,

(%9 L)(z, D) = (L o %;)(z, D) + Ry(z, D) , - (36)
where : .
IR;(z, D)¢llo < Cligllo forall jeN, p€S . (3.7)
Let u € D(L"). Then we find that '

(Wj(L'-“)v‘;’)o

<Ll-u, vi(z, D)(p)o

(u.(L' o %))z, D)p),

(u,(¥j0 LY(z, D)),

(u, (Lo %;)(z, D)oYy + (u, Ri(z, D)),
(L(¥u),0)g + (Rju, ?)o

forallpe § where R; is the contmuous extensnon of Rj(z, D) (cf( 3 7)) Thus we get

_ L(z,D)(¥;u) = \I’,'(L"u) - Rju.
In virtue of (3.7) we find that (cf. also (3.1))

Lz, DY(¥;8)llo < N¥;(L" )0 + Il Rjullo < C'(IIL"ullo + lullo)
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for any u € D(L"),j € No. The Banach-Saks Theorem implies that there exists a subsequence
{¥,,u} of {¥;u} such that

—0 (Il = o)
)

L(z, D) (l" i w,,u) -f

k=1

S Lz DY) - f
k=1

N
with some f € L;. In addition by (3.1) we see that "l" ZL=1 W, u- u"o — 0 with | — oo.
Hence u € D(L) and Lu = f (= L"u), which completes the proof § i

For the first order partial differential operators we obtain the next corollary.

Corollary 3.3. Let L(z,D) = 35,1 8,(2)D? be a first order partial differential operator
such that a, € C™ and that - . .

[DZag(z)] € Ca(l + |z})' ! for o} <1, a€ N} z € R™ (3.8)
Then L(z, D) is essentially mazimal.

Proof. We choose the Riemannian metric

P Inl?
%=00MN= T 0m T T e

Due to Example 2.4, g is slowly varying. Remark 2.3 implies that the weight function m(z,§) =
{1+ |z])(1 + [£]) is g-continuous.
We verify that g is o-temperate. Due to Theorem 2.2 one must verify that

T < C+ (416Dl - o1+ (14 [2DlE - 1) (39)
. Lol .

Trje] < C U+ (LIl ol + (4 + LaDle - nb (310)
Since

T+lyl<t+lzl+ly -zl S A +1z)(1+ 1z - 9l), 140l < (1+ €D+ 1€ = nl)

the conditions (3.9) - (3.10) hold with ¥ = 1. Thus ¢ is o-temperate.
Theorem 2.2 implies that m is (o, g)-temperate, if :

A+l +1€) . -
Trhl e SCO+ O+l Orlbie-n). . @1y
One sees that Lt 16
z . _ _
T4 S (1+1z - yD(1+ 1€~ nl)

and so (3.11) is valid with N = 2. Thus m is (o, g)-temperate.
The assumptions (3.2) - (3.3) of Theorem 3.2 are trivial and by (3.8) one sees that L(-, ) €
S(m, g). Noting that hm < 319_:"' = 1 one may conclude the assertion from Theorem 3.2 B

Remark 3.4. From Theorem 3.2 one can conclude more general results like those given in
Corollary 3.3; for example one may consider pseudo-differential operators with symbol L(z,§)
obeying

(D2 D L)(2, )l € Cap(1 + fz[)*~1ol(1 + [¢[)P-101 .
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3.2 In this subsection we consider the case L(z,£) = Lo(£) + P(z,£) where Lo(€) = Lo(z,€) €
S(m, g) and where P(z,§) is related to the first order operators.

Theorem 3.5 Suppose that the Riemannian metric
wl*_ | _nl?
9i(z.€) * g3(z,§)

is o-temperate, where g, and gz satisfy (3.2) and

9i(z, <CA+KN (=12). ‘ (3.12)

Furthermore, let m and m be (o, g)-temperate weight functions such that (for m )(3.4) is valid and
that the symbols Lo(-) € S(M, g), P(-,-) € S(m, g). Then the operator L(z, D) = Lo(D)+ P(z, D)
is essentially mazimal.

Proof. One sees that
0;(D)(L(=, D)) = 8;(D)(Lo(D)p) + 8;(D)(P(z, D)p).

Similarly as in Lemma 3.1 we get from (3.12) and from (3.4) that {6;(-)} is bounded in S(1,g).
Futhermore, by Theorem 2.8 :

(85 0 PY(z,£) = 0;(€)P(z,£) + Rj(2,£) ,
where {R;(-,-)} is bounded in S(mh,g) C S(1,g). Hence
0;(D)(L(z, D)) = L(z, D)0 D)¢) + Ry(z, D)y
which implies )
‘ 0;(L"u) = L"(Oju) + Rju  for ue D(L'"). (3.13)
From (2.4), (2.7) and (3.12) we obtain

|Lo(€)l < Cria(0,€) < C'(0,0)(1 + g.6)(0, €)Y

<
< C"(1+ 630,01 < (1 + ¢,

and so || Lo(D)ello < Cll¢llx,p (recall that k(&) = (1 4 |§|2)'/2). Due to (3.4) we see that h <
C/m and, by (3.12), (1 +1€])~181 < C1Blg; (2, £). Thus one easily gets (by (3.12)) that k_s(-) €
S(%,9). Hence (P ok_3)(-,-) € S(1,9) and then, by Theorem 2.7, |[P(z, D)(k-2(D)®)llo

Cli¢ilo which implies {|P(z, D)¢llo < C|l¢|ls,. The above inequalities imply that (with s
4N +2)

i IA

iL(z, D)¢llo < Cllelle, forallpe
and then Hy, C D(L). Since ©;u € Hy, one gets from (3.13)

IL(®;u)llo < C(IIL"ullo + llullo) for u € D(L™)
from which it follows (as above) that u € D(L) and that Lu = L"u, as desired I

Remark 3.6. The content of Theorem 3.5 can be formulated also for more general metrics.
We omit this generalization.
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Corollary 3.7. Let L(z,D) = Lo(D) + P(z, D) be a linear partial differential operator,
where Lo(D) = 3)y(<, 8o D° has constant coefficients and where P(z,D) = Liol1 bo(2)D7 is
a first order operator with C™ -coefficients, which satisfy sup, | Db,(z)| < Co. Then L(z,D) is
essentially marimal.

Proof. One sees that all the assumptions of Theorem 3.5 hold, when we choose a1(z,€) =

1192(176) =1+ (£ and m(zvf) =1+¢, m(z,6) =(1+ [0} ]

3.3 For operators of "higher order” we need some additional assumptions on L(z,£) to obtain
essential maximality. We restrict our considerations (for simplicity) to a special metric. Recall
that, for the metric (2.6), one has h = ;L.

Theorem 3.8. Let

B [
Y=o)(v: 1) = 93(z,6) * 93(z.€)

be a o-temperate Riemannian metric, where g, and g, obey (3.2). Assume that there ezist N > 0
and a symbol P(-,-) € S((9192)",9) such that (with y > 0)

[P(z,€)| > 7(9192)" (2,€) for all (z,£) € R, T (3.14)
Let L(-,-) € C=(R?™) be a symbol such that, with ¢,C > 0,
¢ < |L(z,€)l < C(g192)"(2,€) (3.15)
and '
(D3 DZLY(z,€)| < CalL(z,6)lg; "z, 6)95 (2, €) (3.16)

for all (z,£) € R*™. Then L(z, D) is essentially mazimal.

Proof. Part A. Applying the symbolic calculus of Section 2 one sees that there exist Q(-,-) €

5(1,g) and Ry(:,-), Ra(-,-) € S(hV,g) such that :
LoQ = I-R (3.17)
Qol I-R,. ' (3.18)

We sketch the proof of the relations (3.17 - 3.18). Due to (3.16) we see that Pi(-,-y=1/L(-,-) €
$(1,9)- In view of Theorem 2.8 we get

LoP)O=1+ T SorLrOD:(zog) + Rule0),

0<lai<N 7

’

where Ry(-,-) € S(h,g) (note that, by (3.15) - (3.16), L(-,-) € S(h~V, g)). By (3.16) the sum
1 1
L2002 (72 )
°<E:5N al ¢ L(z,€)
belongs to S(h,g). Hence one sees that there exists Ry(-,-) € S(h, g) such that
(Lo P)(z,6)=1- Ry(z,€) .
Define Py(z,€) = Ry(z,€)/L(z,€). Then we find that

(Lo(Pi+ P))(z,6) = (LoP)(z,6)+(LoBy)(z,6)
1-R](z.f)'*'Rl(zyC)-R?(x’{)7
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where

M=~ T 20003 (MED) 4 o),

0<lal<N L(z,¢)
in which Rz(-,-) € §(h3,g). By (3.16) the sum

i a Rl(zvf)
°<E:SN a!a?L(z1f)D: (__L(z,f) )

belc;ngs to S(h2,g) and so
(Lo P)(z,8) =1 - Ra(z,4) ,

where Pi(-,-) := Py(+,-) + Pa(+,) € S(1,9) and Ra(-,-) € S(h?,g). Generally, by induction one
gets that, for any m € N, there exist Pn(:,-) € S(1,g) and Rm(-,-) € S(A™, g) such that

(Lo Pn)(z,§) ='1 = Rm(z,£) . (3.19)

A same kind of construction implies that, for any m € N, there exist Q@ (:,*) € S(1,g) and
Sm(:,+) € S(A™, g) such that

(Qm o L)(z,f) =1- Sm(ztf) . (320)
Due to (3.19) - (3.20) we have (with m = 2N)

QivoLoPyny=Q:n—QavoRay and Qavolo Py =Py = Sav o Pan

and then Pyn(z,€) = Qan(z,€) + Tan(z,€) where Tan(-,) € 5("‘”’,9)- Combining the above
results we obtain ’ ‘

LOP2N=I—R2N
and
PinoL=(Qan+Tan)oL=1-San+Tanyol=1—-rn,

where rn(-,-) € S(AV, g). This proves (3.17) - (3.18).
Similarly as with (3.17) - (3.18) one gets from (3. 14) that there exist symbols g(-,-),r(-,") €
S(KN,g) such that

qu_I—r. : (3.21)
Part B. In virtue of Theorem 2.7 [|(L ¢ ¢)¥|lo £ C||¢llo and so (again by Theorem 2.7)

IL(z, D)¢llo = |IL(z, D)((a(z, D)o P(z,D))p + r(z, D))o
< IP(z, D)ello + C'll¢llo . (3.22)

for all p € S. Similarly one gets (for j = 1,2)
l(P(z, D) o Rj(z, D))ello < Cliello (3.23)
for all ¢ € S. The inequalities (3.22) - (3.23) imply '
R(R1)U R(Ry) C D(L) _ (3.24)
where R(R;) is the range of R;. From (3.17) we get

R(Q) € D(L). (3.25)
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Part C. Let u be in D(L") and let L"*u = f. Then one gets by (3.18)
(£,Q¢) = (u,L(Q9))g = (u,(Q o LYp)y = (u,0) — (u, Rp)g

and so f € Q(Q") and Q" f = u - RS u. Since Q and R; are bognded in Ly, one has Q" = Q
and Ry = R;. Hence, by (3.24) - (3.25), u = Qf + Ryu € D(L) and Lu = L™u = f. This
completes the proof I

Especially, one gets from Theorem 3.8 that the partial differential operator L(z,D) =
Zloi<r 80(2)D? obeying (with ¢ > 0)

¢ < [L(z,€)| forall (z,§)€ R™,  sup|D(z)|<C, forall o] <1
and .
I(DZDELY(=, &) < CaslL(z,O)I(1 + I€1)°
with some & € (0, 1], is essentially maximal (choose g, = 1, go(z,€) = (1 + I€1)%/" and P(z,€) =
(1 + 1€/,

Remark 3.9. (A) Suppose that g; and g; (which appear in the Riemannian metric {9¢=6})
obey g1 € $(g1,9) and g3 € §(g2,9), that is, g; € C®(R?") such that

|D2DE9i(2,0)| < Conos(z, 97 ™(2, )05z, 6) (5 =1,2).

Then the symbol P(z,£) defined by P(z,£) = (9192)(z,8)isin S((g192)", 9) and obeys (3.14).
Hence in this case the existence of P(z,£) (in Theorem 3.8) is guaranteed. (B) In Theorem 3.8
one may replace the weight function (g,g2)" by a weight function m for which there are I € N
and C > 0 such that mh! < C. We omit this generalization.

4. Some examples and counter examples-

Combining the Main Theorem of (2] and the Corollary 18.6.11 of (5] we get

Example 4.1. Let L(z,D) = ZIVIQ a,(z)D° be a second order partial differential operator
such that L'(z,D) = 'L(z,.D), L(z,§) is real-valued, L(z,£) > 0 and that | D%a,(z)| < Cl! for
all z € R” and a € N3. Then L(z, D) is essentially maximal.

Proof. Due to Corollary 18.6.11 of (5], the operator L(z, D) satisfies the estimate (with
¢>0) ((L(z,D)+ C)p,9)o 2 cllpllf for ¢ € S when C is large enough. Thus the result of (2]
implies that L(z, D)+ C is essentially maximal and so also L(z, D) is essentially maximal i

Example 4.2. Let L(z,D) = o<+ @0(z)D° be a first order linear partial differential
operator such that the coefficients a, are first degree polynomials, that is, ag(z) = (by,z) + ¢,,
with b, = (bs1,-..,bsn) € C* and ¢, € C. Due to Corollary 3.3 L(z, D) is essentially maximal.

Example 4.3. The first order linear partial differential operator (here n = 2)
L(z,D) = (1 +sin*(expz?))D; + 1

is essentially maximal. The essential maximality can not be seen by Corollary 3.3, but may
be verified using more direct calculations (we omit the proof). This example shows that the
condition (3.8) in Corollary 3.3 need not necessarily be valid for essentially maximal operators.
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Example 4.4. Let a be a (bounded) real-valued function in C*°(R) such that a(z)a’(z) > 0
for all z € R (and a’ is bounded). Define the first order operator by (here n = 1)

L(z, D)p = a(z)(z? + 1)° Da(z)(z? + 1)°¢] + ia(z)a'(z)(z? + 1)**¢ for all p € 5.
Then L(z, D) is not essentially maximal, when a > }.

Indeed, since the operator P(z, D)¢ = a(z)(z2+1)* D(a(z)(z?+1)°¢] is formally self-adjoint,
one sees that (P(z, D)y, ), is real-valued. Hence .

HL(z, D)o, @) (P(z, D)o, p)o + i/a(:r)a’(-'ﬂ)(:f2 + 1)l

R

[ a2 @) + 12k
R

[a@3 @)tz

R

v

v

and then N(L) = {0}.
On the other hand one sees that the function u := (z? + 1)7® € L2 NC* for a > 1 and that

L(z,D)u = —i a(z)(z? + 1)%a’(z) + ia(z)a'(z)(z2 +1)* = 0
and so N(L'*) # N(L). Thus L' # L, as we claimed 1

We remark that one can choose @ = arctan : R — (ir,3r). This example shows that
Corollary 3.3 is in some sense strict. :

Example 4.5. Let L(z, D) be as in Example 4.4. Since L(z, D) is not essentially maximal,
the operator Q(z, D) = (L o L')(z, D) is not essentially maximal (cf. [12]). Hence one sees that
there exists a formally self-adjoint, semi-bounded, second order differential operator Q(z, D) =
Liei<2 bs(z)D? where the growth of the coefficients and their derivatives is at most (1+|z[)*, x >
2 and which is not essentially maximal (cf. Example 4.1).

Example 4.8. Let @ be areal-valued function in C§°(R) such that 6(z) = 1, for all z €
(~1,1) and let @ = —0z. Then one sees that a is a real-valued function in C§°(R) safisfying
a(0) = 0 and a’(0) = —1. Define the second order differential operator L(z, D) by (here n = 1)

L(z,D)p = (aD + (aD) +4)[(D +i)pp] forall p € S.
Since the operators P = aD + (aD)’ and Q = D are symmetric, one sees that, for all p € §,

lL(z, D)ello = (P + i)(D + i)¢llo 2 I(D + i)¢llo 2 llvilo.
Hence we obtain that the kernel N(i_) is {0}. One the other hand we show that the kernel
N(L'™)is not {0}, which implies that L # L.
Let E be in L; defined by E := F-! (?}'ﬁ) (note that [g |71%d€ = [g T3e7d€ < oo and
then E € Lj; recall that F is the Fourier transform). Then one sees that (in the distributional
sense) (D + i)E = §. Futhermore we get

(E.L(z,D)¢), = E(I(z D)p) = E((P+ (D + %)
E((D+ (P + 1V9) = 6((P + 7'9)
(P 79)0) = ((P=w)0).
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Finally, we find that, for all ¢ € S,

(P=i))(0) = ((aD +(aDY - i)¢|(0) = (aDe + (Da)p + aDyp ~ ip}(0)

2a(0)(Dyp)(0) + (-ia’(0) - i)¢(0) = 0,

since a(0) = 0 and a’(0) = ~1. This completes the proof.

Example 4.7. Similarly, as in Example 4.6 one sees that the pseudo-differential operator
(here n = 2)

L(z, D)p = (a(z1)D1 + (a(z1)D1) +i)(((DF + DI)* +i)e] (x> 1/2)

is not essentially maximal in Ly(R?). Note that the symbol L(z,£) of L(z, D) belongs to the
Hérmander class S33%~.
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