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Weakly Sihgﬁlar Hammerstein-Volterra Operators
in Orlicz and Holder Spaces
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Acting, boundedness, and compactness conditions for nonlinear Hammerstein-Volterra operators are given
either between two Orlicz spaces, or from an Orlicz space into a (generalized) Holder space. Particular
emphasis is put on weakly singular kernels. This leads to (local) solvability results for Hammerstein-
Volterra equations of second kind. ’ . ’
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0. Introduction

As is well known, the study of initial value problems for systems of ordinary differential
equations leads to Hammerstein-Volterra equations of the form

z(:)=/0' KLs)f(s.z(s))ds  (£20). (1)

where k : R, x R, — RY*V is a matrix-valued kernel function and f : R, x RN — RN
is a given nonlinearity which satisfies a Carathéodory condition. In nonlinear analysis
one usually considers (1) as fixed point equation for the Hammerstein-Volterra operator
H = VF which may be written as composition of the linear Volterra operator

t
Vylt) = /0 k(L. s)y(s) ds , | (2)
and the nonlinear Nemytskij operator '

Fz(s) = f(s.z(s)). (3)

In the classical setting, these operators are usually studied either in the space (' of contin-
uous functions (e.g.. if the nonlinearity f is continuous in both variables). or in the space
L, (1 < p < 0o) of p-integrable functions (e.g.. if the function f has polynomial growth).
However, if the nonlinearity f exhibits a non-polynomial (e.g., exponential) growth in the
second variable, it is a useful device to study equation (1) in some Orlicz space which is
“manufactured” according to the data & and f.
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The main purpose of the present paper is to study equation (1) in appropriate Orlicz
spaces. If the Volterra operator (2) is replaced by the Fredholm operator

, |
Ky(t) = [ k(t,s)y(s)ds, O

the corresponding fixed point equation z = K Fz has been widely considered in the
literature. On the other hand, there are only very few results, as far as we know, taking
into account the specific features of the Volterra operator (2) For example, it is well
known that, in case of a weakly singular kernel function

, h(t,s)
k(t,s) = T=sp » (5)
(h bounded and sufficiently regular), the operator V maps the Lebesgue space L, into the
Holder space C* with @ = 1 — A — 1/p. In the first section below we show that V has a
similar “smoothing property” from Orlicz spaces into certain generalized Holder spaces,
or into the space C of continuous functions. Afterwards, we establish some boundedness
for the operator V between Orlicz spaces which build on Riordan’s generalization of the
classical Marcinkiewicz interpolation theorem. Combining thiese results with well known
mapping properties of the Nemytskij operator (3), we are lead to local existence theorems
for the Hammerstein- Volterra equation (1). In this connection, particular emphasis is put
again on kernel functions of the potential type (5).

1. Equations with Holder continuous kernels

Let @ : Ry — IR, be a Young function, i.e. d is increasing, even, convex, and continuous
with ®(0) = 0 and ®(00) = co. The Orlicz space Ls = Lg([0,T), R") consists, by defini-
tion, of all (classes of ) measurable functions z : {0,T] — R for whlch the (Luxemburg)

norm '
=i . =)l
||z||,_mr{a>0./0 <I>( - )dtgl}

is finite (see, e.g., [9, 17]). The particular choice ®(u) = ®,(u) = SlulP (1 < p < o)
leads, of course, to the Lebesgue space L, = L,({[0, T, RN).

Let ¢ : IRy — IR, be a Hélder function, i.e. & is increasing and continuous with
#(0) = 0. The (generalized) Hélder space C* = C*([0, T}, IRM) consists, by definition, of

all continuous functions z : [0,T] — RV satisfying an estimate
lz(t) = ()| < Lg(]t - )
for some L > 0. Equipped with the norm

lzlle = llzllc + (z]s,
where
l2(t) — 2(7)|
¢(lt—rl)
the space (' becomes a Banach space. The particular choice dt)y=t*(0<a< l) leadq
of course, to the classical H”older space C* = C°([0, T}, BN)

lele = max 20} and  [zly = sup
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Orlicz spaces occur, loosely speaking, whenever one has to deal with differential equa-
tions involving strong nonlinearities; a typical application may be found in [7]. Moreover,
the so-called Orlicz-Sobolev spaces W* Lg (containing functions whose k-th order distri-
butional derivatives belong to Le) may be imbedded into generalized Holder spaces C? in
rather the same way as classical Sobolev spaces W} into classical Holder spaces C° (see,
e.g., [1, 11]).

In this and the following sections we are interested in mapping and boundedness
properties of the weakly singular Volterra operator

t h(t,s)

Vy(t) = b Tt =

|xy( )ds (6)

where h is some continuous matrix-valued function on the triangular domain A = {(¢, s)
0<s<t<T},and 0 < A < 1. Let ® be a fixed Young function and denote by ¢ the
conjugate Young function {9)

d(u) = sup {Julv — @(v)}; : (7

for instance, 6,, = ¢; with i + % =1 for p > 1. Put

50 = [ &(s)ds )

and

¥(t) = inf {a > 0: f(a'/*t) < a'/*}. 9

Then 3 : IRy — IR, is a well-defined Holder function. In fact, the derivative of the
function fi(p) = p — f(pt) satisfies

% = 1—1f(pt) = 1 = th(p~M7),

and hence is positive for p large enough (recall that ®(u) — 0 as u — 0). Consequently,
f(pt) < p for sufficiently large p, and thus the function (9) is well-defined. For 0 <t <r
we have

F@p(r)2) < f(o(r) A7) < o(r)' A,

since f is increasing; this shows that we may put a = () in (9}, and hence ¥(t) < ¥(7).
Finally, the continuity of (9) follows from the continuity and concavity of (8), and the
equality 1(0) = 0 follows from f(0) = 0.

Theorem 1. Suppose that h : A — RN*N is continuous and

Ih(t, s) — h(r,0)|
hle = :
hle=  Sup =TI+l —ol)

for some Holder function {. Suppose that the function f déﬁned in (8) is finite, and put
é(t) = max {(t),£(t)} with ¢ given by (9). Then the weakly singular Volterra operator
(6) is bounded from the Orlicz space Lg into the Holder space C® and satisfies

IViLe — C*|l < 2(1 + ¢(T)) max {2, ¥(T)}|Alle. (10)



666 J. APPELL and M. VATH

Proof. For 0 <t <7 < T fixed and'a > 0. consider the integrals

ot (lh(r.s) = h(t.s)|

La) = /()¢(_61|_Tj8|’\—) ds, (11)
¢, 1

!2(0) = /0¢(QIT—S|)‘_0“_3|A )ds (12)
T oL h .

hey = [ Mzl g, (13)

and let

a; =inf {a >0: [;(a) <1} (1 =1,2,3).

We derive upper estimates for a,,a; and aj. Let first C = [hle€(|T — t]). Assuming C >0
(without loss of generality) and substituting s — 7 — (C/a)‘/’\s leads to the estimate

t . C C 1/A r(a/C)]/“ .
< _ =|— -A
Iie) < /o ¢ (alr - .sl") ds (a) /(r-z)(o/cy/x ®(s™7) ds,

) )" -s(e-0(8)")]
z)mf (T (%)m)‘

Consequently, f(T(a/C)'*) < (a/C)'* implies I;(a) < 1, hence

hence

A
~~
(@)
<
>
[
—
s‘
Vs
Qe

5Li(a)

IN
—~
Qe

ar < (T)[RJeg(I7 ~ t). (14)

Now let D = ||A|;. Assuming D > 0 (without loss of generality) and substituting
st —(D/a)"*s and s — 7 — (D/a)'/*s, respectively, leads to the estimate

S t . D . D
fa) < /0 d)(a(t - s) T al(r —s)") ds

/ot(i) (a(t [-).9)") ds - ./o‘_(a(rl3 s)") ds

I\ YA pt(a/Dp | WX ct(a/Dpr
(1 ) / b(s) ds — (2) /( B(s)ds
o

O )1 ()" r-3)")
(§) “i(e-0(5)"),

where we have used the convexitiy of ® and the monotomcnty of f. Consequently, fl(r -
t)a/D)Vry < (a/D)l/'\ ‘implies that I3(a) < 1, hence

I I A

IA

a2 < b(I7 = t])lhll. (15)
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An analogous reasoning leads to the estimate
DA\YA a\ />
se)<(2) r{e-0(3)
(< () fle-0(3F) )

a3 < Y(I7 — ¢t])l}hlic. (16)
Now fixz € Lo and 0 <t <7 < T as above. For 0 <3 < T, put

hence

u-rL-[Hh Ze)-nfts fs<t
h,(s) = g
0 otherwise
()] ifs <t
ha(s) = .
0 otherwise
Mt—f:l ift<s<r l
ha(s) =
0 . otherwise

A comparison with (11) - (13) shows that h; € Lg with ||k;|lg = a; (j = 1,2,3). Writing
h(r,8) = a, |7~ s|"* = b, h(t,s) =c, and |t — s|=* = d, for short, we get

’/ot(ab - cd).z(s) ds + /‘Y(ab);(s)ds ‘
[ tla = clibl + 16— dilchlz(s)l ds + [ labliz(a)lds

[ 1ha(6) + halo) + hs(oliz(o)l ds
< 2(ay + a2 + as)lizlle.

[Vz(r) — V()]

IA

Combining this with (14) - (16) yields

[Va(r) = Va(O)] < 2(2llle + $(T)k) llledlir ~ ¢, oan
hence _ o
[Vzls < 2(2llkllc + H(T)[kle) i=zlle- - a8)

Observil;g now that _ i :
[Vz(t)] = [Vz(t) - Vz(0)| < $(T)[Vzls

| we finally get
IVzile < 2(26(T)llAllc + ¢(T)¢(T)(h]¢)||$||o
which t.oget,her with (18) proves (10) & T

2. Equations with continuous kernels
Theorem 1 shows that the weakly singular Volterra operator (6) maps the Orlicz space Le

into an appropriate Holder space C?, provided the kernel function h is Holder continuous
on the triangular domain A. If we merely require h to be continuous on A, it is not
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surprising that we end up in the space C = C([0,T}, RY). On the other hand, as an
additional gift we get then (see the following theorem) the compactness of the operator
(6).

Theorem 2. Suppose that h : A — RN*N is continuous and the function f defined
in (8) is finite. and let & be given by (9). Then the weakly singular Volterra operator (6)
is compact from the Orlicz space Lo into the space C and satisfies

IVile = Cl < 24(T)|kl|c. (19)

Proof. We modify the proof of Theorem 1. To this end, fqr 0<t<T fixed and
a > 0. consider the integral
Yo [ 1AL s)]
= ds
Ia)= [ & <a|z ) 4

ag = inf {a > 0: I(a) <1}.

As in the proof of Theorem 1, a straightforward calculation shows that

as < P(T)||kllc,

and let

hence

Vz(t)] < 2adllzlle < 20(T)|klIc|Izlls,
by the Holder inequality. This proves (19). To see that V is compact, let ||z]jl¢ < 1. Given
€ >0, choose 6 > 0 such that |h(r,s) — h(t,s)| < e and %(|r — t]) < € for |r —t| < 6. For
Ii(a) as in (11) we get then, after substituting s — 7 — (¢/a)'/*s, that Li{a) < ey(T).
Reasoning as in the proof of Theorem 1 we conclude that

Va(r) — Vz(t)] < (2||kllc + (T))e.

This shows that the set {Vz : ||z|l¢ < 1} is equicontinuous, and thus the assertion of V
follows from the Arzela-Ascoli compactness criterion.

We illustrate Theorem 1 and Theorem 2 by two typical examples.

v Exami.)le 1. Let ®(u) = ¢,(u) = §|u|” (1 < p < 00). A trivial calculation shows
that the function (8) is finite in this case if and only if Ap < p— 1, and f(t) ~ t1=#/(»-1)

hence ¥(¢) ~ ¢'=*=/?_ In particular, for h(t,s) = 1 we get the classical result that the
Abel operator

Az(t)_z/o‘ 2(s) ds (20)

[t-— s|*
maps the Lebesgue space L, into the Hélder space C* with a = 1 — A — 1/p (see, e.g.,
(6. 8]).

Example 2. Let ®(u) = el“l — |u| — . In this case the properties of the Orlicz space
La are essentially different from those of the Lebesgue space Ly, since @ does not satisfy
a A; condition (see [9, 17]). The conjugate Young function (7) is here

(u) = (1 + lul) log(1 + ful) — Jul-
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We show that, for this choice of @, the function

() = /0'(1 + 57 ) log(1 + s~*) ds -/o's-* ds 21)

is finite for any A € (0,1). The second integral in (21) is trivially finite; it is the first
integral which requires a more careful analysis. Now, integrating

¢
I = / (145 )log(l +s7%)ds

by parts yields

¢ ¢ Ag—A-1
I, = [(s + 1 1/\3"") log(1 +s“")]! —.[; (s + n iAs"’\‘) IA:s‘* ds.

The first term is bounded for ¢ near 0, while the integrand in the second term may be
majorized by the integrable function A(14+s7*/(1—2)). Consequently, I, remains bounded,
as € | 0, and so we are done.

From Theorem 1 and Theorem 2 we conclude that the Volterra operator (6) acts from
Lo into C if the kernel function k is continuous, and from L¢ into C°* (0 < a < 1
appropriate) if & belongs to C°. As a typical example, we may again consider the Abel
operator (20).

3. Equations with bounded kernels

Now we further weaken the regularity assumption on the kernel function (5) by simply
requiring that h is essentially bounded on A. As a consequence, we obtain mapping
and boundedness properties for the Volterra operator (6) from one Orlicz space Le¢ into
another Orlicz space Ly. A basic tool will be Riordan’s generalization [18] of the classical
Marcinkiewicz interpolation theorem [12].

Recall that a linear operator A is called of weak type (p,q) (1. < p,g < 00) if A is
bounded as an operator from the Lebesgue space L, into the Marcinkiewicz space M,
(see, e.g., [4, 5, 10]). More explicitly, A is of weak type (p,q) if

mes (D(Azih)) < (Slelly)” (5 >0) | (22)

for all z € L, and some ¢ > 0, where D(y; h) denotes the Lebesgue set of all ¢t € [0,T)
such that |y(¢)| > h. Since L, C M,, every bounded linear operator from L, into L, is of
course of weak type (p, q); the converse is not true. (To see this, consider A = V as in (2)
with k(t,s)=1/tforp=¢=1.)

Theorem 3 [18]:' Suppose that A is both of weak type (p1,q1) and (ﬁz,éz), where
G > g2, 71 # P2, S v, and p; < qp. Let

- -1 _ -1
a=BIza/m i 0
@2—q . P — P

Assume that ¥ is a Young function such that

/‘°° s~ dU(s) = O(t™ " ¥(t))  and /o‘ 571 dW(s) = O(t~BY(t)).
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Finally, let @ be a Young function such that

®(t) ~ [w (#)")r | (23)

Then the operator A is bounded from the Orlicz space L¢ into the Orlicz space Ly.

We point out that, in case ®(u) = |ul’ and ¥(u) = |u|?, Theorem 3 reduces to the
classical Marcinkiewicz interpolation theorem.

Applying Theorem 3 to the Volterra operator (6), one may get various boundedness
results for V between Orlicz spaces: it simply suffices to find p,q € [1,00) such that V is
of weak type (p,q). As a sample result, we mention the following.

Theorem 4. Suppose that h : A — IRN*N {5 measurable and essentially bounded,
and let 0 < A < 1. Assume that either
1
- <p<oo (24)

or

1 ‘ P
1< 1<¢g< —m ———.
P< =\ ‘.q_l—p(l—A)- (25)

Then the weakly singular Volterra operator (6) is of weak type (p, q).

Proof. It suffices to prove the assertion for the “worst case” p =1 and ¢q = 1/A. Let
[[Allcc = 7 < oo; we show that (22) holds with ¢ = /(1 — A). In fact, given z € L, and
h >0, for D = D(Vz;h) we have

_hmesl(D) = /hds</ ]Vz(s)|ds<r)// X[o.](a)l (0)|dods
1-2
o ( "“’”(Tlds) felo)lde <n [ f“"f%"iwnw

D |s

_ o=l -

hence mes (D)* < l—:fjufhﬂl as claimed §

We make some comments on Theorem 4. First of all, we point out that (at least in
case h(t,s) = 1) the conditions (24) and (25) are sharp in the following sense: '

If the operator (20) is of weak type (p,q) for some A € (0,1), then (24) or (25) hold.

Second, the conditions (24) and (25) are similar to classical boundedness conditions
for convolution operators (e.g., the Abel operator (20)) on Lebesgue spaces. For instance,
it is well-known ([8], see also [22]) that the operator (20) is bounded from L, into L, for

1 P .
<p< —— d = —
=rs R (P P

1-2A
where £ > 0 and, at least for p =1 or p = 1/(1 — A), one must not take ¢ = 0 in (26). In
[6: Theorem 4.1.1] the authors claim that the estimate

(26)

Ade
Wates7e(143)  lely
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holds for p'and ¢ as in (26). This is indeed true for ¢ > p, but false for ¢ < p, as the
following example shows.

Example 3. Let T =1, p=10, ¢g=1, A =9/10, and z(s) = 1. Then

! 1 A\ 197 19/10
Izl =10 [ 0704t = o9 b T(14+2) = (_9) <4
° 11 € 10

In order to apply Theorem 3 to the operator (6) (or (20)) between specific Orlicz
spaces, one has to verify the growth condition (23). Unfortunately, this may be very
hard for complicated Young functions. (An example of two Young functions ¢ and ¥
satisfying (23) may be found in [17: p. 252].) A different approach to the Abel operator
(20) between Orlicz spaces which is based on general properties of convolution operators
may be found in [13]. Finally, we remark that there are other papers on the interpolation
of Orlicz spaces (e.g. [19]) which may be helpful for obtaining boundedness results for the
operator (6) between Orlicz spaces.

4. Hammerstein-Volterra equations in Orlicz spaces

Combining the boundedness and compactness results proved so far for the Volterra oper-
ator (6) with well-known boundedness and continuity results for the Nemytskij operator
(3), one may obtain various existence theorems for the Hammerstein-Volterra equation
(1) with weakly singular kernel function (5).

For the reader’s convenience, let us recall the following result on Nemytskij operators
between Orlicz spaces ({2], see also [3, 9]).

Theorem 5. Suppose that f : R, x RY — RN is a Carathéodory function. Let
and ¥ be two Young functions, and let r > 0. Then the Nemytskij operator (3) maps the
ball B,(Ly) = {z € Ly : ||z||¢ < r} into the space Lo if and only if the growth condition

LAt A N g il
¢ ( R < a(t)+ b¥ - (27)
holds for some @ € Ly, b > 0, and R > 0. Moreover, in this case the operator (3) is

always bounded. Finally, the operator (3) is continuous if the Young function & satisfies
a Ay condition. :

As mentioned before, from Theorem 3 and Theorem 4 one may deduce boundedness
conditions for the Volterra operator (6) between two Orlicz spaces Ly and Ly. In order
to apply classical principles of nonlinear analysis, however, we also need the compactness
of the operator (6). Here we recall the following well-known sufficient condition.

Theorem 6 [17]. Let k: A — RN*N be a measurable function such that

INE (“‘—(L—’M) dsdt < oo (28)

for all a > 0 and some Young function =. Suppose that there ezist a >-0 and up > 0 such
that - .
Z(auv) < (u)¥(v) (u,v 2 up). : (29)
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Then the Volterra operator (6) is compact from Le into Ly and satisfies

IViLe — Lol < T(a,uo,T)|

k”51

where

I(a,u,T) = % {T*Z(au}) + TO(uo) + TH(uo) +1}. (30)

We remark that (28) simply means that the kernel function k has an absolutely con-
tinuous norm in the Orlicz space Lz = L=([0, T} x [0, T}, R¥*"). Equivalently, k£ may be
approximated (in the norm of Lz) by a sequence (k. )n of simple kernel functions k,. This
fact was used in [17] to prove an analogous compactness result for the Fredholm operator
(4). In fact, the authors claim in the proof of [17: Theorem 6.1.5] that “the corresponding
operator K,y(t) = foT kn(t, 8)y(s)ds is compact since it has a finite-dimensional range”.
However, this is not correct, as may be seen by choosing k.(t,s) = xal(t, s), say.

Theorem 6 may be combined with Theorem 5 in order to assure the compactness of
the Hammerstein-Volterra operator H = V F, and thus to obtain solutions of equation
(1). We do not want to formulate this as another abstract result, but illustrate this by
means of two illuminating examples.

Example 4. Let h: A — RV¥*N be measurable and essentially bounded, and take
A = 1/2. We claim that the corresponding Volterra operator (6) is compact from the
Lebesgue space L, into the Orlicz space Ly generated by the Young function

Y(u) = |ul(e —=1)  (0<v<i)

In fact, we may consider the operator VV* which is generated by the iterated kernel
function

I(t, s) = /" k(2, 7)k(7, 5) dr

between the Orlicz spaces L and Ly¢. Since
li(t,s)] < e1 + 2| log |t — s},

it is not hard to see that (28) is satisfied for k =, = = ¥, and all o > 0. Reasoning now
as in [9: §16], we know that VV" is compact between Ly and Ly. Moreover, condition
(29) reads now

¥(auv) < u?¥(v) (u,v 2 up). (31)

By definition of the Young function ¥ we have W(u) ~ W (u)?; consequently, the conjugate
Young function W satisfies a A’ condition [9]. But this implies (31), since ¥(u) increases
more rapidly than u%. By Theorem 6, the corresponding Volterra operator (6) is compact
between the spaces L, and Ly.
Now, from Theorem 5 we conclude that the growth condition
2 icl

/(e wl < a(e)+ 8 (),

where a € Ly, b > 0, and r > 0, implies both the continuity and boundedness of the

Nemytskij operator (3) from B.(Ly) into L;. Consequently, the operator H = VF is
compact and continuous on the ball B,(Ly).
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To prove the existence of a solution z € Ly of equation (1), one may proceed in two
different ways. On the one hand, if the growth of the nonlinearity f is not too fast, one
may find a ball in the space Ly which can be transformed by the operator H into itself
and apply Schauder’s fixed point principle. On the other hand, if the growth of f is very
fast, one may try to find a-priori bounds for the equation z = uHz (0 < p < 1) and apply
Schaefer’s continuation method {21]. In any case, the definition of the Young function W
shows that the growth of f(t,u) may be faster than any polynomial in u.

In the following example we want to study the “perturbed” equation

2(l) = /0’ k(L,s)f(s, 2(s)) ds + (1), (32)

where r € Ly is given. We show that (32) is “locally solvable” (i.e. on some subinterval
[0,7] €{0,77), provided that r and 7 are small in a sense to be made precise.

Example 5. Let ¢, ¥, and = be three Young functions such that the conditions
(28) and (29) hold; in addition, we assume that ® satisfies a A, condition. Suppose
that f satisfies the growth condition (27). By Theorem 5 and Theorem 6, we know that
F: Ly — Lo is bounded and continuous, and V : Lg — Ly is compact.

Let £ > 0 and p > 0. We claim that we can find a 7 € (0, T) such that, for any r € Ly
with ||rll¢ < p, the equation (32) has a solution z on [0, 7} with ||z — r|l¢ <e.

In fact, the boundedness of the operator F' implies that there exists R > 0 such that
|IFzlle < R for ||z|l¢ < p+ €. Since the kernel function k has an absolutely continuous
norm (see the remark after Theorem 6), for sufficiently small 7 > 0 we have

F(a)u()’ T)"XA(‘r)k”ER S €

(seé (30) for the definition of I'), where A(7) = {(t,s):0 < s <t < 7}. Let

V) = [ xamlt okt syls)ds  (0<t<), (3)

and consider all functions on the interval [0, 7], rather than [0,T]. For x € Ly with
llz]le < p+ ¢ we have then

Hzlle = [|V:Fzlle < T(a,uo, T)lixamkllzll Fzlle < €.

This shows that the operator H; defined by H;z = Hz + f transforms the ball B.(Ly) +
f={z € Ly : ||z — flle < €} into itself. From Schauder’s fixed point principle we
conclude that equation (32) has a solution in this ball.

The main trick in getting balls which may be transformed into itself in Example 5
consists in “shrinking” the norm of the operator (33) by choosing 7 sufficiently small. The
same trick may be used to get existence theorems for the more general Uryson-Volterra
equation

2(t) = /O'g(z,s,x(s))ds +r(t) (34)

in Hélder spaces. The e(juat.ion (34) has been studied, even for Banach space valued
functions, but by means of completely different methods, in [14 - 16].
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5. Hammerstein-Volterra equations in Holder spaces

So far we considered equation (1) in the case when both operators V and F act between
Orlicz spaces. In this section we briefly show how to employ Theorem 1 and Theorem 2
in order to establish the existence of a solution of equation (1) in a (generalized) Holder
space. '

We begin with Theorem 1. First of all, we recall that a Holder space C? is compactly
imbedded into a Holder space C* if

o(t) = o(d(t)) (L — 0); (35)

a typical example is of course ¢(¢) = t* and q‘S(t) = t# with'a > 8. Now, Theorem 1 gives
a sufficient condition for the operator (6) to be bounded from an Orlicz space L¢ into a
Holder space Cf’. If we require the operator (3) to be bounded and continuous from some
Hélder space C? satisfying (35) into Le, then the compactness of the operator H = VFin
the space C* will be simply a consequence of the compactness of the imbedding C¢ C C*.

Conditions for the boundedness and continuity of F from C? into Lg which are bhoth
necessary and sufficient are not known; nevertheless, one can give simple sufficient con-
ditions. A very rough condition which ensures the boundedness of F' from C (a fortiori,
from C‘") into Lg is that the function f, defined by

(1) = |8l|1<p (¢, u)l (36)

belongs to L;» for any r > 0 ([20], see also [3]). Moreover, it is clear that

sup {{|Fzlle : llzll; < r} <[ frlle ' (37)
in this case. Finally, if the Young function ® satisfies a A, condition, F is also continuous
from C into L. This simple observation allows us to obtain the following straightforward
existence result in the Holder space C?.

Theorem 7. Suppose that the hypotheses of Theorem | are satisfied, where ® satisfies
a A, condition. Assume, moreover, that the function f, defined by (36) belongs to the
Orlicz space Lg, and let é be any Holder function satisfying (35). Finally, suppose that
there ezists r > 0 such that '

(1 + ¢(T)) max {2,%(T)} l|Allell f-lle < r-

Then equation (1) has a solution z € C® with izl <

Proof. By (10) and (37), the operator H = VF leaves the ball B,(C%) = {z € C*:
||| < r} invariant, and hence Schauder’s fixed point principle applies B

Of course, Theorem 2 may be applied in the same way. Since the operator (6) is,
under the hypotheses of Theorem 2, even compact from Lg into C, it is not necessary to
imbed C into a larger space, and thus the proof becomes even simpler. We summarize
with the following '

Theorem 8. Suppose that the hypotheses of Theorem 2 are satisfied, where ® satisfies
a A, condition. Assume, moreover, that the function f, defined by (36) belongs to the
Orlicz space Ly. Finally, suppose that there ezists r > 0 such that

P(T)llhlicll flle < r.
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Then equation (1) has a solution z € C with ||z|lc <.

The following example shows that the operator F may be discontinuous from C into
Lo if & does not satisfy a A, condition.

Example 6. Let ®(u) = el* — |u| — 1 and f(t,u) = log(t + |u|). Since f(t,:) is

continuous for t > 0, f is a Carathéodory function on [0,1] x RN. For r > 0 and
0 <t <1 we have

£:(1) = max {log(t +7),log %} < log(r +1) + log %

1 11 1 1
: — ——log-—1])dt
./od)( log )dt /o(\/f 2]0gt l)d < 00,
the function f, belongs to Le = Le([0,1], RV).
Now let (z,)n be a sequence in C = C([0, l] R") with |z,.(t)| =1 Since

/()d)(lg”nt)dz

! .
/ (l+—l——lgl+n —l) dt = o0,
0

we have ||Fz, — FO|l¢ > 1, and thus F is discontinuous at zero.

Since

[ 8(1Fza(t) - Folyat

We point out that, if the function f is of the form
f(t,u) = g(t)h(u) with g € Le([0,T], R¥*N),h € C([0,T], R™)
or
f(t,u) = g(u)h(t) with g € C([0,T], R™™), h € Le([0, T}, R"),

then F' is automatically continuous between C and Le. This shows that our Example 6
cannot be replaced by the (autonomous) function f = f(u) from [9: Example (17.10)}.
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