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On the Volume Infimum for Liquid Bridges 

L. ZHOU 

We are concerned with the stable liquid bridges joining two parallel homogeneous plates in the 
absence of gravity following the recent work of Finn and Vogel [7]. We prove the Carter conjec 
ture in the general case where the two contact angles can be different. 
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1. Introduction 

In [ii), Vogel derived a stability criterion for the liquid bridges joining two parallel hoino-
geneous plates. In the same paper, he applied his criterion to the special case of contact 
angles equal to ir/2 and showed that in this case the equilibrium configuration is stable 
if and only if its volume is no less than h 3 /7r, where h denotes the separation distance 
of the two plates. Carter [2] made extensive numerical stability calculations on liquid 
bridge configurations for different choices of contact angle and observed that V > h3/. 

Recently, Finn and Vogel E 71 gave a rigorous proof to this "conjecture" for the case of 
equal contact angles on both plates. In this paper, we extend the result of Finn and Vogel 
and prove that the Carter conjecture is also true for the general case in which the two 
contact angles -y and 72 might be different. We show that V 2 C(-y i ,-y2 ) h 3 /ir. where the 

constant C(-y l ,'y2 ) is no less than one, but could be significantly larger than 1. This result 
agrees with the numerical evidences that instability occurs at larger volume when the two 
contact angles differ significantly. 

Suppose that a stable connected liquid bridge is formed joining two parallel homogeneous 
plates located at u = 0 and it = h in the absence of gravity. We would like to obtain a 
lower bound for its volume. 

The surface of any equilibrium liquid, bridge is rotationally symmetric and has con-
stant mean curvature. Its meridian (profile) curve r = f(u) satisfies the Euler-Lagrange 
equation

if 1'' 
--1	

" .,	-	 I = H	 (1) 
2 \ ( i(f)2)3 /2	f(l+(fI)2)h/2J 
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and the boundary conditions 

f'(0) = — cot 71,	f'(h) = Cot -12	 (2) 

where H denotes the mean curvature of the surface and Yi , 72 are the contact angles that 
the surface makes with the two plates, respectively. See Vogel [11). 

In this paper, we will use the following equivalent but more convenient form of the above 
Euler—Lagrange equation:

	

(rsin7,b)r = 2rH	 (3) 

where t, denotes the angle between the r-axis and a tangent to the curve r = f(n). See 
Finn and Vogel [7). 

The solution of (3) is known to be an unduloid, a nodoid or a catenoid depending on 
the mean curvature H. We will discuss each of those three cases separately. Here we 
summarize the results in the following: 

1. If the meridian curve is a catenoid or a nodoid, then 

V (
	7r	)2 h3 

7t 

2. If the meridian curve is an unduloid and contains an inflection point, then 

V	
ir	\2 h3 

> 
(—172-71I) 

3. If the meridian curve is an unduloid and contains no inflection point, then 

2 

,>(
ir +	

(COS

cos-yi
72) 

Here and throughout this paper, h always denotes the separation distance of the two 
parallel plates and V the volume of the liquid bridge between them. yi and 72 are the 
contact angles that the surface makes with the two plates. 

2. Catenoids 
When the mean curvature H is 0, the solution of equation (3) is the catenoid. We then 
observe the following: Given a fixed separation h of the two plates, the volume bounded by 
the catenoid between the plates is minimum when the two plates are placed symmetrically 
about its vertex. In other words, the volume is minimized when the contact angles on 
two plates are equal. Therefore it follows immediately from [7) that V > h 3 /7r: In the
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Figure 1. Catenoid 

following, we obtain a more precise lower bound for the volume that depends on the two 
contact angles -yj and 72• This lower bound tends to the true volume of the liquid drop 
as both Yi and 12 tend to 7r/2. By the way, an exact expression of the volume V in terms 

of h can be obtained in this case,but is complicated. 

Theorem 1. Let r = f(u),O < u < h be the catenoid that makes the contact angles ,i 

and -y2 with the plates, where O<71!^lr/2,O<12<7t71. Then 

	

ir	
2h 

\ir — yi-72)	iT 

Proof: When H = 0, the equation (3) above becomes (r sin V') r = 0, from which it 

follows that
r= — --- and du= (tan tb)dr=.-----dtb	 (4) 

sin	 sin V, 

where 0 <-0 < it and the positive constant a is the r-coordinate of the vertex of the 
catenoid (see Figure 1). Integrating (4) from one plate to the other, we obtain 

/	\ 3 
h	/ du = /	-s--- dt,b and V	I 7rr2du = I	it ( --f--	4%

Jo	J	sin t/.'	 Jo	f,,	\sIni'j 

By Jensen's inequality, it follows that 

2	 d C(7l,2) = it (I	• 

'! 

3(1w-12
/slnll51fl /)	/ 

3 2/ fw—	1 
= (	

71 - )	J	sin 
'b dP(?b)) / (I`-1	

--- di(t,b))
sine' k7r—yi	72

 )2 

I ,	it 
>(\ir - 71 - 72 

where d(t,h) = dt/(it - 71 - 72) 1
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3. Nodoids 

If the mean curvature H is negative, the solutions of (3) are the nodoids. See Figure 2a 
and Figure 2b below.

	

Figure 2a. The inner loop	 Figure 2b. The outer loop 

It is shown in [7] that a catenoid can be inscribed by the inner loop of the nodoid tangent 
at their common vertex. In other words, if the inner loop of a nodoid and a catenoid are 
put one onto the other so that they are tangent to each other at the common vertex, 
then the nodoid is always on the right side of the catenoid. This means that the volume 
bounded by the nodoid is larger. Therefore it follows immediately from the previous case 
of catenoids that the volume V bounded by the nodoid is greater than h3/7r. 

It is also shown in [7] that all outer loops of nodoids with a fixed span d (the distance from 
one horizontal point to the next of the outer loop) lie outside the semicircle of diameter 
d. From the direct calculation for the semi-sphere, we can easily show that V > h3/7r. 
See [7] for more details. In Theorem 2 below, we are able to obtain a lower bound more 
precise than the one that we have just obtained in above by simple reduction. 

Theorem 2. Suppose that r = 1(u), 0 < u < h is the part of a nodiod between the two 
plates. Let - and 72 denote the contact angles with plates. 

(i) In the case of the inner loop (Figure 2a) for which 0 <	7r/2 and 0 < 72 < 7r- 
we have

	

 V>	 \2h 

	

(	 J -. \1r-71-72J 
(ii) In the case-of the outer loop (Figure 2b) for which ir/2 7i	and ir -' <72 <71, 

we have

V i' 

	

>i	 I -. \71+72 -71 J 71 
Proof: (i) First consider the case of inner loops. We solve equation (3) and obtain 

r=a(k sin '	I1_k2cos2\	
(5) k +	1—k	) 
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du tan ?bdr=_a (	t' f —ksin 
+ 

' 2 cos2	ksin	di,b	(6) 

	

 
1—k	i—k	) /ik2cos2i,( 

with k = (c2 - a2 )/(c2 + a2 ) and 0 < 0 < ir, where a and c are the r-coordinates of the 
(inner) vertex and a horizontal point of the inner loop, respectively. Using (5) and (6) 
above, we easily obtain 

h	
ri	

"—k sin ,	V/1i - k2 cos2 t , \	ksint,b	di,b = f	a( i — k +	1—k	) s/1_k2cos2 J 

V
	Ira3	

3 r'72 	(—ksiniO + V1- k 2 cos2 \	ksint4'	dt,b =I
1 - k	1 - k	) s/ - k2 cos2 - 

Setting dp() k sin tidr/s/1 - k2 cos2 t, we calculate 

ksini4'	dt,b ((i,ir — 72)) 
= 

fff-12 
s/i - k2cos2' 

12 sin 

	

J71	s/l_cos2Ir11 —72 

By Jensen's inequality, it follows

3 1'r-12

 ira
( — k sin	s/i - k 2 cos2 b\	ksint&	th,b 

	

1 - k +	•i - k	)A s/i - k2 cos2 

I  fW-'Y2  f —ksintj	.,/i - k2 cos2 \	ksin	dt,b1 
>	

a	i—k +	1k	)As/1_k2cos2; ]

Therefore

	

V	ir	i	ir 
C(y1,72)--->--^( 

	

h/ir	A	\7r-71-72 
(ii) Now we consider the outer loop of a nodoid. The proof goes exactly as above with 

(7) and (8) below in place of (5) and (6) in the above proof: 

r=b( k sin ' s/f_k2cos2,\ 
ik +	i+k	)

	

(_icsinti	s/i —k2 cos2 TI"	ksint	 (8) duEtan1'dr=_bl+k +	i+k	Js/i—k2cos2i

(7) 

with —r <0 <O and k = (b2 c2 )/(b2 + c2 ), where r = b and r = c are the positions of 
the (outer) vertex and the horizontal points of the outer loop, respectively . I	-
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4. Unduloids 
When the mean curvature H is positive, the solutions of equation (3) are unduloids. This 
is a periodic curve and each period has exactly two inflections and two vertices. See Figure 
3 below. For the sake of convenience, we can think of the arc segment from one inflection 
to the next as half a period. Similarly, the arc segment from one vertex to the next is also 
considered to be half a period. In general, one starts with any point ( u 1 ,f(u i )) on the 
unduloid r = f(u), - u - and traces in either direction along the curve until one 
reaches the first point (u2,f(112)) satisfying f'(14 2 ) = —f'(u i ). The arc segment so traced 
is considered to be half a period. It is clear that if the two plates were placed at the two 
endpoints of half-a-period that we just defined above, they would make the equal contact 
angle with the curve.

Figure 3. Unduloid 

We remark that one must riot expect Carter's inequality to be true if the two plates are 
so far apart as to include several period intervals. As a matter of fact, we will see very 
soon that the inequality is false in general if the two plates bound slightly more than half 
a period. See Theorem 5 below and the remark preceding it. 

Each period of the unduloid consists of two parts: a convex (thick) portion and a concave 
(thin) one. The convex portion of the unduloid that starts from an inflection to the next 
is symmetric about the vertical point in the middle and can be described by the following 
explicit expression: 

r - 
sin ,b + k 2 - cos2 I' 

2H

(sin + k 2 - cos2	sin
d,b	(10) du tan i,bdr =	

2H /k2 - cos2 t1 

where &, < < 7r - and Oi with 0 < Oi < 7r/2, always denotes the inclination angle 
at an inflection throughout the paper (see 17]). In -the above expressions, k = cos 0, is the 
eccentricity of the ellipse that generates the unduloid.

(9)
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The concave part of the unduloid that starts from the inflection point at which the 
convex part ends to the next inflection point is also symmetric about thevertical point in 
the middle and has the following slightly different expression: 

sin,b - s/k 2 - cos2	 (11) 
2H 

du tan i,bdr
sin - 5/k2 - cos2 t'	sin 'd	

(12) = -
2H 

where t,& <,& <x - ,, as before. 
We mention that as k tends to 0, the limiting curve of the above parametrized family 

of unduloids is a straight line. Therefore, the limiting configuration of a liquid drop is a 
circular cylinder as k - 0. 

Recall that for the cases of catenoids and nodoids, V > h' /7r could be proved by simple 
reduction using the results of Finn and Vogel [7). But there is no such simple reduction 
in the case of unduloids. 

We also note that the expressions for the constants C(71 , y) are different from those 
in the cases of catenoids and nodoids due to the presence of the inflection points. For 
unduloids, the contact angles of the two plates impose some restriction on the parameter 
k, whereas there is no such restriction for catenoids and nodoids. In a certain sense, the 
parameter a, which is determined via the relation cos V, = k sin a, is the -more "correct" 
parameter than i&. Unfortunately, a does not have a nice geometric interpretation as b. 
Although it converts the changing angles of inclination at the inflection points into the 
fixed angle 0, unfortunately it transforms the prescribed contact angles into two changing 
angles that depend on k. 

In Theorem 3 below, we discuss the configurations in which the two plates bound no 
inflection points. An alternative case in which the two plates bound exactly one inflection 
point will be discussed in Theorem 4. When the two plates bound more than one inflection 
point, we will show in Thorem 6 that the configurations must not be stable. 

Figure 4. The plates do not bound an inflection point
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Theorem 3. Suppose that r = f(u), 0 u h is the portion of an unduloid between 
the two plates. Let -yj and 72 be the contact angles on both plates. There are two totally 
different configurations as follows:	 . 

(i) Concave drops: ?I)	-y !^ 7r/2 and 72 5 -y < 7r - 72 (the left graph of Fig. 4), 
(ii) Convex drops: 7r/2 < 12 ir - 	and ir - 72 <7i	y2 (the right graph of Fig. 4). 

In both configurations, we have

1

2 

7r	h 
V>1	 I	 (13) 

L+ n ' ( COS

cos7I I 
S 72) i 

Remark: The concave and convex drops correspond to the thin and thick cases in [7] respectively, 

Proof of Theorem 3: (i) We first consider the concave (thin) case. The reader is refered 
to the first graph of Figure 4. We start the proof with (11) and (12) above. Integrating 
from one plate to the other yields 

	

[!_2	 g, - /k2 - cos2 \	 d h j	
(sin du 

=	 2H	) ./k2 - cos2 
3 

V
	f

h	
f'	

(sin	

cos	5ifl'1'	d. 
o 

r2du 
= j	 2H	 -cos2 

Setting dzi()	sin tdT///k2 - cos 2 t. Since k	cosbj ^! cos 2 ,then 

—72)) 
1r-2	sin 	

d	 db < I	sin 
=	- cos 2	i	 cos 72 - COS2 

= ,-in—' ( COS ii -	
(cos(.r _72)) =	

i (COS
c0s7i

+sinC0S72J	\	cos7 2	 -y2J 

By Jensen's inequality, we obtain 

flr--12 (sinii - Jk2-cos2 	sini4'
th,b

I	 2H	AIk2_cos2t 

> If 
I	(,,inl  -yk2 - cos2ii\	sin g'	d

1 	 2H	)	cos2	
] 

Therefore	
- ._y._ > :. >_	

_i cos71)J,2 
C(71,72)	h3/	2

..[/2+sin	
( COS 72
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which completes the proof of (i) of Theorem 3. 
The proof of (ii) of Theorem 3 is the same except for some minor changes as follows. In 

this thick case (see the second graph of Figure 4), (9) and (10) are used in place of (11) 
and (12) to obtain

'71 
h	( sin  + /k2 - cos2 0	sin 

.2H ) k2_cos2t 

71	(sin t , + /k2 _ cos2 tI\ 3	sin . d 
'72	 2H	) /k V	 2 -	tb  

And the measure v will be defined as 

dv(t,b)=	sint,t'd 
- /k2 - cos2 (' 

Since k = cos ,1', ^: —cosy , then

______ __

	

1,Y1	sinSfl?	
dt,b^ 	 dT,b v{(-2,1)} L_7. k2_ cos?	-72	os272_cos2 

=siri' (cos(1r_72)'	._1 (_OS 71	'r	.	( COS yi ) 
\ — COS 7 )	\— COS 72) 2 

+Sfl	
COS 72

We can now complete the proof by first normalizing the measure v and then applying 
Jensen's inequality, as we did before I 

Figure 5. The plates bound an inflection point 

Theorem 4. Suppose that the plates bound an inflection point in between and make the 
contact angles	72 with the surface. We distinguish the following two cases: 

(i) ir/2< 72 <7r--10, and ,b j y1 <72 asin the first graph of Figure 5,
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(ii) t1. :5 yi :^_ 7r/2 and ' :5	<7r -	as in the second graph of Figure 5.
In both cases, we have

___12h3 
V>  (14) 

Proof: We only consider the left graph of Figure 5 and prove Case (i). The other case 
could be proved in the same way. Note that the two plates could bound a vertical point 
in between as shown in the graph, but it is not necessarily so. In other words, both plates 
could lie between two vertival points and hence bound an inflection point but no vertical 
points. 

Again, we start the proof with (9)-(12). Integrating first from one of the plates to the 
inflection point and then from the inflection point to the other plate, we obtain 

h =
10 1.

-li 5j	+ /k - cos2 1'	
10i

w-12 sin - /k 2 - cos2 ' dv(t) 
2ff	dv(1') +	 2H 

k2 cos2 " sin + ,/k 2 - cos2 ,t' dzi() + 
13W-72 sin /' - V" -	dzi(&) -J,	2H .2H 

3 
V	t Isin' + /2 - cos2	 3i'r—y2 Ijfl, - Jk2	

3 
- cos2 dv(&)+ I	I 

= J''.	 2ff	]	 [	2H	] 
dv(,b) 

where dv(tI') sin t,bdt,b//k 2 - cos2 0. Now we calculate that
3 - _y 

10 i

	

dt,b + 
f2,r+O,'

	
th,b((,7I)u(21r+tb,31r-72))=li /k2 - cos2 t/' 

	/k2 - cos2 b 
12	

sin 0 
Ir =-	 d^x-(72-7i ). 

11 /T2-- cos2 b 
Here again, we first normalize the measure v and then apply Jensen's inequality to com-
plete the proof U 

Remark: We have seen that (13) and (14) are strict inequalities. Therefore we can expect that those 
inequalities will still hold true when the two plates bound slightly more than half a period of the unduloid. 
As a matter of fact, when k is bounded away from 0 or in other words the surface is far from the limiting 
circular cylinder, the two plates can bound significantly more than half a period still not to destroy 
inequalities (13) and (14). But, as the following counter-example (Theorem 5) shows, the two plates 
cannot 'bound significantly more than half a period when the surface is close to the limiting cylinder. 

Theorem 5 (counter-example). Suppose that [0, h] is an interval containing exactly half 
a period of the unduloid r = f(u), -oo <u <00 (see Figure 6). As k - 0, there exist ht 
tending to h such that Vk <h/7r where Vk denotes the volume between 0 and hk. 

Proof: Given small positive number e, set 6 = lOOc so that (7r + 6)2(1 - )3 > p.2(1 + )3. 

Let k be small enough so that 

1-E< /1 - 0 sin 2 W - kcos < /1 - k2 sin2 + kcos <1 + c.	(15)



Ii 

0 
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Figure 6. Counterexample: the plates bound slightly more than half a period 

Denote by -ythe equal contact angle at u = 0 and u = h. Let a and 'y' be determined by 
the relations cos -y = k sin a and cos' = ksin(a + 6). Note that t/, < y' < y. Suppose 
that the plate at u = h is moved outwards to the new location so that the contact angle 
at this new location is '. Let h' denote the new separation distance of the two plates and 
V' the new volume. From (9)-(12) and (15), we have 

2Hh 
jff/2 (ii - k 2 sin 2 ip+ k cos )dcQ 

+1
 ir/2 

(/l-k2sin 2 W _. k cos p̂
) 

dW > (1 - e)7r

	

2Hh'=J	(fl - V sin 2 W + k cos W) d 

+f12 (V11 _k2sin2ip_ k cos )d >(1 — f)( +5) 

8H3V' w/2	 3 

	

= j 	(V/1 - k 2 sin ip + k cos	dip 

+ I
,r/2 

(	
- k2sin2 ip - k cos ) dip <(1 + f)3 ( +5). 

J—(c+6 

By the choice of 6, it follows that h < h' < (1 + 200€)h and V' < (h' )3/7r U 

5. Instability 
We have seen in the last theorem that the inequality V > h3 /ir is false in genearal when 
the two plates bound more than half a period. To finish the proof of Carter's conjecture, 
we must show that the surface is unstable in this case. This is what we will do in the 
following. 

Theorem 6. The surface of revolution generated by more than half a period of an un-
duloid r = f(u), 0 u h between the plates must be unstable (see Figure 7). (In some
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Figure 7. Instability: the plates bound more than half a period 

cases, instability is still expected when the plates bound slightly 1e33 than half a period. 
But the precise formulation and proof of this latter conclusion are not included in this 
paper.) 

Proof: We will prove the instability for the case that the plates bound no less than half 
a period. As a matter of fact, this case follows trivially from [7] in which Finn and Vogel 
show that the number of negative eigenvalues of the associated Sturm-Liouville problem 
on an interval containing exactly half a period is at least two and the number of negative 
eigenvalues does not decrease when the interval gets larger. 

We are going to give a direct proof here for completeness and especially for the reason 
that from this proof, we can see clearly that instability not only occurs when the plates 
bound more than half a period but also occurs in some cases when the plates bound less 
than half a period. 

The idea of this direct proof was first found in [121 when Vogel showed that when the 
contact angles on the two plates are both 7r/2, the surface of revolution generated by the 
portion of an unduloid from one vertical point to the next cannot be stable in general. This 
technique was later used again by Finn and Vogel [ 7] to show that the surface generated 
by exactly half a period of an unduloid is unstable. Let us now describe the proof. 

It suffices to assume that [0, h] contains exactly one vertical point and one inflection 
point (see Figure 7). We will prove that the unduloid r = f(u), u E [0, h] is unstable by 
showing that the following associated Sturm-Liouville system has at least two negative 
eigenvalues (see [111): 

L(z) =- (1+(f02f12 )	f(1+(fI)2)h/2 
= Az 

(	

fz'	 __________ 

z'(0) = z'(h) = 0.	 (16) 

Suppose now that the above Sturm--Liouville system (16) had only one negative eigen-
value. We are going to get a contradiction in the following.
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Let u 1 and U2 be the u-coordinates of the vertical points as shown in Figure 7. It is known 
that the Sturm-Lioüville problem on [u i ,u2 ] has at least two negative eigenvalues [7,12]. 
Thus it has at least two negative eigenvalues, namely ) o < )i I < 0 on the interval [0, u21. 
But we assumed that A	0 on [0, h]. Therefore there is a point h with h	< u 2 such 
that A l = 0 on the interval [0, h). Let A i (u),0 u	h the corresponding eigenfunction.
Then

(	fA	
)	

A1 =0 
(1+(f')2)3/2	I (i+ (f)2)'12 

A', (0) = A, (h) = 0.	 (17) 

Imagine that the plate at u = h is moved to the new location u = h. Suppose that 
is the new contact angle. Then -y :5	72. This relation is needed in the following to
get a contradiction. 

An unduloid is generated by rolling an ellipse and tracing one of its focal points. Let 
a, b, c be the standard quantities for the ellipse. Let our particular unduloid correspond 
to Go, b0 and Co. Now fix a a0 and let c vary. We obtain a family of unduloids, denoted 
by r = g(u, c), where 0 < c < ao. We translate the above unduloids so that they all make 
the same contact angle 71 at u = 0. The location h(c) at which the contact angle is 5'2 
varies from one unduloid to another. We calculate that 

/	 (12	sin 2d' h(c) 	(2!	1_k2sin2d+J	 — cos-y1 _cos 7?) (18) 
o	 11 Jk2_cos2, 

Pj2	asin2 2	 'd71 = —ao (COS 'y 1 + COS 5'2 j ) 
v1c2 - a cos2 /, 

where k = c/ao. These translated unduloids are again denoted by g(u, c), 0 < c < a0. 

Let gc(u, c) denote the derivative of g(u; c) with respect to c and g'(u, c) the derivative 
with respect to u. Since g'(0, c) = —cot 71 for all 0< c <a0 , we have g(0, c) = 0. The 
following is also easily verified: 

 ( f(U)9- 	'\	 MU, co) 
 (1 + fl(U)2)3/2) - f(u)(1 + fI(u)2)'/2	

0 with g(0, co) = 0. 

Comparing the above with (17), we conclude that gc(u,co) is simply a constant multiple 
of the eigenfunction A, (u). In particular, this implies that g(h,co) = 0 = A, (h). On the 
other hand, we will show that g(h, Co) 0 and therefore we obtain a contradiction. 

To show that g(h,co)	0, recall that h(c) is the location at which the unduloid 
r = g(u,c) makes the contact angle 5'2. Thus 

g'(h(c),c) = Cot 'y2,	for all 0< C <GO.	 (19)
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Differentiating (19) with respect to c and evaluating the derivative at c = co, we obtain 
g"(!z,co)h'(co) +g(h,co) = 0. Namely, g(h,co) = —g"(h,co)h'(co). First of all, we notice 
that g"(,co) 34 0 since h lies between h and u2 and can not possibly be an inflection 
point. Next, we differentiate (18) to obtain 

it   h'(co)=-21	cocsin	dco_f	ac0sin2' _ d'<O. 
0 .V/a2 - c sin2 	- a cos2 )3 

These allow us to conclude that g(h,co) = —h'(co)g"(ii,co) j4 0, as desired I 
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