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A Real Inversion Formula for the Laplace Transform

D-W. BYUN and S. SAITOH

Let f be the Laplace transform of a squa.ré integrable function F and set

~(t) = /ONA[(s)c;"-lPN(st)(.is (N =0,1,2,...)

for the polynomials

PN(£)= Z (—I)WH(?n)! ) En'}-"

0<r<agN (n+ 1) (n—v)(n+v)

2+l 5, [ 2n+1
x -
{n+”+l€ (n+u+1+3n+l)£+n(n+u+l)}-

Then it is proved that the sequence { Fn}¥=¢ converges to F' in the sense that

Nliinw/oww(t) — Fx(t)fdt =0.

Furthermore, a general formula for this result is established.
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1. Introduction and result

For any ¢ > 0, we let L2 be the class of all square integrable functions with respect to
the measure ¢t! ~29dt on the half line (0, oo) Then we consider the Laplare transform

[CF)(z) = /Ooo F(t)eT*'dt (z€R*= {Rz > 0}

for F € L2 In (2, §7], it was shown that the i lmage of Lg under the Laplace transform
L comcndes with the reproducing kernel Hilbert space H, (Bergma.n -Selberg space)
admlttmg the reproducing kernel Ko(z,%) = I'(2¢9)/(z + u)zq and L is an nometry of
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of the space Lz onto the space H,. For ¢ > 3, the Hilbert space H, consists of all
functions f analytic in Rt with finite norms

= e ;. e Ny (=24 i)

and
| R
_ {f f aaalytic in R, |1, = - sup / (= +iy)P dy < oo}-

The inverse of the Laplace transform L is, in general, given by complex forms: The
observation in many fields of sciences however gives us, intuitively, real data [LF)(z)
only, and so it is important to establish its inversion formula in terms of real data
[CF)(z). Such a formula was given for L!{(0,00), dt]-functions F by R. P. Boas and
D. V. Widder about fifty years ago (see (7, p. 386]). By use of the representations of
Hg-norms on the positive real line in [5], we shall establish in the next theorem the
natural inversion formula of the Laplace transform £ on the space L3 in terms of real
data [LF](z) in the framework of the Hilbert space L2.

Theorem. For any fized number g>0and for any functson F € L ,put f = LF.
Then the inversion formula

F(t)=s- Nh:-lfloo/; f(z)e ™ Py 4(zt) dz (t>0)

1s valid, where the limit is taken in the .9pace_L3 and the polynomials Py 4 are given by
the formula

(=1)**'1'(2n + 29) $u42¢-1
P - n+v+2q
N.a(€) osgﬂ n— o) (n + 2¢+ DT(n + v + 2)°
2(n+q) 3 2(n +4q)
x{n+u+2q5 “\arorog Tt 2)itn(ntvt2g)g.

Moreover, the series

n /] 2, 2n+2¢—1
Z————,Fn”qﬂ)/ (03 lz £ ())P22 20" d

converges and the truncation error is estimated by the inequality

12

“F(t) —/; f(z)e_"P&’q(xt)dx

L3
S Yt ) e @
- nT(n+2¢+1)J, °°

) n=N+1

Note that,.even ifg=1, our polynomial Py is different from the one of R. P.
Boas and D. V. Widder.
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2. Preliminaries

In order to prove Theorem, we prepare three lemmas.

Lemma 1. For any fized ¢ > 0. let the function f be a member of the space H,
and set, for any non-negative integer N,

N

= _—1_ °° n g anlcA L (£ Tyeen+2¢—1
fN(Z)—nZ___ou!I‘(n+2q+l) ARAAQILARRNTED S

for 2 € Rt. Then, the function fn belongs to the space H,. and the sequence { fn}T_,
converges to f in H,. '

Proof. Recall first the following representation of the norm in the spacé H,:

oo

2 - i n 2 2n+2 t
Al . g—————n,r("+9q+1) |0 [:tf(:r)]| =t dr (1)

(see [5]). From the reproducing property of hy(-.Z), we have the expressions

Kol2,) = (Ko(,7), Kol D),

= _l— < n - CPRTEA T T = e2n429-]
B ,.2=:o' n'T(n+2¢+1) J, Of [E0g K o(£, 0)|OF (€0 Ko(€, 7))E | q d§

f(z) = (f(-), Kol ~))

oo

= _— n———_" 2n42¢-1
- ; n!l(n + 2(1 +1) / ai [€f( f)]a (€0 K { z)j€ M d{

where (-.-); denotes the inner product in H. Hence we see by (6. p- 170] (see also [4,
p- 96]) that fy is a member in H, and

If =l
oo 1 : 0o - : 112
= - nie el N DRI Kk (£ =) g2n+2e—1
| 2 areraa ), e OTEORET e
n=N+1 . q
- 2n+2¢-—1 .
<3 T [, s de @

Therefore, our claim is true ®

Lemma 2. For any fized ¢ > 0, let the function f be a member of the space H,
and set, for any non-negative integer N,

N f’lq—l

* " 1 n -tz 2n+29-1
Fu(t) = Z——————“,r(“”qﬂ)/m Orlef ()07 1=0, (e a0 dr
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for t € (0,00). Then, the function Fy belongs to the space Lz, and furthermore, for the
functions fn defined in Lemma 1, LFN = fn.

Proof. We first prove that, for aﬁy n, the function g, defined by
o) =177 [ Orlaf ()02 a0u(e= N e
0 : ,

belongs to the space L?{(0,00),dt]. By the Leibniz rule,
rzd,(e7 NI E = (=) H 3 (n — tr)e T,
and we have
oo
gn(t) = (=1)Pnemto=} / B lzf(z))e™ 2?19 4y
0
o
- (—1)"t"+"+%/ O [zf'(z))e =z? 29 dz.
0

Moreover, the expression (1) implies that the functions defined by
plef ()7 and  Oflaf(x)|e T

are conti.a.ined in the spaces .L% 4+ and L2 +q+1, Tespectively. Hence the function g, is
the restriction of a member in the set

{r"+v-%h.(r) + 7™ 3 hy(r): by € Huygandhy € Hupgpr (1 =1t + it)}
to the half-axis (0, 00), and it is represented by
gn(t) = t"HI7h Ry (8) 4 47 Ry ()

for some functions h; € H,4, and h, € Hupq41. If n =0, we have g,(t) = t‘”’%hs(t)
for some function h; € Hg,,. Furthermore, for n # 0 we have the representation

gu(t) = =R (1) 4 4R EL 1)

for some functions ki € Hntq—1 and k; € Hpyq (see [3]). Hence, from (1) we get the
relations

/ |t"+°”%k;(t)|2dt=/ [thy(2)]?e2" 2930t < oo
0 0 .

N . N v
/ [tntet gl (6))2dt = / [tky($))Pt?* 2971 dt < oo,
0 0

and so the function g, (n # 0) belongs to the space L2[(0, 00), dt]. Likewise, the function
go is also a member of the space L2[(0,00),dt]. By virtue of the isometry s(t) —s
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s(t)t9~3 of the space L2[(0,00),dt] onto the space L? 7> we conclude that the. function
Fy belongs to the space L2

Next, in order to prove that LFNn = fn, we examine, for a fixed number £ >0, the
integrability of the functions

o(z,t;n,€) = 0P {zf'(z)} 00 {z0z (e~ ')}~ ¢ ¢20~ 1 g2nF 201 (rn=0,1,2,..))

with respect to the Lebesgue measure on the set (0,00) x (0,00). We first have the
estimate

lo(z, t;n, €)] = |87 {zf'(z)}| Ia;'{:z:az(e_")}l e 82971 pnt20-1
=82 {zf'(2)}| I(—t)"ze‘" + n(—t)"_le_“l 12ep =t 204291
- < |02z f'(z)}] {t"”qze-(”f)‘ + nt"ﬂv-le-(*“)‘} gint2el,
Therefore, since the functions defined by )
oo
z/ "2~ (=40 gt = D(n + 2 + 1)z(z + £)~("+2e+)
0

and o
n/ gnt2e-le—(z+0t gy — nl(n + 2¢)(z + E)_("“")
0

belong to the space L?[(0,00),z2"*29~1dz], we see by the Schwarz inequality that the
function ¢(z,t; n, £) is integrable for all n. By the Fubini theorem, the following sequence
of equalities is therefore valid:

oo
/ FN(t)e"f' dt
0 \
N

1
- ’;n!r(n+2q+ 1)

* ® nx!z n:l:z —tz 2n+2—lx 2¢—-1 —{td
< [T orter@nar etz ety

N 1

= gn!r(n+2q+ 1)

X / azlzf'(z)) [/ A" {28 (e™"%) e~ 207 dt] 2242071 gy
0 ()
N 1 , L
x/ Ozl f'(z))107 [zaz/ e tre e d¢] z2n+2e-1 g
0 0

N 1

,§, nll(n + 2¢ + 1)

X '/ow (e f' ()02 20, Ko (2, )]+ dz = fn(£).

Thus the assertions of the lemma are proved 8
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-Lemma 3. For any fized q¢ > 0, let the function f be a member of the .space H,.
Then the following statements are true.

(1) Ifn>1and 0 <m-<n-—1, then 8P|z f'(z))z" ™2 = o(l) asz — 0+
(1) f(z)z? = O(1) as £ — 0+.

. - Proof. By the Leibniz rule, we have the equality

[z f'(2)) = 287 f(z) + mA™ f(z). ,

We also see that the function **! belongs to the space Hy4m+1 (see {3]), and from
the Schwarz inequality the following estimate is valid:

07415 = | (B 1O Kesmn ),

S 187 fl gy s Kot (2,2)

. = [107% £l 4 g T(20 + 2m + 2) Y2~ laFmE D p—latmn),

Likewise, the estimates

107 £(2)| < 10 fllg+mD(2g + 2m)¥2- (3t z=(g+m)

and

" 1f(@)] < IflleT(2g) 279z~

are valid. Therefore, our lemma is obtained W

3. Proof of Theorem

From Lemma 3, and by integration by parts we have, for any non-negative integer n,

7 arte @nonteane e
o
=t" /°° zf'(z)d7((n ~ tr)e” 201 4;
0 .

=" /oo f(2)0: (287 {(n — tz)e **2?"+2971}] dz.
0 C :

Meanwhile, for n > 1 we also have
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—t"0; (28] {(n — tz)e~**z?"t201}]

n
_ ~tz,n n ~-v_2n+2¢—1 n—v_2n+2
=- t E ( ) —t) {no2™" 97—t ?
€ [ v (-t) {n x I 0; 'z }

y=0

n
n
—tz Z (U) (~t) {na:—uz2n+2q—l _ ta:—uz2n+2q}

v=0

yz z (:) (—t)” {napvHigtntre-1 _ taf“’“zz"“"}]

=0

— e t= i(—l)"“ (n) (at)™+ I'(2n + 2q)

= v I'(n+v+2q)
2n+29 5 2041 2n+2q 2¢ 2¢-1
x{n+u+2th - n+u+2q+3n+2q tz*? + n(n+ v +2¢)z .

Applying Lemma 1 and Lemma 2 to the isometry £, we therefore obtain the inversion
formula of £. Also, the inequality (2) gives the estimate of the truncation error &

Remark. For any g > 0, let the functions F and f be as in Theorem. In (3], we see
that the function f' is & member of the space Hy41, and || f'ljg+1 = || fllo- Hence, by the
inversion formula in [4, p. 85], we have the inversion formula of the Laplace transform
L in the complex form as follows:

—49429

— g — | —_— Y -7t _2q
.F(t)y=3s nh_‘ngo 11'1"(2q+1)/£“f(2)e z°%dzdy,

where the limit s — limn—.oo i3 taken in the space L2 and the sequence {E,}3%, is a
compact exhaustion of R*.
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