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Quadrature and Collocation Methods for the Double Layer Potential on Polygons 
M. COSTABEL, V. J. ERVIN and E. P. STEPHAN 

This paper is concerned with approximation methods for Neumanns integral equation on cur-
ves with corners. Necessary and sufficient conditions for the stability of the piecewise con-
stant c - collocation and for the quadrature method, using the rectangular rule, are given. 
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0. Introduction 
We consider for f E L2 ([') fl R(1') the second kind integral equation 

Aru:=(I—K)u=fonF	 (1) 

where-	 -	 - 
Ku(x)=__u(y)— log Ix—yIdsa . (2) 

and O/ôn denotes the normal derivative with respect to the outer normal n which exists 
except at the corners of the polygon F, consisting of straight line segments I". The double 
layer potential (2) can be rewritten as 

Ku(x) = ---'u(y)d01(y)	 (3) 
717 Jr 

where O(y) denotes the angle between y - z and some fixed direction. 
Many boundary value problems in physics and engineering can be reduced to the 

equation (1) where u is the unknown solution. For the numerical solution of (1) spline 
approximation methods are widely used, especially collocation and quadrature schemes. 
For 1' being a smooth closed curve a fairly complete error analysis of collocation methods 
for (1) using smooth splines has been established (see [1, 5, 10, 11]). For F being a polygon, 
convergence of point collocation for (1) with piecewise linear trial functions is shown in [4) 
by rewriting the collocation scheme as a Petrov-Galerkin scheme with delta-distributions 
in the break points as test functions. 

In the following we prove convergence for the collocation method of (1) with piece- 
wise constant trial functions by first analysing a quadrature scheme. Our analysis follows 
closely and uses heavily the analysis by Prössdorf and Rathsfeld [9) which prove conver-
gence of collocation and quadrature schemes for singular integral equations with Cauchy 
kernel on closed, piecewise smooth curves. 

For the collocation method with piecewise constants on the grid A,, = { yi,.. . ,yn) 
we need a finite set of collocation points (4,k = 0 1 . 1 . ,n —1) C F where r" g A. 
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and approximate the exact solution u of (1) by the piecewise constant functions u, on 
satisfying

(I — K)u(r) = f(r,'), k = O,...,n —1.	 (4) 

In order to solve this system one has to compute (Ku)(r") which in the case of a 
curved polygon F has to be done by the use of quadrature rules. This leads to quadrature 
schemes which are another numerical method to solve (1) approximately. 

Our quadrature and collocation methods both replace the equation Au I by a 
discrete operator equation Au = f,. where An is an approximate operator of A acting 
in the space Xn of piecewise constant functions on a quasiuniform mesh and fn E X, 
is an interpolation of f . Such a numerical method is called stable if An is invertible for 
n sufficiently large and sup II A 'II < oo. If the method is stable, I Riemann integrable, 
and An converges strongly to A, then the approximate solutions u, converge to u (see 
[8]). Thus, the crucial point is the proof of the stability of the scheme. This is done 
by showing stability of a corresponding model problem on an angle, making use of a 
localization principle by Gohberg and Krupnik. Following Prössdorf and Rathsfeld we 
apply Mellin techniques from Costabel and Stephan [3] to handle the model problem. 

We now introduce some notation used below 

H	— unit circle {z€C:IzI=1} 
R(P) - class of bounded Riemann integrable functions on I' 
PC(I') - class of piecewise continuous functions on F 
12	- Hubert space of sequences € C 
P	- Hilbert space of sequences	 € C 
X	- an abstract Banach space 
X	- linear space of column vectors of length n with entries from X 

- linear space of n x n matrices with entries from X 
T(a) - Toeplitz operator generated by a € PC(fl) 

- Banach space of continuous linear operators on X. 

1. Quadrature methods on an angle 
We are interested in quadrature methods for approximating the solution of (1) on poly-
gons. We shall give local conditions which are necessary and sufficient for the stability 
of the methods. For simplicity we consider only the case of F being an infinite angle L = R+ U e'9t + with opening 0 < w. < 2ir. The general case of a polygon F follows 
then by localization arguments. We fix n € N, 0 < f ,6 < 1 and for k € Z choose the 
quadrature points t' as follows. Following Próssdorf and Rathsfeld [9] we introduce 

(n) 	.	fork>0	 (n)	I ±í	fork^0 

	

= —e" for k< 0	and Tk 
= for k <0	(5) 

Then using the rectangular rule as the quadrature formula we obtain for a discretization 
of(1) the system (k€Z) 

+ .- Im {
	

I +	 i} = f(r).	(6) 
,=O t —	 t, —Ti -
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If there exists a solution (L')kEz,	E R, then we obtain an approximation u n for
the solution u E L2 (f,) of (1) Au = 1,1 E R(l',) fl L2 (F,), by setting 

Ufl=Je
(a) (a) 
k Xk	 (7)

kEZ 

where
-	a— — a x"(t	

<t < ai 
—elsewhere	 (k=0,1,2,...) 

0, Xt	1, if < —e't < .±!	 (8) 
—	a—	— a 
—	elsewhere	 (k = —1, —2,...) 

Let An denote the matrix of the system (6), A$" = f(r). We define the interpo-
lation projection T,. by

T,.y =	y(r,")xk (y E R(I'))	 (9) 
kEZ 

and denote the orthogonal projection onto imT,. fl L2(r) by L,.. In the following we 
identify the continuous linear operators on imLn with their matrices corresponding to the 
base {x	k E Z}. Due to 

D= fl_1/2II{k}kzII (10) 
 IL2(r..) 

these matrices are considered to be operators in 12. In particular, since the matrix An E 
2(12) is independent of n, the sequence {A,.} (A,. E .2'(imL,.)) is stable if and only if A1 
is invertible. 

Theorem 1	The operator A 1 E 2(12 ) is invertible for all 0 < w < 27r. 

To prove this we need some results on Toeplitz operators which are due to Gohberg 
and Krupnik [6, 71. Let 2L c 2(12 ) denote the smallest algebra containing all Toeplitz 
operators T(a) with a E PC(fl). Then 21,. < ,. C 2(12 ) a x a is an algebra of continuous 
operators in l. There exists a multiplicative linear mapping 2L)(fl B —' dB into 
the algebra of bounded n x n - matrix functions over H x [0, 11. The symbol dB of 
B = (Bkj), 1 , Bk,3 E 21, is equal to (d8 ) ,=1 and the symbol VT(.) with a € PC(fl) 
is given by dT(0)(r, ) = ia(r+0)+(1 —ji)a(r —0), where (r, p ) E H x [0, 1]. Furthermore, 
B € ! n X n is a Fredholm operator if and only if detdB (r,/L) 54 0 for all r € 11 and 
0 < /2<1. 

By virtue of 12 ED 12 = P we can identify 2(12) with 2(12 ) 2 x 2. In order to prove 
the assertion of Theorem 1 we show A l € 262 and index idA 1 = 0. First we need the 
following result by Ratsfeld [10]. 

Lemma 2	Let z E C, —1/2 < Re  < 1/2, A t	((k + I )zbk,j)k .	and a E
PC(H). Suppose that there exists w, E (0,27r),wo = 0,wk+ 1 = 2ir, such that t/e restriction 
of a to {e ix, w, :5 x	w 1 } (j = 1,... ,k) is twice differentiable. Then the following
assertions hold. 

(i) The matrix AT(a)A' belongs to 2t and ()' = 0,. . . , k) 

I a(r)	 if r 
.AT()A. (T, u) = 

if r = e'"	(11)
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(ii) The function z '—+ AT(a)A is continuous on {z, —1/2 < Re  < 1/2}. 

Now we are in the position to prove Theorem 1. 
Proof of Theorem 1: Firstly, the expression (3) shows that the equation (1) on 

takes the form I I	—K12\(ui\(fi Au —i 	 (12) I juj	\f2 
where

K12u(x) = K21 u(x) = - 
j 

IM xeJ— udh1	 (13) 

and u 1 = uIi+, u2 = u I .. i+ Fix mesh width n = 1. Then A 1 E 2(12 )2x2 takes the form 

A1( 
K1,1 K1,2 \ 

-	K2,1 K2,2 )
	

(14) 

where K1,1 = K2,2 = I and

1 
ri 

K21	
1(	1

	c)e-i-)OO 

	

= -
	(i + 6) + (— k - 1 + e)e - (j + 6) + (— k - 1 + 

11	 1	 1 

	

K1,2 = -
	-j - 1 + 6) + ( k + e)e	- ( - 1 + 6) + ( k + c)ei-)OO 

In the following we show that A 1 E 2x2 is a Fredhoim operator by computing its 
symbol making use of the Mellin transformation and Lemma 2. 

For —1<v< 1, v O, we set 

ft(e 2wx ) = 
sin 	 0 < x < 1.	 (15) 
5111 in' 

Then computation shows fV = EkEZ fjk where f' = —1/i7r(k + v). Now let us prove 
K2,1 E 21. The residue theorem together with the formula [3] 

- 2iri 
I	I 

1 - xe'	 ez=1/2	sin	 I dz 
i7r	- 

gives

	

1 - x - 1 - e" fRe.=1/4
	

I	-
(16) 

1 —ze+' -	2 	sinirz 

Rewriting K2,1 as

1 

	

1 ( 1	k+l—t 

K2,1
1+6 

	

iilzL	 1 
-(17) 

j+6 -
	

) koj=O
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and setting x =	in (16) we have K2,1 = K 1 + K 1 with
00 

1 11—e

	

2	f.j\	
dz

1 
K 1 =	 2	L:=I/4 

_ie_8(ii_)	,+o ) 
s'n7rz (j—k)+(+— 1)

/ k,j=O 

2i	(j_k)+(+6_1))	
(18) - — _.Le' (	1

kj=O 

1 ( i_— 	 _ieft(i_w)2	
S 00

	

____	 j+6)	dz) K1
 =	2i	2 fRz=1/4 sinz (j—k)+(€+6-1) 

/ k,, =O 
1	00 

2i	\(j_k)+(+6_1))k_O	
(19) 

+ 
Thus following Prôssdorf and Rathsfeld [9, p.2041 we obtain K 1 E 2L by Lemma 2 and 

	

fFt.  2	 x=1/4	
d2dz —	 (20) 

where d2 =	 Analytically extending z —+ d2 to a 1-periodic function, 
we have

K2.1	2 =

-- 
i

	

d2dz — 	 d2dz	(21) 
[J 

	

] sin irz 

	

Re:=I/4	 SIfl7ZRez=5/4 

In the strip {z : 1/4 < Re  < 5/4), the function z —' d2 (r, ji) is constant if r j 1 
and has a pole at zo = + log( j-) at r = 1 With Lemma 2, this can be seen as 
follows: Using

(a(T)	 ifr1 
.dA_2T(Q)A2(T,/.L) =

	
pa(i+0)+(1-.)a(r-0)e'2"	if r = 1	 (22)

with a(r) = f' 6 (r), r = e121x and 

a(1+0)=	and a(1-0)—sin	 — sin irv 
we obtain 

ua(r + 0) + (1 — t)o(r — 0)e _ 12 i 2 — i sin(ir(v + 1/2) + irz — log 1A_) 

ii + ( 1 — t)ei21x	—	.v	— log	.	(23) 

On the other hand a(r) = f' 6 (r) is continuous for r 1. Consequently, the residue 
theorem yields (0 < i' < 1) 

=	
2

_(1,) 

—27i ('1 d'(l,ji) — 2iri 
uie;i(I.J_w)z0 i sin (v + 1) 

	

4	 4 sin zo —sinv ) (24)
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d(r,) = —ed'(r,) - 2wi (4r ) d'(r,) = 0, r 54 1	(25) 

sin(w - ir)zo 
sin rzo	

ifr=1.	(26) 

Similarly we can show K1,2 E 21 and compute its symbol OK,.,. Finally we have 
altogether

1 0)	 ifr1,0<<1 
0 1  

d	 (27)A,(T,)	

{
.inw zo

) 
- .in(i-'r)zo	1sin ,rzo 

Now we observe for all 0< w < 271 with z0 = +log( j. ),0 ^ ^	1, 

detdA,(1,) = - 
(sin( - 7r)zo'2 0,	 (28) 

sin7rz0	/ 

detdA,(r, it ) = 1, r	1 .	 (29) 
Hence dA1 is a Fredholm operator of index zero for all w with 0 <w <2w. But for w = w 
we have A1 = I, hence A1 is invertible. Therefore A1 is invertible on 12 for all w with 
0 <w < 2w I 

Now, let 1' be a polygon having a parameter representation 'y which is twice continu-
ously differentiable outside the vertices. Let us assume that the vertices are grid points 
and that grid points and collocation points are chosen such that a quadrature scheme 
corresponding to (6) is given on I'. Before presenting the stability result for this scheme 
we introduce some notation. For r E r, let us define w,. € (0,2w) by 

y1(r-0) 
WT	

I \ 

	

= arg	
(r + 0)) 

and set
AT = I + Kr, 

The model problem for the quadrature problem on 1' is the method (6) applied to the 
operator AT € 2(L2(I')). The matrix of the corresponding system of equations we 
denote by At. In the proof of Theorem 1 we have shown that At € 262 is invertible on 
12.

Applying a local principle for spline approximation methods given in Prôssdorf and 
Rathsfeld [9] we obtain Corollary 3 as a consequence of Theorem 1. Note that the proof 
follows from the analysis given in the proof of Theorem 1.2 in [9]. 

Corollary 3 : We have the following assertions. 
(a) The method (6) is stable if and only if the operators A 1. = (I + K) E 2(L2 (r)) and 
At € .&(12 ) for all 'r € r, and are invertible. 

(b) If the quadrature method is stable and if f € R(1'), then (6) is uniquely solvable for 
n large enough and the approximate solutions u,, converge to u = (I + K) - 'f as n -. no 

Since I + K : L2(f) -, L2(r) is continuous and bijective, and the invertibility of 
Al € 2'(12) for all r € I' follows from Theorem 1, we have 

Theorem 4 : The quadrature method (6) is stable and has a unique solution u,, 
for n sufficiently large, and u,, - u as n - no
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2. Collocation methods on an angle 
For simplicity we consider only the collocation method for (1) with piecewise constant 
trial functions. We establish the stability of the model problem on r = Ft.,. With this 
result one can prove convergence of the collocation method for (1) on general curves with 
corners following the arguments in Prössdorf and Rathsfeld [9]. We omit the corresponding 
details. 

For the c-collocation method (0 < c < 1), we look for an approximate solution u1. 
EkEz 

(n) (n)	 2 k Xk E :rnL1. C L (L) satisfying the equation 

(Au1.)(r,) = f (Ti ), k € Z.	 (30) 

The latter system we rewrite as A1.u1. = T1.f where A5 := T5 A jimL5 E 2(irnL5). Again 
An E 2(12) and An does not depend on n. Hence the sequence {A,,} with An E 2(imL,,) 
is stable if and only if A 1 E 2(12 ) is invertible. 

Theorem 5 : The operator A l E 2(12) is invertible in 12 for any 0 <w <2ir. 

Proof: Firstly, we show A1 € 212.2 and detdA, is independent of w. For the sake 
of brevity we consider only c = 1/2. Then one of the typical terms in the collocation 
schemes is given by (for n = 1,j > 0) 

too	(i)	 1/2 (	 1 
Jo TT	 0	3 Tk	j	Tk } 

Im / X, ?) dr = imJ j -	+ 1-6 -	d6	(31) 

where for 0 <8 < 1

	

ifj^!0	 2 
- 

	

-(J'+ 6)e'- if j <0.	 (3 

Let

M,1 
= ('T')
	

(33) 

and consider the operator-valued function 

-1 
8-	

2iri 
p K2,1 (8) = — {(M, + M ,7) - (M 1 + M , )}	 (34) 

defined on [0,1/2]. The proof of Theorem 1 shows A 1 (S) E 22.2 C 2(12) where 

f I	K2,1(8) A 1 (8) =	
K1,2(ö) '	)•	 (35) 

Moreover as in [9] one verifies the continuity of the function S - A(S). Furthermore (31), 
(34) show for A 1 given by (30) 

1/2	 1/2 
A 1 = 1 A 1 (S)dS E	OA, 

= j dA,(s)dS 
Jo 

where .&A , (6) is given by (27). Hence the invertibility of A 1 follows in the same way as at 
the end of the proof of Theorem 1 U
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- 

h

Quadrature Method
5=50	5=.25 
f = .25	aN	f = 0.50 1 aN c = .25 

Collocation Method 

0N	f= 0.50	a 
- 3/2 .4598E-0 .4629E-0 .2087E-0 . 1040E-0 

• 0.58 0.33 1.01 1.00 
3/4 .3078E-0 .3682E-0 .1035E-0 .5203E-1 

0.55 0.37 1.01 1.00 
1/2 .2465E-0 .3174E-0 .6869E-1 .3471E-1 

0.53 0.38 1.01 1.00 
3/8 .2114E-0 .2843E-0 .5135E-1 - .2604E-1

Table 1: Relative L2 error and experimental convergence rate for Example 1 

3. Numerical Results 

Below we present two examples which illustrate the quadrature and collocation methods 
discussed above. In both examples we seek the solution of the Laplace's equation in 
the exterior domain R2 \ i. Explicitly, consider the following Neumann problem: For 

g E H 0(17) find u E H(R2 \ Il) satisfying 

Au = 0 in R2 \ ,	= g on F = Ô1,	 (36)
Tn 

and
u(x) - A log r + 0(1/In) as jxj -i : 

where

	

	denotes the normal derivative of u on F. The function u satisfying (36) can be an 
represented as the solution of the second kind integral equation 

(I - K)u = I on I'	 (37)

where
f(x) = -Vg()	and Vg(x) = ---

I
g(y)lnlx - yIds. 

Example 1 : F is the triangle with vertices (0,0), (3,0), (0,4). here we take for the 
true solution u(x) = Re(log(x - (0.5,0.5))). 

Example 2 : F is taken to be the square with vertices (-1,-i), (1,-i), (1,1), (-1,1). For 
the true solution we use u(x) = Re( Vx2 - 1 - r). 

Given in Table 1 (Table 2) is the relative L2 error for Example 1 (Example 2) for the 
quadrature methods with parameters c = 0.25,5 = 0.5, and c= 0.5,5 = 0.25, as well as 
for the collocation method with parameters c = 0.25, and c = 0.5. Also given are the 
experimental convergence rates 0N• 

In Example 1 the solution u is analytic on F, whereas in Example 2 it has singularities 
at the points (-1,0) and (1,0). 

The numerical results given in Tables 1, 2 indicate convergence of the quadrature and 
collocation method as was proven in Sections 1 and 2. Chandler and Graham give in [2] 
that the optimal order of convergence in the uniform norm for the 'Nyström' interpolant 
of the collocation method for (37) is 0.5, when piecewise constant trial functions on a 
uniform grid are used.Theoretical estimates for the asymptotic order of convergence of 
the L2 error are not proven. 
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h

Quadrature Method 
5=.50	5=25 
e = .25	a,j	I e = 0.50	a1v e = .25 

Collocation Method 

1 a1v	e = 0.50 
1/2 .2908E-0 .3037E-0 .2878E-0 .2378E-0 

0.77 0.69 0.79 0.82 
1/4 .1708E-0 .1884E-0 .1667E-0 .1346E-1 

0.81 0.66 0.84 0.86 
1/8 .9760E-1 .1189E-0 .9323E-1 .7425E-1 

0.82 0.63 0.86 0.88 
1/12 .7007E-1 .9200E-1 .6567E-1 .5202E-1

Table 2: Relative V error and experimental convergence rate for Example 2 
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