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The Treatnient of Window Problems by Transform Methods

W. SPRUSSIG and E. VENTURINO

The aim of this paper is to consider a special class of mixed boundary value problems, the so-called
window problems. Using suitable transforms we derive singular integral equations. These methods lend
themselves to discover how singularities arise. They show and allow a close connection between analytical
methods and numerical analysis.
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1 Introduction

Our paper is devoted to the so-called window problems of elliptic differential equations
over domains in IR? and IR®. The kind of problems appear as a special class of mixed
boundary value problems, where the window is a finite part of the boundary. It means that
the connection with the outside only through a window can happen. By unconventionally
chosen unknown functions we will deduce canonical representations of these problems in
form of perturbed singular integral equations with singular integrals over the window. We
use methods of transform analysis which are different from Green's method and potential
methods. These ideas go back to D.S. Jones [8). In a similar way S.R. Bland (1], F.
Erdogan [2] and E. Venturino [13] transformed different problems of mechanics to singular
integral equations with generalized kernels. For more complicated domains and a certain
class systems of partial differential equations the previous methods to not generalize and
we will use methods of quaternionic analysis. Basic ideas in this field are given in the book
of K. Giirlebeck and W. Sprogig [6]. Finally a numerical consideration on the singular
integral equations deduced above conclude the pa.per

2 A transform method for 2-dimensional window problems

The aim of this section is to demonstrate the main ideas of the transform method used
here. We consider the foilowing 2-dimensional window problem. Let be

R* ={(z,y) e R*: 220,y 2 0}, R3* = {(z,y) e R* : 2 > 0, y =0},
Rt ={(z,y)eR:2=0, y20},W={(z,y) e R}*:0<a <y < b< oo}
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and W€ = IR+ \ W. We look for a function u = u(z,y), harmonic in the interior of the
set R**, denoted by int JR**, and which satisfies the boundary conditions

(i) u(0,y)=0 on W* (s3%) .‘}ivl;n_.“ lu(z,¥)| < 0

8 (2.1)
(#) u(2,0)=0 on Ry* (iv) au(o, y)=g(y) on W

with & = W(y)2 + @) . M) +ME) =1 ; A(y) # 0 for every y, where
g, A1, A2 are some functions. %er separating the variables we get the ordinary differential
equations . . .

X"(z)-o’X(z)=0 and Y'(y)+a’Y(y)=0
with an arbitrary real parameter «. This leads to the representations
Xao(z) = A(a)e®® + B(a)e™®® and Yo(y) =C(a)cosay + D(a)sinay .
Because of the boundedness of u at infinity we have Xao(z) = B(a)e™**. From X,(0) =0
we get C(a) = 0 and so Y,(y) = D(a)sin ay. Hence,
2 7 s :

u(z,y) = ;/E(a)c “* sin ay da, (2.2)

where E(a) = D(a)B(a). As for y € W* we have u(0,y) = 0, then it is also 8u/8y = 0.

That means

.2 —az _ c
'h_.x?‘;/aE(ox)e cosayda=0 ,yewW

and from (2.2) we get on W the equation

9¥) = A(y) .lilzl* 1_2r /(—a)E(ar)e"" sinay da’
o (2.3)
+ A(y) 'lixa / aE(a)e™ " cos ay da .

or
oo

lim 2 / aE(a)e™* [As(y) cosay — Ay(y) sinay)da = g(y) , y € W.

a0t T
Setting h(y) = 2 J.° aE(a)cos ay da, we have obviously A(y) = 0-on W¢. After inverting
the cosine transform we obtain aE(a) = [, h(t) cos ot dt. Substituting this in (2.3) we
get

‘].ilgl* ;//h(t) cosat dt[):(y)coeay - Ai(y)sin ay]c""da =g(y),y € W.

(4
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By using the Laplace transform we get after interchanging the order of integration for
yew

g(y) lim /h(t)/ e™°* [Az(y) cos at cos ay — A\ (y) cos atsin ozy]da dt

—0t+ T
w

.- o*r/h(t)['\’(y ( ’+(t+y)’ x’+(i—y)’)
-)u(y)( try _,__t-¥ )]et

D (tH9R P (- y)
Finally we obtain the singular integral equation over the window W

/ ——-——-h(t)dt+ / —h(t) ;((y)) yeW. | (2.4)

Note that the kernel of the second integral is bounded. If we can solve (2.4) in terms of
h we immediately get E(a) = 2 f,, h(t)cosat dt . Substituting this into representation
(2.1) we find A

u(z,y)

(-]
2 / 1 /Ah(t) cosat dt e"**sinay do.
r) a

° W ’

- / h(t) 7 e
w °

t—
1 / h(t) [ucta.n ity + arctan __y] dt
L. z z
w

y)]do dt

1 2tz - .
h(t)dt + ;/h(t) arctan :'.3__-_2-(“ (2.5)
w

t+y
wn(t<y)

We have then the following

Theorem 1. Let g € C(W), A; € C(W), i =1,2. Then the potential window problem
(2.1) allows the integral reformulation (2.4). Once the latter is solved, the solution of the
original problem in terms of the new unknown h(t) is given by (2.5).

3 A transform method for 3-dimensional window problems

In this section we apply the transform method of Section 2 to the case of a 2-dimensional
window in a rectangular 3-dimensional domain. Let be R** = {(z,y,z) € R®,z,y,z > 0}
and R3* = {(z,y,2) € R**,s = 0} with s € {z,y, z}. Furthermore we assume that the
window W C IRy* has a positive distance from the axes. The geometric shape of *he
window is not yet fixed. We can now formulzate the Slivwing window problem.

Wanted is a tunction u = u(z,y, z) harmonic in int R** which satisfies the boundary
conditions
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(i) u(z,9,2)=0 on W¢:=RMURMU Ry*\W
(i4) .’“!ig’_“ |u(z,y, z)] < oco. (3.1)
(#8) Ou/OA(z,y,z) =g(z,z) on W

L)Y
Ai,i=1,2,3 and g are some functions,

8 8 8 8 <
3
where — = A\y(z, z)E; + Aa(z, z)a—y + As(z, z)b;;, ‘-E 1 A =LA #0,

Using the separation ansatz u(z,y, z) = X(z)Y (y)Z(z) we obtain the ordinary differential
equations X" (z)+a?X(z) = 0,27 (z)+7*Z(z) = 0 und Y"(y) - (& +¥*)Y (y) = 0, where
a, 7 are real positive parameters. Let 2 = o® + 9%; then we obtain the representations
Xa(z) = A(a)cos az+B(a)sin az, Z,(z) = C(y) cosyz+D(7)sinyz, Ys(y) = E(f)e’¥+
F(B)e=®¥. To have for y — oo a bounded solution E(8) = 0 is necessary . Since
Xa(0) = Z,(0) = 0 we get Xo(z) = B(a)sinaz and Z,(z) = D(y)sinyz. Hence, the
solution u = u(z,y, z) of our problem can be sought in the form

u(z v, z) = //G(a y)e P sin az - sin yzdady,

where § = \/o? + 43 and G(a,v) = B(a)D(Y)E(y/a® + 4). Because of condition (3.1),

for points outside the window in the (z, z)-plane, we have
o0 oo
//G’(a, ) sin az sin yzdady = 0
and therefore also
o« 00 oo
//G(a, Y)acosazsinyz dady =0 and //G(a, Y)Y cos vz sinaz dady = 0.

Because the relation 8°u/8z* + 8°u/8y” = 0 holds on IR}* \ W, it is possible to define a
new unknown function h as

ﬁ(z,'z) = %//G(a, ) [M(z, 2)acosaz sin"yz
~X3(z,z)f%sinazsinyz + Ay(z, z)7 sin az cos yz|dad-y.

It is clear that A(z,z) =0 on R’ +\ W.. After inverting we get different representations
for the function G(a, 7). In fact we obtain

a (2, 2)G(a, 'y) = —ﬂh(t 8) cos atsin ys dtds _ . (3.2)
-y,\,(z z)G(a, ¥Y)=- / h(t, 8) sin at cos ys dtds , (3.3)

—B’z\,(z, 2)G(a,7) = - [ h(e, a) sin atsinvys dtds. (3.4)
w
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Condition (3.1) leads to

2 o o0
lim —//G(a,'y)e""[kl(z,z)acosax;in‘yz+Ag(z,z)‘ysinazcosyz

y—ot (3.5)

—z(z, z)Bsinaz sin yz]dady = h(z,z) on W.

Substituting the expressions (3.2), (3.3), (3.4) into the equation (3.5) we get on W

y—0+ w2

lim — / / { ] h(t, 8) cosatsin ys dtds cos azsin vz
AR
ﬂ h(t, 8) sin at cos ys dtds sin az cos vz
- 11_3 ﬂ h(t, s) sin ot sin vs.dtds sin az sin 7:}dad’7 = g(z, 2).
w
Using properties of the sine and cosine function, we then have
. 1
lim [/ h(t, )
// "’”[cos aft+z) + cosa(t — z)][cos (& — z) — cos ¥(s + z)]dady

+ / / %[cos a(t —z) —cosa(t + x)][coe 7(,’ —2)—cos ‘;'(c _+'z).]dad'7 +

+ / / e"”’Jcos a(t - z) — cosa(t + z)][t?os (8 + z) +cos y(s — _z)]dad-y}dtds
= g(z, 2).

It follows

hm - h(t a)// “P¥(2cos a(t — z) cos (s — z)

+% [coe ot — z) cos (s — z) + cos y(t + z) cos (s + 2) (3.6)
—cosa(t +z)cos y(s — z) — cosa(t — z)cosy(s + z)] )dad-ydtdc =g(z,2).

By using Formula 3.914 in (3], i.e.

/e"”‘ +* cosczdz = ‘/Ta_%ﬁl{l(b\/a’ +c’) (a >0),

we find that the first terms in equation (3.5) vanish. It remains to consider in (3.5)
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w

Cw e
vl_'.ug ;liﬂh(t")//'\/ﬁ [cos a(t — z) — cos a(t + z)]

X

" [cosy(s — z) — cos (s + z)|dadydtds.

Formula 3.961.2 in (3] yields

Therefore we get
lim = [ hee,9) 7 [Kelav/G=2F +4%) - Kulav/E+ 27 + 7))
! . [cos y(s — z) — cos y(s + z)]dvdtds = g(z, ).
From Formula 6.671.6 in [3] we get -
R A (S T
V=2 +1(t +2P+y  Va+er +l(t —2) + 4

Providing the (z, z)-plane with a complex structure, sétting g=1t+1is,p==z+iz with
h(t, s) = h(q) and g(z,z) = §(p), then it follows, for p € W,

1 z 1 1 5 1 1 1 -
G‘gh(q)'lp_—q'dtdl + Glh(q)[lp-i- ql - I-ﬁ-{-ql - I’T— ql]dtd‘ —g(p), (37)

which‘is a era.kly singular integral equation due to the presence of the first integral.

Having found the function h = h(t,s) we can calculate from the relation G(a,y) =
_2 . . . .

7557 B h(t, 8) sin ot sin yadtds the required solution as

]dtda = g(=, z).

- ] -8y
U(z,y,2) = ",—:’// h(t,8)sin ortsin'ysipT sin az sin yzdtdsdady (3.8)
. o o W .

N oo oo oy
= rz—:zﬂh(t, .)_//ﬂ—,(coa oft — 2) — cosa(t + z)]
X [cos 7(:'.- z) - :osty(c + z)] dad~dtds.

In summary, we have shown the
Theorem 2. Let g € C(W), A\ € C(W), i = 1,2,3, then the potential window prob-

lem1 (3.1) allows the integral reformulation (3.7). In terms of the above suitably introduced
new unknown h the solution of the original potential problem is given by (3.8).
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Remark. The treatment of more general elliptic problems by this method at present
seems far from being easy. For example, the case of the Helmholtz equation leads to
integrals which cannot be expressed in closed form.

4 Window problems under representation of Teodorescu’s
transform

Now we shall consider window problems over more general domains. The natural trans-
form here to apply is Teodorescu'’s transform instead of the Fou.ner transform. We inves-
tigate the following 3-dimensional window problem.

Let be G C IR® a domain with Liapunov boundary I which has been splitted into parts
Foand I, T =T,UI", 8T, = £,. Assume that T, is flat. On I, we fix the Cartesian
coordinate system in such a way that the z-axis is directed in the direction of the outer
normal to G in the points of I',. In this way T, is contained in the (z,y)-plane. Let be
W C T, a simple connected smooth bounded open domain with dist(W,Z,) > 0. Further
let We:=T,\ W. We look for a vector function u = u(z,y, z) whxch is harmonic in G
and satisfies the boundary conditions

u(z,y,z) =0 on I’
u(z,y,00=0 on W' (4.1)
8u
E(z,y,z):g(z,y) on W.
Introduce the quaternionic units 1,4, j,k with i? = j3 = k? = —1,4j = —ji = k, )k =
—~kj = i,ki = —ik = j. Each quaternion can be written in the form a = q, +

ia) + jaz + +kas = a, + @. Assume aji = ia;,a1j = jaj,ak = ka;,l = 1,2,3. where
a € R,i=0,1,2,3. Let u = u(z,y,2) = u(p) bea quaternionic-va.lued functlon and D =
i8, +j8, + k&, be a differential operator with the abbreviations 8, = 5,8, = 5,6, = ot
A sufficient smooth function u is called H-regular if Du = 0. The decomposntlon of the
Laplacian —A = DD is easy to prove. The uniqueness of the problem can be briefly
shown by the following

Lemma. Let u € C'{G) N C?*(G) be harmonic in G and satisfy (4.1). Then u 1s

uniquely given.

Proof. For u € C}(G) N C?(G) we have mtb & =0onW

/lDul’dG

G

- (i / 8,u8,udG, + jk / 8,u8,udG, + ki / 8,u6,udG,
¢ G . 6 o

= /(8.“8.“ + ayuavu -+ a:ua:u)dG’
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= /u(—Au)dG,+/u%:‘-;dF=—/uAudG,20.
G T G

For Au = 0 we have |Du| =0 and_so 8,u = 8,u = 8,u = 0. Therefore u =const. Because
u=0 on Mitfolowsu=0in G

The integral transform

1 e zi i + zk
(Toulp) = 3= [ el - ula)dG, with ep) =~ LML,
G
is called Teodorescu transform. It is the right inverse of D. We have (DTqu)(p) = u(p)
in G. Because of A = —DD an arbitrary quaternionic harmonic function u admits the
repreeentatlon U=+ Tad:g with ¢; € ker D for ¢ = 1,2. It follows immediately that
(Ted)(p) = (4m)7" [ o ql¢(q)dl",, where n(g) = nui + nyj + n,k. Furthermore, each
H-regular function can be represented by a Cauchy-type integral, i.e. for ¢ € ker D we
have ¢(p) = (47)* [. e(p — q)n(q)¢(q)dTy = (Fré)(p). In order to get a singular integral

equation for our window problem formulated above we set
u(z,y,2) = zkd(2,y,2) + (Teda)(2,¥, 2)

with the new unknown functions ¢; € ker D,i = 1,2. At first we have to prove that
zk¢y + Tcpas € ker A. This is shown if we can find H-regular functions ¢, and ¢; such
that

zkéy + Tots = ¢, + Tod,. (4.2)

Smce D(zk¢y) = —¢, we need to take ¢ = ¢3 — ¢ a.nd ¢y = Fr(zk¢y). It is well known
that (Fru) € kerD. In this way we have shown that u is harmonic. It is also clear that
together with ¢ the H-valued function 8¢/8:z belongs to ker D(G)NC(G), too. For pomta
on the window W we have

. n(q)
,h_ga(&u)(p) Lim 8,(zké1)(p) + lim 4, Ip q|¢a( g) dTl,.

Because of the boundedness of 8¢, /8: in G we obtain

. ) 8
lim (Buk261)(p) = Lim (k6 + £ko22)(p) = ké(pe). o = (2,3,0).
On the other hmd we have on W

1 n(q)
s oS [

o qln(q)%(q)ﬂ"

Hence

M) - 000 + g [ o @BaMT = gp)pe €W, (43
r
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The corresponding equation on W* reads as

ao)+4 [
w

1 1 n(q) - ' .
P —ql “v+4,“[.—b_q|§(q)a. 0,p€ W*. (4.4)

Theorem 8. Let g € C(W). Then the potential window problem with the boundary
conditions (4.1) can be reformulated via the integral equations (4.3)-(4.4).

Remark. In the system of integral equations (4.3)-(4.4) no singular integrals over the
window occur. The reason for this is that ¢; are H-regular functions and therefore the
identity '

#i(p) = e(P n(g)¢i(g)dly,  i=1,2

holds. This means that by the introduction of H-regular unknown functions singular in-
tegrals vanish.

What changes in the equations (4.3)-(4.4) do arise if we substitute 8, by the oblique
derivative 8, with 8y := \i(p)8s + Aa(p)8, + As(p)8,? First of all we can state that
equation (4.4) is the same as before. Instead of equation (4.3) we have then on W

As(po)k(#1(po) — §43(po))
1 [ Xa(pe)(B = 2) + Xa(Po)(s — ¥) + Ma(po)(t =
Tir / lp —ql®

We see that in case of an oblique derivative the presence of singular integrals is in general
unavoidable. Only very special assumptions similar to those of Section 3 can lead to
integral equations without smgula.r mtegra.ls

D@ = o) (43)

5 Window problems of equations of linear elasticxty

In hypercomplex notation the homogeneous equations ot' linear elasticity read
DM™Du=10 : . , ‘ (6.1)
with the boundary conditions
u=0 -on W, Bu=g on W, - ° T (8.2)

where D = 8,8 + 8y + 8,k, Mu = ,m lu,+y_, mmt.he Pomon number and Bisa
boundary operator which i is u:tmg on the window. It has the form

By = 8,u + -k x rot u + Ia dnvu g(p), Bu, = trru, = 0.

In quatermomc notation the operator B can be written as B- = Im (8, — kN D) ‘where
Ny = — ,u, + lu Proceeding in a similar way as done for the corresponding rep-
resentation in the previous section each solution of the homogeneous equation. of hnm
elasticity can be given by .

u(p) = tkMy(p) + (TcMéa)(p), i EkerD (.‘=1,2), (5.3)
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where the first component of the H-regular function ¢, is constant. It is easy to see that

(5.3) has the equivalent representation

u(p) = (zkM¢,) (p)+4’r / e MA@, (5.4)

Writing in short

Va(Mga) = I;‘(‘” Ma(a)ar,

we have to calculate the limits
(1) ‘li_gl* Im (8, — kND)(2kM¢,)(p) = h(p,)
(i) ,l_i'zon* Im (8, — kND)V,(M¢3)(p) = I1(p,).

We find immediately
5i(po) = Im kMy(po) — Im kNM(~¢1)(po) = Im k(I + N)M¢:(po).

Furthermore by a straightforward calculation we have

k N
hpo) = 1m (=3)((+ NEMs(pn) + o [ elpa = YoM a(a)ar,
w
N
/ e MA@+ 5 [ o= On(@Mése)T,).
we )
Finally we get the singular integral equation over the window W

(Més)(g)dry

9(pe) = 1mkl(1+N)M¢,-%(I+Nk)M¢,+Il;/lp t—ql
| | J

(5.5)
o [ eter = @MY@~ 3% [ oo - eMos(erary].

The third integral is a two-dimensional singular integral of Cauchy’s type over the window
On W¢ we obtain the weak singular equation

0= (zkMe)(p) + -4—1;/ |:Y1|M¢z(q)drq,}7 ews. ' (5.6)
r

[n this way we proved

Theorem 4. Let g € C(W). Then the window problcm (5 1)-(5.2) allows the integral
reformulation (5.5)-(5. 6)
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Remark. For our transformations we need no further restrictions on the right-hand
side of the equation, i.e. on the boundary condition over the window, other than conti-
nuity. If this is not the case, the present analytical derivation would not be affected, but
problems in the numerical solution are likely to arise. However we do not discuss this
issue in this paper.

Remark. The advantage of the derived integral equations consists in the posssibility
of constructing a suitable numerical scheme as shortly remarked in Section 8. .

6 Some remarks for determining unknown H-regular functions

In the papers [5,6] the authors have developed the method of collocation with two H-
regular functions for the solution of systems of elliptic partial differential equations of the
second order. We apply this method for solving the window problems discussed here. Let
us start with the problem for the Laplace equation. Using this procedure we set in (4.1)

Ny

¢3(p) =Y _e(p — pM)ai, 0 € H,

=1

where H denotes the skew field of quaternions and the points p*) are outside of the domain
G parallel to the boundary I' on a surface I'. Because of the relation

p—p¥ ,
TG(IP—P(')P) = P(‘)I +¢c,¢c €EkerD, i=1,..., Ny, (6.1)
we get for the approximate solutxon of the window problem
Ny
un N (P) = E e(p - p(’))bJ + Z Ip(‘)
j=1 i=l

where ¢)(p) + ¢c(p) = z)ﬂl e(p — pW)bj. Setting the collocation points p{* on W¢ we
have the algebraic equations

Ny
0= e(® - pMbj + - a, k=1,..,Ny. (6.2)
> Lo 4

Furthermore we get on the window W

z—20

9(ps) = ,_,°+(28°(” —p )b"-’-zlp—p(‘)Pm)

fm]
—s®

= Za‘e(m P + E Po —pOP ™

J=1
where p, = (z,y,0). Now we choose the collocation points on the window and obtain

—z®
S() = 3Bl — P + z: Jg,——L

p«) Il , k= N + 1,.., Nz. (63)
j=1 -
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Numerical considerations on this method are given in [4).

The determination of the unknown H-regular functions in case of the equations of
linear elasticity is obtained in the same way, instead of formula (6.1) we have only to take

() .
(I;(‘) . °') ;lp(‘) o %“P“’ - p)(s - s)e, + 4c,

where s € {z,y,2} and ¢, =1i,¢, = j, ¢, = k.

Remark. For the numerical treatment of singular equations over one-dimensional
windows we refer to the papers [7,9,11-13]. For the multidimensional case one can find
results for instance in the paper [11].
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