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A Higher Order Uniform Convergence Result for a Turning Point Problem 

H.-G. Roos and R. VULANOVIá 

We describe a new fitted scheme, of k-th order uniform accuracy with arbitrary k, for a turning point 
problem of cusp type. The scheme is constructed by applying an iterative technique to an auxiliary 
problem obtained after replacing coefficient functions in the original problem by piecewise polynomials. 
The analysis of the scheme is based on an improved stability result. 
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1' Introduction 
Let us consider a turning point problem of the form 

Lu := —u" - xa(x)u' + b(z)u = 1(x), x E (-1, 1),	 (1) 
u(-1)=u(1) = 0, 

where e is a small positive parameter and the functions a, b and I are sufficiently smooth. We 
assume that the coefficient of u' has a single simple zero and exclude any resonance phenomena. 
Thus, our additional assumptions are: 

(i) a(x) ^! a > 0	(ii) b(x) ^! 0, b(0)> 0.	 (2) 

Under these conditions, problem (1) admits a unique solution which satisfies the maximum 
principle and has a single, isolated turning point of cusp type at x = 0. 

Abrahamsson [1] has derived the asymptotic behaviour of the solution as c - 0. The unique 
solution of (1) converges to the solution of the reduced equation which satisfies both boundary 
conditions. The general solution of the reduced equation admits the following representation: 

	

v(x) - w(x) + I c j lxI A exp(fb(t)dt) if x < 0,	 (3) -	c2 X  xp(J(t)dt) if x > 0, 

where A = b(0)/a(0), and w and ik are some smooth functions (see Lemma 3.1 in [1]). The 
constants c1 and c2 are determined by the boundary conditions in the limit of u as e - 0. A 
priori estimates of the derivatives of the exact solution have been obtained in [2]: 

U(1) (X)
	C(x2 +)fL,	I = 0,1	 (4) 
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The representation (3) and the sharp estimates (4) are the main reason that the standard 
discretization methods fail at least in the most complicated situation 0 < .\ < 1. Let us 
generally assume that

0<.A<1,	 (5) 

even though our method works for every \ > 0. Under the assumption (5), the well known 
El-Mistikawy-Werle scheme has been shown to be of order O(h), uniformly with respect to 
the parameter e (see section 3 in [2]). Farrell [4] has given sufficient conditions for a class of 
finite-difference schemes (including the standard upwinding) to have the same uniform rate of 
convergence in the maximum norm. 

The accuracy O(h) is somewhat unsatisfactory, but Farrell and Gartland [5] were able to 
construct a uniform 0(h)-scheme. In this paper we shall show that their approach can be 
regarded as the first step of an iterative process which yields 0(h')-accuracy in the maximum 
norm for arbitrary k. This result is based on a new stability estimate. The iterative process is 
used for handling an auxiliary problem with piecewise polynomial coefficients. This is similar 
to the technique from [3], where singular perturbation problems without turning points have 
been treated. Another approach for numerical treatment of singular perturbation problems is 
to use the classical finite-difference schemes on special discretization meshes which are dense in 
the layers. The first result by this approach for the problem (1) has been given by Liseikin [6]. 
It was later improved in [10], [7] and finally in [11]. The papers [6], [7] and [10] give uniform 
methods of first order, while a uniform second order result has been proved in [11]. Thus, our 
higher order uniform convergence result for turning point problems is new. 

Since the main purpose of this paper is to introduce a technique by which the method from 
[5] can be improved, we decided to present no numerical results. 

2 The Farrell—Gartland Approach 

	

Let some grid -1 = x0 < x 1 <	< ZN = 1 be given with h, = x i - z, and the mesh width
h = max h. We define a as a piecewise constant approximation to a: 

a(x) = di on (x,, x,+ 1 ) with Ila - aI	:5.Ch. 

Here and throughout the paper C denotes a generic constant independent of C and h. The 
functions & and f are approximated in the same way. Then, Farrell and Gartland's basic idea is 
to define the approximate solution Uh as the solution to the boundary value problem 

Luh := -u - xa(x)u' + (x)uh = J(x), x E (-1,1),	 (6)
uh(- 1 ) = uh(1) = 0. 

Farrell and Gartland use the stability result for L 

Il v IIoo s cLv 00	 (7)

to estimate the error u - uh . Since 

L(tt - Uh) = I - 1+ (b - b)tt - (a - a)xu', 

the stability estimate (7) yields 

lu - uhll, < C(flf - flk + 11 6 — 611. + ha - a hIhI xu'II) .	 ( 8) 

Then (4) implies that

	

Jxu'	< C max {lxI(x2 + E)} < C,' 
XE [-1 .1]



A Higher Order Uniform Corwergence Result 725 

and the desired first order uniform convergence result follows from (8): 

	

Ilu - tLhlloo < Ch.	 (9) 

For our approach we need some improvement of the stability result (7) as well as the error 
estimate (9). First, we announce the improved stability result. 

Lemma 1. Under the conditions (2), the stability estimate ll v lk + llxv'lL !^ C ll Lv lk holds 
for h < h0, where h0 is sufficiently small but independent of E. 

Further on, we shall always assume that h < h0 . We will prove Lemma 1 in the appendix. 
Applying Lemma 1 we get a sharpened version of the corresponding theorem in [5]: 

Theorem 1. Let the approximate problem (6) be constructed by replacing the functions a,b,f 
from (1) by functions a,b,f satisfying I ld - a(( + ll b - bII + Ill - flk < Ch. Then the error 

between the solutions to the original problem (1) and to the approximate problem (6) satisfies 

Il - uhV + llz (u - tLh)ll <Ch. 

3 The New Higher Order Scheme 
On the given grid we approximate a by a, a piecewise polynomial of degree k,such that 

a= Ea., Il a — a lloo!5 Ch'' for lo(1)k, 

lla lloo <Ch'	for ji = 0(l)k.

We shall use analogous approximations to b and f as well. Further, we introduce the abbrevia-
tions

L0v := — EV" - xa0v' + b0v and L 1 v := -xagv' + bit,. 

Theoretically, we could introduce an approximation uZ which solves the problem 

-Ew" - xã(x)w' + (x)w = J(x), x E (-1,1), 
w(-1)=w(1)	0. 

In the same way as in Section 2, we are able to prove i l u - uII < Ch, but this result is 
practically worthless because it is impossible to handle equations with piecewise polynomial 
coefficients of higher degree. 

Therefore we introduce the following iterative process: 

(i) Lou'fo, u(-1)=u(1)=0,	 (10) 

+1 •	i+1 
(ii) L0u' =>f,—>JL:tA, u'(-1)=u'(1)=O, i=O(1)k-1. 

Thus u, u), ..., u solve differential equations with the same left hand side as in the Farrell- 
Gartland approach. 

We analyse the method by mathematical induction starting with u°h which is the same as uh 
from Theorem 1, and thus satisfies 

lu - tIl + (x(u - u )'ll < Ch.
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Then for i > 0, we have
1+1	 i+1 

Lo(u 1 u) = >2f:—L:4—Lu+(L_Lo)u 

1+1	 •i+1	 k 

= (>fI—f)—>2L,u+(b_)u_(a_a)xu'+>2Liu, 

thus
4+1	 i-f-i	 k 

Lo(-' —u) = ( f1 —f)+L I (u—tt3+(b—b)tL—(a—ã)xu'+	Liu. 
1=0	 1=1	 1=1+2 

By applying our stability result from Lemma 1 and the uniform boundedness of l u lL0 + llxu'lloo, 
we obtain 

Hu - ti 1 1 1100 + ll x (u - u ')'llc,,, :5C {h42 + h(llu - U ll00 + ll x (u - u')'11.) + h1}. 

So, we have proved the following theorem by mathematical induction. 

Theorem 2. The error between the solutions to the original problem (1) and to the i-th iteration 
of the process (10) satisfies

U lu - UIhlIoQ + II x(ti - u )'ll, 15 Ch, i = 0(1)k, 

thus U'h is an Q(ht+') uniform approximation to u. 

Finally, let us remark that there exist well known procedures to handle the problem 

L0 u,, = g, uh( 1 ) = Uh( 1 ) = 0, 

in an effective way (using patched spline functions [8], local Green's functions, or Marchuk type 
integral relations [3], [51). They all lead to tridiagonal linear systems which have nice properties 
(their matrices are M—matrices). 

4 Appendix: Proof of the Stability Estimate 

We consider the boundary value problem (using the notation of Section 2 again) 

Lv = —cv" - xã(x)v'+ b(x)v = 1(x), x E (-1,1), 
v(-1)=v(1) = 0, 

and try to estimate xv' in terms of F, where ll vll00 CF, F = 1111100 = ll Lv ll00 . Introducing 
the integrating factor e) with e(x) = f a(t)tdt, we obtain 

= (v - f)eb , or xv'(x) = Si + 52, 

where
S = xv'(0)e ( ' ) and S2 = 

100
(b(t)v(t) - f(t))e(t)(r)dt. 

 
Let us start estimating 52 . We get 

lS2 I < CF 
 1 I e(t)(x)dtl

f0
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Let us assume z > 0 (the case x < 0 can be handled analogously). By taking into account that 
a(x)>a >O for h< ho, we get, for o<t <x, 

0( t) - (x) = ! j ã(s)sds < °(t - 2) = -(t - x)(t + x) ^ -x(t - x) 
2c	2c	2c 

and obtain

1521 :5 CF	 <CF. 

Let us now estimate S. We only have to prove 

Iv'(0)l < CF/v',	 (11) 

since this inequality and e(r) < efr imply 

1511	 CF. 

Let us prove (11). We choose z E (0,/) such that v'(x) = (v(./) - v(0))/v'?. Then from (7) 
we conclude

Iv'(x)I < CF/v'.	 (12) 

Integrating the differential equation from 0 to f we get 

—Ev'(x) + Ev'(0) - j ã(t)tv'(t)dt = f (f ( t ) - (t)v(t))di, 

wherefrom we obtain the inequality 

+ If ã(t)tv'(t)dt	
j 

I +	
^x. 

(f ( t ) - (t)v(t))dt. 

Due to (12) and x E (0,4) we get 

CF 3 5 

	

+ -, where 53 = j ã(t)tv'(t)dt .	 (13) 
€ 

Let us assume x E (1k, xk+l].. Then we have 
k	 I	

{ 

x	if 1<k, 
53 =	a I	[(xv)' - v] dx l with il 	x	if I = k + 1.	

(14) 
i=0	'1 

This representation leads to 
k1k	 I 

Il e	

I
53 < 	vdxl +	 -xv(x,)] 

I  l=o 
The first term is immediately bounded by CF/. The second term can be written in the form 

- a)xv(x) + akzk+1v(xk+1), 

thus, CFSJ is an upper bound again. Therefore we obtain 5 3 < CF/, and finally from the 
inequality (13) Iv'(0)I :5 CF/ .,J. Thus, Lemma 1 is proved. 

The technique used here is essentially the one introduced in 16J. We made some necessary 
modifications to handle the piecewise constant coefficient a. 
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