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Asymptotic Developments of the Solutions of the Translation Equation

L. BERG

For the solutions of the translation equation a special asymptotic development is conside-
red. It is shown that the coefficients of this development can be determined by linear re-
cursion formulas. An example illustrates the results.
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1. Introduction
This paper deals with the translation equation _
F(z,s+1) = F[F(z,s),] , ) (1)
cf. J. Aczél (1} and G.Targonski [7], under the initial condition
iF(z,0)=:1: . (2)

For the solutions F: R x R — R of (1) asyrﬁpt.otic expansions of the form
u had . )
F22) ~ ¥ fafwa” (3)
z n=1

are considered, where z — 0. The first three coefficients in (3) were already determined
by the author in [3], and under weaker conditions in [4]. The case of integer ¢ = k
was investigated by D. Gronau in {5]. Here we derive two linear differential recursion
formulas for the coefficients, which allow the calculation of further f,. .Mo;e_over, we
solve the problem of [3] and [4] concerning the construction of an example for (3) in

the general logarithmic case. Comphca.ted ca.lculat.lons were carried out by means of
the DERIVE 2.01 system. "
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2. The first recursion formula

The asymptotic expansion (3) means

F (:x:, g) = gf,,(u)z" + O(z"“) | ~. . (4)

for every n, and we assume that (4) is satisfied uniformly with respect to u for |u| < uo
with sufficiently small uq. It is allowed that z is restricted to z > 0 or to z < 0.
Condition (2) implies

H(0)=1, fu(0)=0 for n>2 . (5)
For u = zt we interpret (3) as a formal power series
F(z,t) =" fa(zt)z" “(6)
n=1 R )

cf. L. Reich [6], and vice versa.

Theorem 1: For sufficiently small |zt| we assume that the solution F = F(z,t)
of (1) with (2) and (4) possesses the two partial derivatives of order 1 and that (6) can

be differentiated termwise. Then the coefficients of (3) satisfy the differential recursion
formula

fé(u)=ianﬁ_u[uf;(u)wfy(u)]‘ S ¢ '
with ¢, = f1(0). '

Proof: From (6) we 6btain by differentiation ' :

Rlat) = YlefE)tnnelT . @)
Rt = 3 fiae 9)

These derivatives are connected by the Jabotinski equation

F(ed) = R 0F@0) . . (o)

cf. J. Aczél and 'D. Gronau [2], which easily follows from (1) and (2)." The last three
equations immediately imply 'the recursion formula (7) [ a

Let us méntion that the A‘furt‘h‘er iﬁitial cbnditioﬁs
F(0,6) =0, F.(0,8)=1

are consequences of (5), (6) and-(8).’
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Integrating (7) and considering (5) we find the coefficients S

filu) = %, fo(u) = —f:)—zlnv, f3(u) = %{(2>2(1n2v —lnv—aqu)+ agu}

a,

with v = 1 — @,u, which are already known from (3] and [4], as well as

1 az\? 5 fap\3 a .
fa(w) = v_‘{_(l) |n3v+-2-(-—2) ]n2v—a—;[2(ala3—ag)u+a3] Inv

a a;
1 .
——(au +ﬂu)}
ay )
with @ = a%aq — 2a,a,a3+ a3, B = —2(a a4 — aa3). In the case that a, = 0 forn > 2

the coefficient f, and the next two ones can be written in the form

3 :
fa(u) = u:l’v‘{ Inv+ (Inv + w) [21nv 5]
- Ji{ 4y [E 2 _(i §)
fs(u) = P In*v - (lnv + w) 3 In“v 3w+2 Inv
+(52-3)]}
3 2 T
5
N 3 G " 3__@2 ﬁ)?
, fe(u) = a?ve{ In®v+ (Inv + w) 12ln v 12w-}- 6 Inv

+w (Ew 25)lnv—w2 (lw—ﬁ)]}
12 6 4 3/1
with w = a,u. The first coefficients in the brackets are the same as in
In(1 —w) 5 , 13 4 77 ,
(l—w)" _w+2'w + 3w + 12'w + ...,

cf.[3]. In the case a; = 0 we have to interpret all expressions as limits for a;, — 0, so
that then ﬁ Inv = —u, Z(Inv+w) = —3u® etc., and all f, turn over into polynomials.
1 .

3. .The second recursion formula
Instead of (1) we now start from the fepresexit.ation

CF(z )=t e(z) - (1

for such solutions of the translation equation satisfying (2), which are invertible for a
fixed z, cf.J. Aczél [1]. As before, |zt| shall be sufficiently small. In case of need we
moreover restrict z toz > 0 or to z < 0. ’

" Theorem 2: Under the additiéndl assumptions of Theorem [ as well as F‘(xa:,O) #0
and

al=.ag=...=am_‘|=0', an 70, m2>1 , (12)
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the function p of (11) is differentiable, and the derivative has an asymptotic expansion

of the form

'(z) = z A (13)
n=0
for z — 0 with by = al The éoeﬁicients fa of (4) satisfy the differential recursion
formula :
n4m-—1

ufi(u) + nfa(u) = Y bagmov-1fi(u) (14)

v=m

forn > 1. The first m — 1 coefficients are
Hlw)=1, folu)=...= fm(u)=0 . . (15)

Proof: According to (11) the differentiability of F 1mp11es the differentiability of
. Hence we obtain

1

RS A 6
and therefore from (9) and (12) in the sense of formal power series
' 1
P(@) = . (17)
’ Z: a,z"+!

Now, carrying out the division we find an expansion of the form (13) with by = —‘;

In view of (16) we can write (10).in the form
Fi(z,t) = ¢'(z) Felz,t)

i.e. according to (8), (9) and (13) with u = zt -

(]

3 (W) + nfo(w) 2 = S b S w)a
u=0 v=1

In view of by # 0 this is only possible for f’(u) = 0 in case of v < m, so that we
immediately obtain (14) and according to (5) also (15) Il

Let us mention that the systems (7) and (14) are inversions of each other in view
of the equations

z bn—uau+m =O0On0 (18)
v=0
which are consequences of (13) and (17), where 6,0 is the Kronecker symbol. By
integration of (13) we obtain up to an unessential constant

1 b b

m— 1
o(z) = e T Tl +bmln|z| + bnsrz + ibmﬂ:x? +... . (19)
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If m is odd, then z can vary at both sides of z = 0, otherwise z must be nonnegative
or nonpositive in order to guarantee the invertibility.

From (14) and (5) we can calculate fn4m-1, so far as the preceding f, are already
known. The results are the same as in Section 2. In the case m > 2 all f, are
polynomials. More precisely, they are polynomials of a degree not greater than k, if
k(m —1) < n < (k + 1)(m — 1), since the first m — 1 ones are constant. In the case
m = 1 the equations (14) turn over into

(5= bo) () + nfalw) = 3 bums S10)

4. An example

Let us consider the special case m = 1, b = 1, b = —1 and b, = 0 for n > 2, i.e. in
view of (19) |

o) = —= ~Inla]
From (18) we find a, = 1 for all n. We need the solution ™! = ¥(z) of %+1n [$| = -~z
with 1¥(z) — 0 for z — oo , so that (11) turns over into F(z,t) = ¥ (t —1_1n |:z:|)
This means that F = F(z,t) must be a solution of

1 z
t—i——ln|x|+ln|F|_ l—zt—zln(g)

F =

for small |z|. Substituting F' = I and as before v = 1 — zt with |zf| < 1, we have to

solve the equation
y=v+zlny

According to the well-known formula of Lagrange

oy) = g0) + 3 ZHg ) 1" o)

with g(v) = ! and therefore g’(v) = —Jr we obtain the equation
T o0 zn+l 1 (n-1)
F(z,t)=-— (—ln"v> ,
(2,t) v ,é:, n! \v?

which even converges for éufﬁciently small |z|. In view of
&L v)l
(i)
(:—zln"v)(a) —%é(ln‘v—l—:-lnav+§]2v—-lnv) ,
(%m%)w = (v Mintv+ Ziny =Tl o +1nv) |

v v8 12

the results coincide with the results of Section 2 with a, = 1 for all n.

—%(ln2v —Inv) ,

6 5
F(lnsv- Eln'lv-i-lnv) ,
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