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Location of the Complex Zeros of Bessel Functions and Lommel Polynomials 
E. K. IFANTIS and C. G. KOKOLOGIANNAKI 

Some inequalities for the complex zeros of Bessel functions and the zeros of Lommel poly-
nomials, which improve previously known results, are presented. 
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1 .Introduction 
Many results about the zeros of the Bessel function J of the first kind and of order 
iL = ii + ii- are concerning with the case where 1A is real (r = 0) and in particular with 
the case j = v> —1. A little is known for the case where i is complex (r 96 0). For 
r 0, an important result is that the function J,, cannot have real zeros [1]. Also from 
the results in [1] it is known that when v> —1 and r > 0 (r < 0) the real and imaginary 
parts of any zero p = Pi + iO2 have the same sign (different sign). More over, in [6] was 
proved that, for ii 0 and 7 > 0, the zeros of J, lie in the first and third quadrant of 
the z-plane and for ii 0 and 'r < 0 they lie in the second and fourth quadrant. 

In this work we first refine and discuss some inequalities, which follow easily by the 
method of [1 - 3). These inequalities are the following: 

pu > v,t, V >- 1	 (1.1) 

P2 > Jr,	 (1.2) 
where j1, 1 is the first positive zero of the function .1k,, which for ii > —1 has been 
extensively studied. Also, we prove the inequality 

rpi/p2 > 1 + ii	.	 (1.3) 

for any real v and real r 0, which incorporates many results found previously [1, 61. 
We use a similar method and study the complex zeros A = A 1 +iA2 of the polynomial 

P +1, of degree n, defined by the following recurrence relation: 

P +1,,(x) + P_ 1,,(x) = 2(n + p)xP,,4(z), Po , (x) = 0, P1, (x) = 1,	(1.4) 

for j = 1'+iT, T 54 0. The polynomials	are the same as the Lomme,! polynomials
Rfl,,h+j defined by 

Rfl+l,M (z) +	1x) = 2(n + )xR,(z), R_ i ,(x) = 0, Ro,(x) = 1. , (1.5) 
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For any real v and r y6 0, it is proved that A2 0 and the inequalities 

1 + ii < (—r)A i /A2 < N + v and Al < cos(ir/(N + 1 ))/Ir l	(1.6) 

hold (Theorem 4.1). In the case ii > —1, r 54 0 the inequality 

Au < 1/j, i	 (1.7) 

is found, where j,, 1 is the first positive zero of the Bessel function .4. 
We compare all the results in this paper with those of H.J. Runckel found in [8] 

with a different method. 

2. Preliminaries 

In this section, we explain the method and some results we shall use in the next section. 
Consider an abstract separable Hilbert space H with orthonormal basis {e}> i . Denote 
by V the shift operator with respect to that basis (Ve = e+i ) and by V the adjoint 
of V (Ve1 = 0, V'e,, = e, 1 , for n> 1). The operator T0 = V+ V is selfadjoint with 
purely continuous spectrum covering the entire interval [-2, 2]. In particular II T0 II = 2. 
For completeness, we give below a simple proof of this well-known result. Suppose that 
A=2cs8=e'+e, O<O<2lrisa regular point ofV+V*or belongs to the point 
spectrum of V + V. In the first case, there exists an x1 0 0 being the unique solution of 
the inhomogeneous equation (V + V' - 2co9)x j = e 1 . In the second case, there exists 
an x2 0 being the solution of the homogeneous equation (V + V' - 2cosO)x2 = 0. 
Since Ve1 = 0 and VV = I in both cases there must exists an x 0 such that 

V+r—e—e--°)x=o or (V'—e')(V--e°)x=0. 

The last equation means that either e iO or e is an eigenvalue of V', which is impossible, 
because it is easy to see that all points on the unit disc belong to the continuous spectrum 
of the operator V* (as well also of V). 

Another operator which is used in the method, we follow, is the diagonal unbounded 
operator Co : e - ne, n > 1. It is defined on the basis {e,,,} as before and can be 
extended to a linear manifold D(Co) which is dence in H [5]. In [1] it has been proved 
that for every p 54 —n, vu 1, real or complex, the value p is a zero of the Bessel 
function J,, if and only if, it is an eigenvalue of the generalized eigenvalue problem 

(Co + p)f = pTof/2, 1 91 0.	 (2.1) 

The assumption it 34 —n, n > 1 is not a restriction to the problem, because the functions 
J, and J_, have the samezeros (.4= (1)n J_). In the case where p = ii is real and 
u> —1 the operator Co + v is positive definite, in fact (Cof, f) ^! 11f J12 and 

((Co + zi)f, 1) ^! (1 + v)IlfIl 2,f E D(C0),	 (2.2)
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where by (.,-) we mean the scalar product in H. The inverse of Co + z', the operator L: 
- (1/(n + v))e, is positive, in the sense (Lf, f) > 0, f E H. Its square root 

exists and is equal to (Co + v)' /2 . Thus we can set in (2.1) f = LV2x and transform 
the eigenvalue problem (2.1) into the regular eigenvalue problem 

S1,x = 2x1p, x 0,	 (2.3) 

where
S = L'j2ToL/2	 (2.4) 

is a selfadjoint and compact operator. We can easily see that if 2/p is an eigenvalue of S 
corresponding to the eigenvector x, then —2/p is also an eigenvalue of S corresponding 
to the eigenvector Ux, where U is the diagonal operator Ue = (-1)"e, n > 1. Also, 
it is easy to see that the eigenvalues of S are simple, because the eigenvectors are 
uniquely determined from (2.3), up to a factor (x, e l ) = a 34 0. Thus the eigenvalues 
of the operator 5,, are ±2/j,,,n , n > 1, where	are the positive zeros of the function 

v > —1. Moreover the maximal principle for compact and self-adjoint operators 
yields

116,,11 = 2/j,,, i .	 (2.5) 

From (2.1) for f = Li2x we can find 2((C0 + )f,f) = p(Tof,f). By setting here 
it = ii + ir and p = p + ip2 and by comparing real and imaginary parts we find 

2((Co + v)f,f) = pi (Tof,f) and 2r(f,f) = pz(Tof,f).	(2.6) 

From the above, we get the following results: 
1. If  0 0, then Jp2 l> r I . This means that if -r j4 0, then the function J. cannot 

have real zeros. The Inequality Jp2 l> ITI follows from the second relation of (2.6) using 
Schwartz's inequality l(Tof, 1)1 < IITofIIIIf II :5 IlToIlfif 11 2 and the relation IIT0II = 2. The 
equality in Schwartz's inequality is excluded, because otherwise T0f = kf, which is 
imposible because T0 has no eigenvalues. That justifies the strict inequality I p, > In. 

2. Ifv> —1 and r0, then p 0. This follows from the first relation of (2.6) 
and the relation (2.2) and means that, for ii> —1 and r 34 0, the function .1,, cannot 
have purely imaginary zeros. 

3. If ii and  0 0 are real, then 7-pj/p2 > 1+v. This follows from (2.6) and 
the inequality (2.2). 

From rp1/p2 > 1 + &' we find that if a, + 1 > 0, then 

p2/pl <n/(1 + v) for n> 0 or p2/pl > n/(1 + v) for r <0	(2.7)

and if i i + 1 <0, then 

p /pi >r/(1+v) for r>0 or p/pi <n/(1+v) for r<0.	(2.8)
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From (2.7) and (2.8) we obtain 

if r/(v + 1) > 0, then p2/pi <r/(v + 1) 

if r/(i, + 1) <0, then P2/P1 > r/(v + 1). 

Relation 7-pi/p2> 1 + r' means that if ii > —1 and r> 0 (r < 0), then pi and p2 have 
the same (different) sign. This means that the complex zeros of jIL for v > —1 and 
r > 0 (7- < 0) can only lie in the first and third (second and fourth) quadrant of the 
(P1, p2)-plane. 

3. Proof of inequality (1.1) 

1/2 Settingf=L1, xm(2.1)wefind 

(Co + ji)L/2x =pToL/2x/2 or (CO + v)"2x + i7-L' =pToL/2x/2 

and
x + irL1,z =pS,,x12.	 (3.1) 

For p=pi +ip2 and Ix=1,wefind 

1 + ir(Lx, x) = p (Sx, z)/2 + ip2(Sx, z)/2. (3.2) 

Note that (Lx, x) and (Sz, z) are real, because the operators involved are self-adjoint. 
Comparing real and imaginary parts in (3.2), we obtain 

1 = pi (S1,x,x)/2 and r(L1,x,x) =p2(Sx,x)/2 = p2/pi .	 (3.3) 

Inequality (1.1) follows from (3.3) and (2.5). The strict inequality follows from the strict 
inequality in Schwatz's inequality: 

(Sz,x)I < IIS x IIIIx II !^ IISvII = 2/j, i . (3.4) 

In fact, equality in (3.4) is excluded, because otherwise we must have Sx = kz, for 
some eigenvalue k of S, or (Sx, x) = k. But, from (3.3), k = 2/p2 and from (3.1) 

x + irLx =(pi/2)(2/pi)x + i(p2/2)(2/pi )x or rLx = (p2/pi)x. 

This means that x is an eigenvector of L, i.e., x = e for some n. That is impossible. 
We stress the fact that equality in (1.1) is possible only in the case r =0. 

Remark 3.1: The inequality j p2 l> J rj, z'> —1 means that for = ii + ir and v> —1 
the region {z E C : ilmzi :5 i r i} is zero-free. This result has been proved, with another 
method, in (8. Also the inequalities 

P2/pi <r/(1+v), 7-/(1--)>0 and P2/P1 >r/(1+), r/(1+v)<0
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can be obtained from the results of 18, Corollary 1. Instead of the inequality (1.1), in 181 there 
has been proved the inequality 

p^(1+v)(2+v), r/(v+1)>0.	 (3.5) 

We note that inequality (1.1) is better than inequality (3.5) for every ji = v + iT, r 54 0 and 
ii> —1. In fact for —1 < ii < 0 this statement follows from the inequality (see(7))j,, > 4(1 + v) 
(2+ v)' !2 and for ii > 0 it follows from the inequality (see [3J)j , ? j, + v2 + 2v(j,1 + 4)1/2. 

4. The complex zeros of the polynomials (1.4) 

We consinder the Lommel polynomials P,,., defined by (1.4). We know from [4) that 
the zeros A of the polynomial N+1, of degree N are the eigenvalues of the generalized 
eigenvalue problem

	

Tof = 2A(Co + i)f, f 54 0,	 (4.1) 

where T0 and Co are the same operators as in Section 2, but they are defined here in 
an N-dimensional Hilbert space HN with orthonorrna,l basis {e,, e2,..., eN}. Precisely 
T0 = V + V* , where V is the truncated shift (Ve = e,, 1 for n < N, VeN =0) and V 
is the adjoint of  (Ve, =0, V*e, =e, 1 for n =2,3,...,N). In this case [4) 

	

TOIIH,,, = 2c.os(7r/(N + 1)),	 (4.2) 

so we get I lToll = 2 for N - oo. The operator Co is the diagonal operator (Coer, = 
ne,, for n = 1,2, ..., N). So, for any f =	1_,(f, en)en in HN we have the relation 

(Cof,f) =	nI(f,en )I 2 ,	 (4.3) 

from which the inequalities

111112 < (C0f, 1	Nhhf 11 2	 (4.4) 

follow imediately. In the case that f is an eigenvector of the problem (4.1) strict in-
equalities can be easily proved in (4.4), i.e. 

	

1 <(C0f,f) < N, 11111 = 1.	 (4.5) 

Taking the scalar product by I 0 in (4.1) and comparing real and imaginary parts 
for A= At + iA2 and A = v+ ir we obtain 

A2 (Cof, f) + (A2v + A, r) If fl = 0	 (4.6) 

(To!, f) = 2A,(Cof, f) + 2(A,v - A27)11f 11 2 .	 (4.7
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We have the following results. 

Theorem 4.1: Let it = ti + ir, r 34 0, v any real number. Then any zero 
A = A 1 +iA2 36 0 of the polynomial PN+1,M, defined by (1.4),is complex (i.e. 1\2 0 0) 
and

IAI <C08(lt/(N + 1))/17-1	 (4.8) 

1 + &i < ( —r)A i /A2 <N + ii.	 (4.9) 

Proof: Assume that A2 = 0. Then from (4.6) we find A 1 r = 0 and since r 
0, A 1 = 0, i.e. A = 0, contrary to the assumption. Thus A2 0, so we obtain from 
(4.6)

(Cof,f) = — (v+rAi/A2), lIfll = 1.	 (4.10) 

Inequality (4.9) follows imediately from (4.10) and the inequality (4.5). To prove in-
equality (4.8) we first eliminate (C0f, f) from (4.10) and (4.7) and obtain 

(T0f, f) = —2 I A I 2r/A2, 11111 = 1.	 (4.11) 

This together with (4.2) yields 

2 I A l 2 1 r 1/1 A21 < llTofllllfll = IlTofli :5 II T0II = 2cos(7r/(N + 1)) 

and
'\ 12 < 1A2 1cos(7r/(N + 1))/I7-1.	 (4.12) 

Equality in the Schwarz inequality l(Tof, f)l < IlToflIIlf II is excluded because it implies 
that Tof = xf for some real ic and the eigenvalue equation (4.1) implies that f must be 
one of the eigenvectors of CO , i.e. one of the elements e 1 , e2 , ..., eN, which is impossible. 
Since 11\21 15	we find from (4.12) 

1\21 <cos (7r /(N -f1 ))/l r l	 (4.13) 

and from this, using again (4.12), we obtain the inequality (4.8). 

Theorem 4.2: Let IL = ii + ir, r 54 0 and ii > —1. Then every zero A = 
Al + iA2 0 of the polynomial PN+1, is complex (i.e. A2 0 0) with A 1 0 0 and 

Au I < 1/j1,,1 , ,	 (4.14) 

where j,j is the first positive zero of the Bessel function J. 

Proof: The assertion A2 96 0 follows as a particular case of Theorem 4.1 and the 
assertion A 1 54 0 follows from (4.9), because 1 + p > 0. Since 1'> —1 we set, as in (2. 1), 
f = L 2x and transform the problem (4.1) into the following one: 

S1,x = 2Ax + 2i7-ALx, x 0,	 (4.15)
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where the self-adjoint operators S 1. = LV2T0L 12 and L,, act on the N-dimensional space 
HN, spanned by the orthonormal elements e 1 , e2 , ..., eN . Scalar product multiplication 
in (4.15) by x and comparison of the real and imaginary parts leads to 

(S1.x, x) = 2A 1 - 27-A 2 (L1.z, x)	 (4.16) 

0 = rA i (L,,x,x) + A2 ,	l xii = 1.	 (4.17)

Elimination of (L 1.x, x) from the above gives 

(SL,x,x) =21Al2/A1, jjxjj = 1.	 (4.18) 

Thus
21AI2/1A11 = I(S1.x,x)I < ii Syx iIHNli x iiHN = ii S1. x iiHN 15 ii S iii,.	(4.19) 

Since HN is a subspace of H, which is spanned by the infinite orthonormal basis 
we have, using relation (2.4), 

ISV I1 HN = sup i(Syy)i :5 sup i(S yy)i = I1 Sv11H = 2/j1.,i .	(4.20) 
P€JIN 

Now from (4.19) and (4.20) we find

Al 2 < IA 1 i/i1.,:	 (4.21) 

and in the same way as in Theorem 4.1 the relation (4.14) follows u 

Putting together Theorems 4.1 and 4.2 we obtain from (4.8), (4.9) and (4.14) 
Theorem 4.3: Let it = zi+ir, ii > —1 and r>0 (r <0). Then the complex 

zeros of the polynomial PN+l,, of degree N,which i3 defined by (1.4), lie inside the 
circle

Al = cos(ir/(N + 1))/lrI 

and are restricted in the area: 

Au I <1/j 1,,i, —r/(v + 1) <A 2/A 1 < —r/(N + ii), 

(—r/(z + N) < A 2 /A 1 < — 7-/(1 + ii)).	 (4.22) 

Remark 4.1: if v < —N < —1, then from (4.9) we obtain the inequalities (4.22) for 
r> 0 (or r < 0). Also, if —N < v< —1, then from (4.9) we obtain the inequalities 

—(N + v)/r < A1 /A2 < —(1 + )/r and—(1 + v)/r < A 1 /A2 < —(N + v)/r 

for r > 0 and T <0, respectively.
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Remark 4.2: The Lommel polynomials	of degree n are defined [9, p.2291 by the 
reccurence relation (1.5). The polynomials	of degree n defined by (1.5) coincide with the 
polynomials of degree n, defined by (1.4), i.e.P +1 = In [8, Theorem 5 / p.119[ 
there have been studied zero-free regions for the polynomial RN,+l . There have been found 
similar inequalities (not the same), as the inequalities (4.22). Also, in 181 there have been found 
the inequalities

Al f ReA + r2 /2	 for 11 —1, T E R
 -RCA + (1 + )(2 + v)12 for r/(v + 1) > 0. 

The inequality (4.8) and the first one of (4.22) seem to be new. 
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