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The Treatment of Window Problems by Transform Methods 

W. SPRöSSIG and E. VENTLJRINO 

The aim of this paper is to consider a special class of mixed boundary value problems, the so-called 
window problems. Using suitable transforms we derive singular integral equations. These methods lend 
themselves to discover how singularities arise. They show and allow a close connection between analytical 
methods and numerical analysis. 
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1 Introduction 
Our paper is devoted to the so-called window problems of elliptic differential equations 
over domains in IR 2 and R. The kind of problems appear as a special class of mixed 
boundary value problems, where the window is a finite part of the boundary. It means that 
the connection with the outside only through a. window can happen. By unconventionally 
chosen unknown functions we will deduce canonical representations of these problems in 
form of perturbed singular integral equations with singular integrals over the window. We 
use methods of transform analysis which are different from Green's method and potential 
methods. These ideas go back to D.S. Jones 18J. In a similar way S.R. Bland (lJ, F. 
Erdogan 121 and E. Venturino 1131 transformed different problems of mechanics to singular 
integral equations with generalized kernels. For more complicated domains and a certain 
class systems of partial differential equations the previous methods to not generalize and 
we will use methods of quaternionic analysis. Basic ideas in this field are given in the book 
of K. Gürlebeck and W. Spróig 161. Finally a. numerical consideration on the singular 
integral equations deduced above conclude the paper. 

2 A transform method for 2-dimensional window problems 
The aim of this section is to demonstrate the main ideas of the transform method used 
here. We consider the following 2-dimensional window problem. Let be 

2'4={(;y)Eli:z>O,y^!O},R={(z,y)ElR3:x>O, y=O}, 
1R'4 ={(z,y)EiR2 :z=O, y2!O},W={(z,y)Eli'4:O<a<y<b<oo} 
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and WC = JR' \ W. We look for a, function u = u(, y), harmonic in the interior of the 
set li?2 , denoted by mt 1R3 ,+, and which satisfies the boundary conditions 

(1)	u(O, y) = 0 on WC 

(ii)	u(z,0) = 0 on

(iii) .2+y2-.o0
 Urn Iu(z, y)l < 00 

8
(iv) u(0, y) g(v) on W

(2.1) 

with	= Ai (y) + A2 (y)	, )(y) + A(y) = 1 ; AI(y)	0 for every y, where
g, X 1 , '2 are some functions. Ifter separating the variables we get the ordinary differential 
equations

X"(z) - cx2 X(z) = 0 and Y"(y) + a2 Y(y) = 0 

with an arbitrary real parameter cx. This leads to the representations 

X(z) = A(a)eG + B(cx)e_ al and Y(y) = C(a) cos ay + D(cr) sin ay. 

Because of the boundedness of u at infinity we have X(z) = B(a)e. From Xa(0) = 0 
we get C(a) = 0 and so Ya(y) = D(a) sin ay. Hence, 

00 

u(x, y) !I E(a)e	sin ay do,,irj
	 (2.2) 

0 

where E(a) = D(cx)B(cx). As for y € W we have u(0, y) = 0, then it is also 8u/Oy = 0. 
That means

linJcxE(a)e_0r coo Cry dot =0 , YEWC 

and from (2.2) we get on W the equation 

00 

g(y) = .\ ' (y) lim ! f (_cx)E(cx)e_" sin ay dcx 

00

0	
(23) 

+ )2(y) Urn f aE(a)e cos ay dcx 

0 

or
00 

Urn ! IaE(a)e"[As(y)coscxy - \,(y) sin cx]da = g(y) , yE W. 
a_.O+ ir J 

0 

Setting h(y) = 1 j ° at(a) cos ay dcx, we have obviously h(y) a 0 on WC. After inverting 
the cosine transform we obtain aE(a) = fw h(t) cos at dt. Substituting this in (2.3) we 
get

CO 

Urn ! I Ih(t) coo atdt[) 3 (y) coo y_A1 (y) sin ay] e"da=g(y),yEW. a . .O+1rJ J oW
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By using the Laplace transform we get after interchanging the order of integration for 
y E W

CO 

=	 - A i(y) cossinay 1 dc dt 
a-o+ r f I 

= .L+ f h(t)[2(v)(Z2+(+Y)B + X2 + (t — y)2) 

t+y	t - y 
-AI(y) ( 2 + (t + )2 + z2 + (t - )2 dt. 

Finally we obtain the singular integral equation over the window W 

Ih(tt+ 
! J_1(t)dt=	yEW.	 (2.4) 

Note that the kernel of the second integral is bounded. if we can solve (2.4) in terms of 
we immediately get E(a) = fW h(t) cos ot dt . Substituting this into representation 

(2.1) we find

1	1 u(x,y) 
= 2 -j 1 

-J .h(t) cos cst dt e' sin ay d. 
717	Of 

h(t) 
CO 

 
- irf	I —[ sin ,(t+y)+ sin cs(t-y)] dot dt 

cc 
W 

Ih()r	t+ 
- J	[arctan_i+arctanL-dt z 

W

2tx =	f h(t)dt + J h(t) arctan - 2 + 
2 dt.	(2.5) 

7	 C2
Wfl(<y)	 w 

We have then the following 

Theorem 1. Let g € C(W), Aj E C(W), i = 1, 2. Then the potential window problem 
(2.1) allow, the integral reformulation (2.4). Once the latter is solved, the solution of the 
original problem in terms of the new unknown h(t) is given by (2.5). 

3 A transform method for 3-dimensional window problems 
In this section we apply the transform method of Section 2 to the case of a 2-dimensional 
window ina rectangular 3-diniensionaldomain. Let beff 4 = { (z,y,z) € li',z,y,z > 0) 
and 1R, = {(z, y, z) E a = 0} with a € {z, y, z}. Furthermore we assume that the 
window W C iR+ has a positive distance from the axes. The geometric shaDe or h-

window is not yet fixed. We can now formultc thcfiv.iig ndow problem. 
Wanted is a function u = u(z, y, z) harmonic in mt j3+ which satisfies the boundary 

conditions
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(i) u(z,y,z)=O on Wc:=li+UIF,UJR.+\W 
(ii) .. tim	1 U( -T ' v, z)I <	.	 (3.1) -. 
(iii) 8u/8A(z, y, z) = g(z, z) on W 

where	 +As(x,z)-+As(z,z)-,EA =1,.X2 O,
ez

 ), i = 1, 2,3 and g are some functions. 

Using the separation ansatz u(x, y, z) = X(x)Y(y)Z(z) we obtain the ordinary differential 
equations X"(x)+a2X(x) = 0, Z"(z)+Z(z) = 0 und Y"(y)—(a+)Y(y) = 0, where 
a, 7 are real positive parameters. Let /32 = .2 + then we obtain the representations 
X(z) = A(a) coo ax+B(cr) sin am, Z7(z) = C(-y) cos -yz+D(-y) sin -yz, Y(y) = E(/3)e"+ 
F(/3)e 16V. To have for y —+ 00 a bounded solution E(P) = 0 is necessary . Since 
X(0) = Z.,(0) = 0 we get Xa(x) = B(a)einax and Z7(z) = D(y)sinz. Hence, the 
solution u = u(x, y, z) of our problem can be sought in the form 

u(z, y, z) = ! if G(a, 7)e sin ax sin -yzdczd-y, 

where 0 = /& + -y3 and G(a,-y) = B(a)D(7)E(/a2 —+-?). Because of condition (3. 1), 
for points outside the window in the (x, z)-plane, we have 

00 CO 

JJ G(ai ) sin ax sin 7zdad-y = 0 

and therefore also 
00 CO 

JJG(a,7)a coo ax sin 7z dcrd7 = 0 and JJG(a,7)7cos-yz sin at dczd7 =0. 

Because the relation 82u/8x2 + 82u/8y2 E 0 holds on I?'+ \ W, it is possible to define a 
new unknown function h as 

h(x,z) = ! i fG(a, y) [(x, z)a cos ax sin -yr 
ir 

— A2 (z, x)/3 sin a: sin-yr + Xs(x, z)sin ax coe -yz]dad-y. 
It is clear that h(x, z) 0 on I' \ W. After inverting we get different representations 
for the function G(a, -y). In fact we obtain 

	

a)ii(:,z)G(a,-y) = !Jh(t,$)coeat sin ys dtda	 (3.2) 

	

yA, (x, z)G(a, y) = ! Jh(t, a) sin at cos s dtd.	 (3.3) 

	

_I32)(x , z)G(a, 7) = I h(t, a) sin at sin 78 dtda.	 (3.4)
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Condition (3.1) leads to 

00 00 

J/ G(a, 1)e" [Ai (z, z)a cos ansin yz + ),(z, z)7	7 

sin ax sin -yz] dad7 = h(x,z) on W. 

Substituting the expressions (3.2), (3.3), (3.4) into the equation (3.5) we get on W 

00 00 

If
COY { if h(t, a) cos at sin 75 dtdacosaxsin'yzJim-j  

+ I h(t, 8) sin at cos -ys dtdo sin ax cos -yz 

-	J7 h(t, a) sin at sin ya.dtda sin ax sin . z}dad'v = g(z, z). 

Using properties of the sine and cosine function, we then have 

lim --- If h(t,$)
A! 
W 

00 CO Jf eicos a(t + z) + cos a(t - z)J[cos (a - z) - cos 7(8 + z))dad7 

00 00 

+ // -HC a(t - z) - cos a(t + x)J(cos 7(8 - z) - cos 7(8 + z) jdad7 + 

+JJeu'1cosa (t - x) - cosa(t + z)Jtcosy( s + z) +cos7(a - z)Jdad7}dtds 

It follows

Co Co 

Jim 1-I h(t,$)fe_(2cosa(t - x)cos-y(s - z) v__o+ 71.2 
W	00 

+[ Cos a(t - z) Cos y(s - z) + cos-y(t + x) Cos 7(s + z)	 (3.6) 

- cosa(t + Z) Cos 7(5 - z) - coea(t - z) Cos 7(a + z)] )dad7dtds = g(z, z). 

By using Formula 3.914 in 131, i.e. 

Co

abJe'PT coo czdz=	2K1(bv'a2+c2) (a> 0), 
0 

we find that the first terms in equation (3.5) vanish. It remains to consider in (3.5)
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00 

u rn --.- 11 h(t, a)	 (cosa(t - x) - cosa(t + z)J if 0+W
	00

x [Cos 7(5 - z) - cos -y(s + z)Jdad-ydtds. 

Formula. 3961.2 in (3jyielcis 

00 

f e'vC ± x)ad/9 = K0(c/(t ± z)2 + va2+12 
0 

Therefore we get
00 

urn -L if 	- Ke(a/(t + x)2 ^ ya)} 
W

x[cos -y(a - z) - cos-y(a + z)]d-ydtda = 9(r, z). 

From Formula 6.671.6 in 13] we get 

if h(tS)[y($ - 
z)2 +(t— z)2 

+y2 
+ ()2 +(t+x)2 y2 y....O+ 4

W

1	 1	
ldtda=g(x,z). 

y(a_z)2+(t+x)2+y2f(s+z)2+(t_z)2+y2J 

Providing the (x, z)-plane with a complex structure, setting q = t + ia,p = x + iz with 
h(t, a) = h(q) and g(z, z) = (p), then it follows, for p E W, 

- 1P-qI -
	 (3.7) 

which is a weakly singular integral equation due to the presence of the first integral. 
Having found the function h = h(t, a) we can calculate from the relation G(a, 7) = 

2 r [W h(t, a) sin at sin -yadtda the required solution as 

0000

V - —4 U(z, y, z) - ---- I I if h(t, a) sin at sin -Ys 
e 
-— sin ax sin 7zdtdsdcrd7 (3.8) 

00W

0000 

= Tffh(ti1)Jf_r (Cos a(t_z)_ Cos a(t+z)] 

X [Cos 7(a— z) - cosy(a + z)J dad-ydtda. 

In summary, we have shown the 

Theorem 2. Let g E C(W), At € C(W), i = 1, 2,3, then the potential window prob-
lemi (3.1) allows the integral reformulation (3.7). In terms of the above suitably introduced 
new unknown h the solution of the original potential problem is given by (3.8).
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Remark. The treatment of more general elliptic problems by this method at present 
seems far from being easy. For example, the case of the Helmholtz equation leads to 
integrals which cannot be expressed in closed form. 

4 Window problems under representation of Teodorescu's 
transform 

Now we shall consider window problems over more general domains. The natural trans-
form here to apply is Teodorescu's transform instead of the Fourier transform. We inves-
tigate the following 3-dimensional window problem. 

Let be G c 1R3 a domain with Liapunov boundary r.which has been splitted into parts 
r, and r, r = F. U F', 8F, = E,,. Assume that F, is flat. On I', we fix the Cartesian 
coordinate system in such a way that the z-axis is directed in the direction of the outer 
normal to G in the points of F,. In this way F, is contained in the (,y)-plane. Let be 
w c F, a. simple connected smooth bounded open domain with dist(W, E.) > 0. Further 
let WC \ W. We look for a vector function u = u(x,y,z) which is harmonic in G 
and satisfies the boundary conditions 

u(x,y,z)=0	on	F' 
u(z,y,0)=O	on	 (41)

8u 
—(x,y)z)=g(z,y) on W. 

Introduce the quaternionic units 1,i,j,k with i2 = = Ic 2 = — 1,ij = —ii = k, j k = 
—kj = i,ki = —ik = j. Each quaternion can be written in the form a = a, + 
ia 1 +ja2 + +ka, = a, +. Assume agi = ia,,a:j = ja,,a,k = kag,l = 1, 2,3. where 
aj E IR, i = 0, 1, 2,3. Let u = u(z, y, z) = u(p) be a quaternionic-valued function and D = 
j8a +Oy + k8: be a differential operator with the abbreviations 8, = , BY = , 8, = 

A sufficient smooth function u is called H-regular if Du = 0. The decomposition of the 
Laplacian - = DD is easy to prove. The uniqueness of the problem can be briefly 
shown by the following 

Lemma. Let u E C'() n C3 (G) be harmonic in G and iatfy (4.1). Then u is 
uniquely given. 

Proof. For u €C'() fl C2 (G) we have with ft = 0 on W as 

f IDuI 2dG = - J 8,u8,udG, + jk J 8u8,udG+ ki J 81u81,udG,) 

= J(810.0 + ovuevu + 8,u81u)dG
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= Iu(_fu)dGp+fu_dF=_JuLudG >0. 
j an 

G	 I'	 C 

For Au = 0 we have tDuI = 0 and so 8,u = 8u = 8,u = 0. Therefore u =const. Because 
u0 on rit follows u0inG I 

The integral transform 

(TGU)(p) = .L I e(p - q)u(q)dGq with e(p) = (xi + vi + zk) 
Or	 (x2+y2+z2)312 

C 

is called Teodorescu transform. It is the right inverse of D. We have (DTGU)(p) = u(p) 
in G. Because of A = —DD an arbitrary qua.ternionic harmonic function u admits the 
representation u = 0 1 + TGO2 with Oi € ker D for i = 1, 2. It follows immediately that 
(TG )(p) (41r) - ' f, 1 (q)dr9, where n(q) = n,i + nyj + vi,k. Furthermore, each 
H-regular function can be represented by a Cauchy-type integral, i.e. for 0 € ker D we 
have (p) = (4w)-' Jr e(p - q)n(q)(q)dF, = (Fr)(p). In order to get a singular integral 
equation for our window problem formulated above we set 

u(x, y, z) = zkd>i (x, y, z) + (TG )(x, y, z) 

with the new unknown functions Oi € kerD, i = 1,2. At first we have to prove that 
zkq5, + TGO2 € kerA. This is shown if we can find H-regular functions 0 and such 
that

(4.2) 

Since D(zkçS,) = we need to take 02 = 02 - and ', = F(zk,). It is well known 
that (Fru) E kerD. In this way we have shown that u is harmonic. It is also clear that 
together with 0 the H-valued function 8/8z belongs to ker D(G) 1) C(G), too. For points 
on the window W we have 

lim	, (8,u)(p) = lim 8,(zk i )(p) + Urn--8, I	1(q) dF,. ._ ,.o+ 4w J 
r 

Because of the boundednees of 8 1 18z in we obtain 

(8,kz ,)(p)	jfl (km, + zk)(p) = k,(p0),p0 =	Y, 0). lim  

On the other hand we have on W 

Inn ---8, I n(q)	
(q)dF, = —(p.)k +	

/	
1n(q)4s(q)dF,. 

0---Q+ 4x-	j (p	qI r	 - 

Hence

k( i (p0) -	2(Po)) !.I 

	

4w) (Po - 
q13 n(q)4s(q)drq = &.),p. E W.	(4.3) 

F'
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The corresponding equation on WC reads as 

	

i(p)+ ;J	q12()dI' + ;j!:; J ;()q1qrq = 0, p E WC .	(4.4) 

	

W	 W. 

Theorem S. Let g E C(W). Then the potential window problem with the boundary 
condition., (4.1) can be reformulated via the integral equation. (4.3)-(4.4). 

Remark. In the system of integral equations (4.3)-(4.4) no singular integrals over the 
window occur. The reason for this is that O i are H-regular functions and therefore the 
identity

s(p) = -- I e(p - q)n(q)$ j(q)dfq ,	i = 1,2 
2,r Jr 

holds. This means that by the introduction of H-regular unknown functions singular in-
tegrals vanish. 

What changes in the equations (4.3)-(4.4) do arise if we substitute 8, by the oblique 
derivative 8A with 8 Xi(p)8a + )(p)8, + p)8,? First of all we can state that 
equation (4.4) is the same as before. Instead of equation (4.3) we have then on W 

- 2(po)) 

1 f Xi(p,)( 
___ 
- z) + )12(y.)(s - y) + )is(p.)(t - z) 

____	= g(p0).	(4.3') 
4,rJ	 Ip - qII r 

We see that in case of an oblique derivative the presence of singular integrals is in general 
unavoidable. Only very special assumptions similar to those of Section 3 can lead to 
integral equations without singular integrals. 

5 Window problems of equations of linear elasticity 
In hypercomplex notation the homogeneous equations of linear elasticity read 

DM Du =0
	 (5.1)

with the boundary conditions 
=' 0 on Wc, Bu = g on W,	 (5.2) 

where D = 8.i +85j +8,k,Mu =	-u +M, mis the Poisson number and B is a
boundary operator which is acting on the window. It has the form 

B	
1 

!j=8.!+k xrotM+k_ m-2 thvli=1(p), Bu. =tn.u=0. 

In quaternionic notation the operator B can be written as B. = Im (B.'- kND) . where 
Nu = — 1-ju. + . Proceeding in a similar way as done for the corresponding rep-
resentation in the previous section each solution of the homogeneous equation of linear 
elasticity can be given by 

u(p) = zkM i(p) + (TcM4)(p),	01 E kerD	(i = 1,2) ,	(5.3)
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where the first component of the H-regular function 42 is constant. It is easy to see that 
(5.3) has the equivalent representation

f n(q) 

	

U(P) = (zkM 1 )(p) + -
1 

I	MO2(q)dr.	 ( 5.4) 
4wJ Ip - qi 

r 

Writing in short

V(M) := -J	1M2(q)drq r 
we have to calculate the limits 

(i) urn Im (8 - kND)(zkMi)(p) = I(p) 
t-0 

(ii) urn 'in (8, - kND)V(M 2 )(p) = I2(po). i-.0 

We find immediately 

Ji(p ) = 'in kM i (p0) - Im kNM(-0 1 )(p0) = Im k(I + N)M41(p0). 

Furthermore by a straightforward calculation we have 

	

12(Po) = IM (—.)((i+ Nk)M 2 (p0 ) + 	I e(p. - q)IcMg2(q)dT'q 
W 

_±.
 J

M 2 (q)d1' + - f e(p— q)n(q)MqSs(q)drq). 
Lp0-q13

W. 

Finally we get the singular integral equation over the window W 

! = 'in k(I+ N)M4 1 —	+ Nk)M	
1	t + — I	(M3)(q)cff' 

4w	
- 

.) (Po qJ 
N j ' — e(p - q)n(q)(M2)(q)dI' — J e(p — q)kM2(q)drqj.	

(55) 

4w	 q - 
N 
4w 

W.	 w 

The third integral is a two-dimensional singular integral of Cauchy's type over the window. 
On W' we obtain the weak singular equation 

I P  
0 = (zkM )(p) +	n(q) M4

2(q)df'q ,p € We.	 (5.6) 
— I 4w	Ip - qI

F 

In this way we proved 

Theorem 4. Let g € C(W). Then the window problem (5.1)-(5.2) allows the integral 
reformulation
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Remark. For our transformations we need no further restrictions on the right-hand 
side of the equation, i.e. on the boundary condition over the window, other than conti-
nuity. If this is not the case, the present analytical derivation would not be affected, but 
problems in the numerical solution are likely to arise. However we do not discuss this 
issue in this paper. 

Remark. The advantage of the derived integral equations consists in the poassibility 
of constructing a suitable numerical scheme as shortly remarked in Section 8. 

8 Some remarks for determining unknown H-regular functions 
In the papers 15,61 the authors have developed the method of collocation with two H-
regular functions for the solution of systems of elliptic partial differential equations of the 
second order. We apply this method for solving the window problems discussed here. Let 
us start with the problem for the Laplace equation. Using this procedure we set in (4.1) 

N, 

	

(p) =	e(p - p(0)a, at E H, 

where H denotes the skew field of quatern ons and the points (i) are outside of the domain 
G parallel to the boundary F on a surface F. Because of the relation 

TG(
'____ 

) 
= -1 

(f)13	 +G,4G E kerD, i=1,.-.,N2 

we get for the approximate solution of the window problem 

	

N,	 N,
1 

uNlN,(y)=e(p_pW)b,+>J 
Ip — p 1

	

J-1	 i-I

where (p) + c(p) = E e(p - p(J) )bj. Setting the collocation points (h) on we we 
have the algebraic equations 

N1	 N, 1 

	

0 =	e(p() - pt0 )bj +	-	k = 1,..., Ni .	(6.2) 
1=1 

Furthermore we get on the window W 
N,	 N, 

g(p.) = urn (8e(y -p())bj +
J1 

N1	 N, 
= >8.c(p. - p(J) )bj + E 1()1Ia4 

j1 

where p = (z, y, 0). Now we choose the collocation points on the window and obtain 

	

N,	 N.	
(-z(0) g(p)) =	8,e(y ) - p(J) )bj + a,	k=N1+1,...,N2.	(6.3) 

j1 - ' i3
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Numerical considerations on this method are given in [4). 
The determination of the unknown H-regular functions in case of the equations of 

linear elasticity is obtained in the same way, instead of formula (6.1) we have only to take 

_______	1 1 
TG ( p(1) - SIP) =	

- -
	-	- *. + 4,, 

where a E {z, y, z} and e1 = i, e, = j, e, = k. 

Remark. For the numerical treatment of singular equations over one-dimensional 
windows we refer to the papers 17,9,11-131. For the multidimensional case one can find 
results for instance in the paper [ii]. 
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