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A Nonlinear Neumann-Type Problem
of a System
of High Order Hyperbolic Integro-Differential Equatlons

A. BORZYMOWSKI

The paper concerns a nonlinear Neumann - type boundary value problem for a system of hyper-
bolic integro - differential equations of order 2p with two independent variables. The problem
is reduced to a system of integro functional equations and hence the existence and unique
ness of a local solution is proved by using the Banach fixed point theorem.
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0. Introduction

Neumann and mixed boundary value problems for second order hyperbolic equations
and systems have been dealt with in many papers (cp. (6, 11, 16 - 19, 22] and the
references therein). Papers devoted to'higher order equations were not so numerous
and, except paper [9] where the right-hand side of the equation may depend on the
unknown function but not on its derivatives, concerned only linear problems (cp. (1, 2,
5,7 - 10, 12 - 15, 21]). In most of these papers the domain considered is a half-space.

In this paper we examine a nonlinear Neumann-type problem for a system of hy-
perbolic integro-differential equations of order 2p (where p is any positive integer) with
two independent variables. The method of treating the problem is different from those
in the quoted papers and similar to that in our paper (4] — we reduce the problem to a
system of nonlinear integro-functional equations, via an auxiliary boundary value prob-
lem analogous to that in [20], and hence prove the existence of a local solution by using
the Banach fixed point theorem.

To the best of our knowledge, the problem in quesnon has not been examined so
far.
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1. The problem

Let n,p € N (where N denotes the set of all positive integers), set D = {0, 4] x [0, B] with
0 < A, B < oo and consider the class K of all functions (vectors) u = (u*): D —» R"
such that the derivatives D;Dju (where D7 = 07/8z" and D} = 8°/8y°®) exist for

r.s =0,1....,p and are continuous. We introduce the notation (cp. [20])
V=(0,). W=(w), Z=(z), &=(V,W), (1.1)
where
vr = DiDyu, w,=DyD7u, z,,=D;Dyu (1.2)

(r,s =0,1,...,p—1). We deal with the system of integro-differential equations
LPu(z,y) = Flz,y,2(z.y), ®(z,y), Az, y)] (1.3)

where L = D! D; and

Qz,y) = / ’ /0 Y gle vt Z(t, 1), B(t, )] drdt (1.4)
0

with F and y'bei'ng given functions. By a solution of this system in D we mean a
function u € K satisfying (1.3) at each point (z,y) € D.
Let us consider a system of 2p curves

I‘O,I‘l,...,l",,_l a.nd fO,Fly---yfp—l
of equations y = fi(z) and z = h(y), respectively, where
fi:(0,A) = [0,B} and h;:[0,B] — [0, A] (t=0,1,...,p—-1)

are given functions of class C!. Denote by n; and #; the unit vectors normal to I'; and

[';. respectively. We examine the following boundary value problem.

Problem (P): Find a ‘solution u of system (1.3) in D satisfying the boundary
conditions

dnpP—i

( dr-i )Liu[x,fi(x)] = Mi(z, Z[z, fi(z)], ®lz, fi(z)]) |
(1.5)

iy
(55 ) E'ulhsto, vl = Ny ZImu(0), 01, 8(hs00).5)

((1vy) € D; ] =0,1“--’P‘“ 1)
We make the following assumptions I - IV:

I.Letc,, ¢ >0and s, 5; >0(i =0,1,...,p—1) be constants such that the inequalities

max(s;,3;) <1, z'7% < bjc;A¥, y'~% < b;¢;BY (1.6)



A Nonlinear Neumann- Type Problem 731

((z,y) € D) are satisfied for i = 0,1,...,p — 2, where b;, b; and w;," @; are positive
constants. Moreover, let m;, m; > 0 and a;, @ > 0 (: = 0,1,...,p — 1) be constants
such that .

MoV < a "l < & <ol mi<ca’?. o
r{})l,a;‘)]df,(:t)l_a., g),aé)](|h,(y)|_a. and m; <a;'?, M <a (1.7)

All the said constants éxcept ¢; and &; are required to be independent of A and B. We
assume that the functions f; and h; are of class CP~* and satisfy the conditions

fi(z) 2 max(fi(z)/miz,ciz*) and hi(y) > max(hi(y)/ My, Ey™) (1.8)
(z € (0,A},y € (0,B},: =0,1,...,p—1).

II. The functions M;: [0, A] x R* —» R" and N;:[0, B] x R* — R" (where i denotes
the total number of elements of Z, V and W) are continuous and satisfy the conditions

|Mi(z,(0)1,(0)2) < Kyz™!

|Ni(y, (0)1,(0)2) < Kyy™
|Mi(z,€,7) — Mi(z,&,7)| < K2(Z1 + 2)
INi(y,€:m) = Ni(w, &)l < K2(E1 + 22)
(€ =(&,u); n=(9,w) with J = (9.); w = (wy) (v,p=0,1,...,p—1); £, 7 and & are

understood analogously, and (0); and (0); denote the appropriate systems of zeros),
where

21 =Y [max(lénnls )] ™ v — vl

v,

= =Z{[ma.x(|19 [, 19, |)]"*"l 19, = 3,| + [max(|w,|, |w,|)]"='l w, -w;|}

[ 4

(1.9)

(1.10)

the exponents a,, az, a3 fulfil the mequahtl&

s’;l) and min(az,a;) > max (2, 1+ 8’:1) (1.11)

al>pmax( ,

with 5,_, = max(sp_1,3p-1), and K, and K3 are positive constants. Moreover, at
the common points of the curves considered, the functions M; and N; satisfy suitable
compatibility conditions.

1IL. The function F: D x R*t" — R" is continuous and satisfies the conditions
|F(z,y,(0)1,(0)2),(0)s] < K3 (= +¢#)

and
|F(.’L’ v.€,n, C)—F(:c,y,{ 7/7()'

< Kd{z [ma-x(lfvml IEV#‘ ]’92 llfvm Evln|

v,

+ Z([max(lﬂuly 19,0]% "9, - 3. (1.12)

+ lmax(fun |, 100 D] o = @) + 1C - <'|ﬂ‘-'}
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({0)3 1s the system of n zeros). where the exponents fulfil the inequalities

. 1-35,_
31.234 > max(p,p~(1 - $p—;)) and mlmsﬁ, > max(1,1 - 2%t

r=2,

) (1.13)
and A3 and K are positive constants.
IV. The function ¢g: D? x R® — R" is continuous and satisfies the conditions

Ig(‘tv y:t,r.(O),,(O)gl S KS
lg(z.y:t.7.6,n) — g(z,y; ¢, 7.€,7)|

(1.14)

S I\'G l:z |£u.y - {u.ul + Z(I")v - Jvl + va - ‘Dul)] .

v.p v
where K5 and K are positive constants.
Corollary 1.1. It follows from Assumptions II - IV that the inequalities

IMi(z.&.n)| < K)z°' + K, [Z l€vul®® + D (19,]%° + le"“)}

A L v,p . v )

IN(y. &)l S Kay™ + Ko | ) 6ol + > (19,0 + lwulf“)J

. v,p o v

[F(r,y,&m,()| < K3 (2 +45) - (115)

+ K, [Z |§u.u|ﬁ2 + Z(I"uléa + |“’v|ﬁ3|) + I(lﬁ‘J
. [ v

Z 1€v,ul + Z(Iﬁul +>|“-’V|):l

lg(z.y:t.7.6,n)] < Ks + K

are satisfied.

Remark 1.1. Let us assume that

i=To,Ii=Ty (i=0,1,....,p-1) and fo(A) =B, ho(B) = A

and that the curves [y and fo do not intersect one another apart from the points
(0.0) and (4, B). Setting T = I'g UT and denoting by D the domain bounded by
[, we can assert that problem (P) is.in the considered case a Neumann-type problem
for the domain D, with the boundary conditions (1.5) given on its boundary I'. The
compatibility conditions for M; and N, are in this case

Mi(0,6.7) = Ni(0,&,n)  and  Mi(A,€,1) = Ni(B, &)

((E.n) e R™ i = 0,1,...,p-1).
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Example 1.1. We give an example of curves satisfying Assumption I. Let
I\?megEfOU=OJpnm—lL A=B andye€(1,2].

Set fo(zx) = A'~7z7 and

a)ho(y) = A'~7y?

b) ho(y) = (A/sin A7)siny”.
Assumption I is satisfied with

bo = 1/7)60 = 7/‘47_1)“)0 = 11'30 =7~ 17m0 = 1/7300 =7

and

a) the same parameters as for fo(z)

b) by = bo,é = co,wo = 1,30 = so,m0 = 1/(7(1 — €)),80 = v/(1 — €), where
0 < e <1-(1/4)"/? (we assume that A is sufficiently small, so that 0 < A <
[arccos(1 — £2)] l/Q’).

2. Auxiliary considerations

We begin this section with the following lemma whose inductive proof will be omitted.

Lemma 2.1. If m € N, v € C™(D) and s is a non-zero vector, then

ds™
_ — (m kpm—k k m—k
= E k)Dsz v cos” a cos B (2.1)
k=0
m-2 d,, m—1—v m 1 v d
-4 m—1—v— -l-v-
= dsv[ Z:o( y ) PEpri e G covacea i g)

(as usual, we set ZL":_OZ u, = 0 for m < 2), where (z,y) € D, and a and f are the
angles of s with the positive directions of the azes Oz and Oy, respectively.

As an immediate consequence of Lemma 2.1, we get the following corollary (cp.
relations (1.2)).

Corollary 2.1. Ifu € K, then
dr?

di?™"

L'u(z,y)

= vi(z, y)cos”’i a; + wi(z,y) cosP™' §;
p—i—1

— .
+ Z (Pk )Z,,Tk,k“(x,y)coska;cos’ i-k g
k=1

‘p—i—2 v p—t—1-v p—i—l—l/ .
+ ) G| X ( " )zl’—"*'w—#,n*»i(x,y)

v=0 4 p=0

(2.2)

d ;
osh a; p—i—1 v=B 3.
dfl,'(cs icos ')]
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((z,y) € D), where' B; = n;, 0i; a; = (0z,1;) and f; = (Oy,n;) (: =0,1,...,p—1).

Now, let K, be the class of all functions u € K such that
v;(0,0) = w;(0,0) = 2;;(0,0) = 0 (2.3)

(1, = 0,1,...,p — 1), and assume that the normal vectors n; and i, are directed so
that ’ ’

, cos(y, B;) = M) (2.4)

i(z) &(y)

e(z) = \/1+(fi(2))? and  &(y) =/1+(hi(y)) (2.5)

Basing on Corollary 2.1 and using formulas (2.4), we can assert that, in the class K,,
problem (P) is equivalent to the following problem (X) (cp. with those in (3, 20)).

cos(z,n;) = —£i(z) , cos(z,n;) = ~_—l, cos(y,n;) = e;

ei(z) €i(y)

where

Problem (X): Find a solution u € K of system (1.3) in D satisfying the boundary
conditions

vilz, fi(z)) = Go(z)  and  wilhi(y),y] = H3(y) (2.6)
((z,y) € D), where
Go(0) = Hy(0) =0
Gi(z) = Gy(z) + Gi(z) for z € (0, A) (2.7)
Hy(v) = Ha(y) + Hi(y) fory € (0, B]

with
o

Ga(z) = —(=fi(2))' Pwilz, fi(=), Ha(y) = —(=hi(y)) Pvilhi(y), 9] (2.8)

—ei(z)
fi(z)

RSP, g ()
; ( k ) P—k,k+|[ ;fx( )](ei(z))p—i

p=0

éuﬂ=( )_{M@Jhmu%ﬂaﬂﬂb

(2.9)
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P €; p—i
A3 = (5) { Ni(y, Z{hi(y). v @lhi(y). 4]

p—i1—1 . ’ —i—k
- P=ty, ilhi - "g.h_"(y)i'__
o ( k ) P—k,k+l[hl(y)1 y]( l) (éi(y))p_.'

| _p_i_z(%[gi_;’_f‘” (p—izl—u)

v=0 #=0

. PN W10 i}
X Zp—i—1—v—pu+i(Z,Y) (( D (Ei(y))p—i=t=v )>z=h.~(v)]}

(i=0,1,...,p-1).

(2.9)"

We shall use the following lemma whose validity follows from Taylor’s formula with
the integral remainder.

Lemma 2.2. If u € K, then

"z

zrs(Z,y) = L, (p-s—1) v (€, y) dE
p=s—1 .y (y — q)p—r—l "
¥ é /o G—_r—_l)!wﬂk(om)dr] o
y (y - fl)P—r—l (2.10)
= | “por o= mdn
[} 14 : r )
p—r—1 o
z (.’t - f)p -1 yk
¥ ,.2:3 /o mv'H(E,O)d{E

((z,y) € D; r,8 =0,1,...,p— 1). If, moreover, u is a solution of system (1.3) in D,
then

p—r—1 k
wlew)= Y vreklz 0L
k=0
v _ p—r—1
+_/ gu)—‘F[x’ 7 Z(.’t, ")i @(z,r’),ﬂ(x,r])]dﬂ
o (p—r—l). (2 11)
. p—r—1 z* ‘
we(z,¥) = Y wrek(0, Va
k=0 ’

-
4 /o o Ty FlEw 2(6,) 26 ), A6 e

((z,y) €D; r=0,1,...,p—1).
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If 2,5 (r,s =0,1,...,p—1) are expressed in terms of ¢ by formulae (2.10), then we
shall write Z = A} = (*A\}’). The expression  (cp. (1.4)) with Z = A} will be denoted
by Aj. Finally, A2 = (?)5°) and A} = (*A}’) will stand for V and W, respectively,
with v, and w, given by (2.11) with Z = A} and Q = A}.

Now, let us consider the following system of integro-functional equations

vi(z,y) = To(z,9), wilz,y) = T (a,y) (2.12)

((z,y)€D;i=0,1...,p—1) with the unknown vector & (cp. (1.1), (1.2)), where

A . y R
Ti(z,y) = Gh(z) + /f Oy

| o (2.13)
Ti(z,y) = Hi(y) + /h RICOL:
iy

(2 ¥0,1,...,p— 1). Here
G3(0) = Hy(0) = 0
axld . . - P
Gy(z) = G(2) + G(z)  forall z € (0, A]
Hj(y) = Hy(y) + Hy(y)  forall y € (0, B]
where Gq, and H' denote the expressmns (2.8), respectwely, with V = A, W = A}

(we set in (2.11) Z = AL; 2 = A} ) and G} and Hj, the expressions (2.9), respectwely,
with Z = AL. Moreover, ¥} and 19 are given by

i _ Jvisa(=,m) fori—O,l,...,p—2
%@ = {0 s e ot 2 (214)
5i _ Jwina(&,y) fori=0,1,...,p—2
%y = { F[z:y, Ae(6:y), 86, v), AS(&y)] fori=p—1 (215)

The following lemma holds good, the validity of which follows from that of Lemma
8 in [3].

Lemma 2.3. If u is a solution of problem (L), then ® is a continuous solution
of system (2. 12) Conversely, if @ 1s a continuous solution of system (2. 12), then the
function zgo = 'Y’ is a solution of problem (T).
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3. Solution of the problem

In this section we shall prove the existence and uniqueness of a solution of problem (X)
_(and hence of problem (P)) by using the Banach fixed point theorem.
Let S be the set of all systems ® (cp. (1.1)), where the components

vi:D, - R" and w;:D. — R" (D. =D\ {(0,0)};:=0,1,...,p—1)

are continuous functions such that

By = max max (sup (=2 + 47 oz, sup (27 +7)” ‘Iw.(x,y)I]) < .

We define the distance by the formula

d(@,&)[:= By_g = max ma.x(sup[(:vp +y?) Nvi(z,y) — ﬁ,-(z,y)l] ,
0<i<p-t . D.

(3.1)
sup[(z” +¥*)Jwi(z,y) — w.(x,y)l])
D.

(® = (V,W) and & = (V,W)). It is easily observed that S is a complete metric space.
Let us consider the set Z of all points ¢ € § such that

Bg <k, (3.2)
where k € (0,1). This is a closed subset of S and hence it is itself a complete metric
space with the metric given by (3.1).

In view of system (2.12), we map Z by the transformation T defined by formulas
(cp. (2.13) - (2.19))

%(z,y) = Th(z,y) and di(z,y) = Th(z,y) (3.3)
((x y) € D,;i=0,1...,p—1). In the sequel, @ will denote the system (V, W) where
= (9;)and W = (w.) We shall find sufficient conditions for the inclusion T(Z) C Z.

In order to estimate the functions #; and w;, let us first observe that the following

inequality is valid (cp. (1.8), (2.10) and (3.2)):

p—s—1 i
-8 2p—r -r A
A3 [z, fi@)l < & [ (1+ (maan)?) + 2% (mya,)® ™" Y F] (34)
k=0
(r,s = 0,1,...,p — 1), whence, and from Assumption I, Corollary 1.1 and relations
(2.8), (2.11) and (3.2), we obtain the sequence of inequalities (in which, as well as in

the sequel, const denotes a positive constant independent of x)

p—i—1
|Gy ()| < (mia;)'m?~ (1 + Z )

) Ad l
+ const ( ) [:tﬂ‘ + (f.’(it))ﬁ' + K(z(pﬂ)ﬂz + zPPa + 2:(P-H)l’q)]

< [(miag)‘mf_": + const(1 + ;c)Af"] zP,
(3.5)
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where w; = min(w;,1) (1 =10,1,...,p—2). Fori = p—1, we have
(G (2)] < (mporaper)? mpy P +mnst»( - (x)) [ + (fpmr(2)?
+ ;(1(P+l)ﬂz 4+ zPPs 4 I(pma.)] (3.5
< (m,,_la,,_l)"‘m,,_,rcr” + const(1 + k)z(! ~2%-148)
where 3 = min(By, (p + 1)min(B2, 81), Bs). Inequalities (1.13) and (3.5’) yield
IG5 (2)] < [(mp=1ap—1)P " my_ 1k + const(1 + k) A%~ 1] 2P, (3.6)
where w,_; is a positive constant, and using (3.5) and (3.6) we obtain
IG5 (z)] < [(mici)'m? ™k + const(1 + x)A%]z? (3.7)

(z €(0,A);1=0,1,...,p— 1), where 8! are positive constants.
We proceed to the examination of Gj(z) (cp. (2.9) and (2.13)). Let us observe
that, by Assumption I, Corollary 1.1 and relations (2.5) and (3.4), we obtain

< const(1 + k)A% 27, (3.8)

—C.‘(I) a ~ ! | ({x .
(5 MoteMbla o 2l i)

where 6!’ are positive constants and : = 0,1,...,p— 1. Moreover, basing on Assumption
I and using formulae (2.10) and (3.2), we get the sequence of inequalities

—ei(@)\P IR (P 1\ 1 ki g, (=Sl
)( f:(z)) 2 ()t

p—i—1 . p—i—k +k
p-i\ [/ = (filz))y
< const‘x ; ( k ) [(m) (=7 + (fu(=))P) + (f.((z))p—i~k] (3.9)

p—i—1
< const & z [(B; A yP=i=* + A*)2P
k=1
< const kK A zP.

Thus, it remains to estimate the expressions

o= (53) S| 5 €70

u=

AT ) ((Cx‘((;)f)i’ff")z"") ] } =fi(2)



A Nonlinear Neumann-Type Problem 739

(i=0,1,...,p — 2). Let us examine the part of A}(z) given by

s = (F) "R {5 S ¢

n=0

. (3.11)
I . _f' ) ! -
x 1\p=i=1-v n,#+t(1’y)] ——'_—._l—_; (ei(z)) ,,}
@ ((Cx(I))p ) y=fi(z)
Evidently, .. - 2 |

1A% ()] < By (2) + ba(2), (1)
where

p—i—2

8y(2) = (fix))"*"" Z (p—i=1-v)|' N e, f@If@)|  (313)

and

Bi(@) = (ST

{80

v=0 u=0

x ['Ag e, )| B (i)

o W’_ (3.14)
Ee)

u=2 )
x [IAgT e g, fi(2))| W fi(2)) }If!’(z)L

Basing on Assumption I and relations (2.5), (2.10) and (3.2), we have.

65(z) < const & [(ﬁ)—)l’"“ + zi+l] z?,

whence (cp. the derivation of (3.9)) we get
65(z) < const kA% P (3.15)

with &; being understood as in (3.5). In the same way we obtain
N z \PTivH )
b4(z) < const x (m) + 't | 2P < const kA 2P, (3.16)

Thus, by (3.12) - (3.16), the expression Af, (cp. (3.11)) satisfies the inequality

|Ay(z)| < const kA% 2P ‘ (3.17)
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¢ _l?s;lg a sx:m112a.)r argument and basing on the mequahty (cp. (2.4)) |cos(z,n;)| <
fl(z), we can conclude that (cp. (3.10) and (3.11))
lAf,(x) - Af,(:t)| < const kA% P, (3.18)
On joining relations (3.8) - (3.11), (3.17) and (3.18), we get
|G4(z)| < const(1 + x)A% 2P (3.19)

(z € (0,A]; : =0,1,...,p — 1), where 6! are positive constants, and (3.7) and (3.19)
yield the following estimate of the first term in the first of relations (2.13) (cp. (2.7)):

|Gh(2)] < |[(mia;)'m? 'k + const(1 + x)A% | z? , (3.20)

(z €[0,4]);:=0,1,...,p — 1), where 8, are positive constants.
As for the second term in the first of relations (2.13), we easily conclude, basmg on
Assumptions I, 111, IV and formulae (2.15),(3.2), that

y ,
/ I (x,n)dn
fi(z) .

< const(1 + k)A(z? + yP) (3.21)

((z,y) € D.), where A = max(A, B). As a consequence of (3.3), (2.13), (3.20) and
(3.21), we have :

[5:(z, )| < [(maag)imf_in + const(1 + K)Ao‘] (2P + yP) (3.22)
(z,y) € Dui 1 = O,ll, ...,p~1). By a similar argument we show that (cp. (3.3))
[wi(z,y)} < [(ﬁl.‘&.‘)iﬁlf_in + const(1 + n)A”-’] (z° + yP) (3.23)

((z,y) € D.;1=0,1,...,p—1). It follows from (3.22) and (3.23) that the functions ¥;
and w; satisfy relations (3.2) if the inequality’

max(mPal,mPal)k + C(1 + K)Aa <k (3.:24)

(z =0,1,...,p — 1) is fulfilled, where 8 = minos.-'s'p_l §; and C is a positive constant
independent of x. 1t is evident (cp. (1.7)) that inequality (3.24) holds if A is sufficiently

small, so that
A< { <[t - max(m'a"m )] } ‘ (3.25)

C(l +x)

Moreover, by the definition of Z and relations (2.7), (2.14) - (2.16), (3.3) and (3.24),
we can assert that ¢; and w; (¢ = 0,1,...,p— 1) are continuous in D.. Thus, inequality
(3.25) implies the inclusion T(Z) C Z.
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Now, assuming the validity of (3.25), we shall find sufficient conditions under which
the transformation T (cf. (3.3)) is a contraction.
Let @ = (V.W) and & = (V,W) be arbitrary points of Z. and & = (V.W) and.-
= (V,W) their images, respectively. in the transformation T. In order to estimate
the expression [5; — #;|, let us observe that by (1.8). (2.10) and (3.1) the following
inequalities are valid (cf. (3.4)):

'A% [z filn)] = AR e Sl

ET iy ‘
< VP TS (ep ())P
p=s—1t .fi(r) (f(l') _ {)p—r -1 ok (3.26)
+ Lo >l pPdp —|d(®. @
;,/o (p—r—1J " T [dle®)
. . Lo PSS Ak
<P+ (miai)?) + 2P (mya) P Z - | d@.®)
- : .. k=0
(r,s = 0.1,. — 1). whence and from Assumptions l II1. IV. and relations (2.8).
(2.11), (2. 12) we obta.m (cf. (3.7))
|Gy (r) - G;(r)l < [(m,-m)‘mf’i + const AOZ] rPd(®,®) (3.27)
(r € (0.4 :=0:1..... p—1). Furthermore. basing on Assumptions I - IV and formulas
(2.9). (2. 13) a.nd (3.26). we get the inequality
|G5(7) — G ()] < const A’- r"d(@ ®) (3.28)
(r € (0.4 7=0.1,..., p — 1), where 8! are as in (3.19). On joining (3.27) and (3.28)
we have (cp. (2.7)) : e ' : '
|G:.,(1.) - G;»,(Vx)| < [(777,-0,-)‘111:’;.‘ + const A% ,r’d(d),(i))b ' (‘3.29)

(r€0.4:=0.1.... p — 1), where 6; are as in (3.20).
As for the second term in (2.3). we easily conclude that (cf. (3.21))

v . L .
/ ae(x.n)dn —/ ag(r.n)dp
C [V k) : Silr) -

((z,y) € D,). whence, and from (2.7). (2.13). (3.3) and (3.29). we obtain

< constA(zP + yP)d(®. ®) (3.30)

|#:(r,y) = Er,y)| < [(71);ag)irrrf_in+ const Ao‘] (2P + yP)d(®, &) (3.31)
((z.y) €D, 1 = 0.1,...,p—1). Bva sin'xila.r‘t‘a.'rgumexit we sho“iA that

|1Ix,(.r, y) - 't;";(.r, y)l < [(ﬁw,-&,- )".ﬁzf_"' + const Aa‘] (:r’ + y’)ﬁ(d’. ®) ' (3.32)

~
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((z,y) € D.;:=0,1,...,p—1), and using (3.1),(3.31) and (3.32) we can conclude that

d($, ti < [ma.x (m.—a.')"m'-"i (:@;)'mP™") + const Ao‘] d(®,d). (3. 33)
It follows from (3.33) that the transformation T (see (3. 3)) is a contraction if the
inequality

max((mia;)'m? ™", (id) 'l ") + C A® < 1 (3.34)

(i =0,1,...,p— 1) is fulfilled, where 8 is as in (3.24) and C is a positive constant
independent of A. Evidently (cp. (1.7)), inequality (3.34) holds good if A is so small
that

A< [ (3.35)

1 — max(m?ai, mPa! ]1/0
& .

So, if inequalities (3.25) and (3.35) are fulfilled, then by the Banach fixed point theorem

applied to the space Z and transformation T, there is a unique system ° = (V°, W?) ¢

Z satisfying the system of integral-functional equations (2.12) in D.. Setting

* N | . 0 forz=y=0
V* =(v}) where v;(z,y) = { (z,y) for (x,y!)l €D.
and '
. - . 0 forz=y=0
W) where W) ={ Do, ) o gl B
(r=0,1,. — 1), we get a system ®* = (V*,W*) of continuous functions satisfying

(2.12) in D As a result, (cp. Lemma 2.3), problem (Z) has a unige solution z8, =
'A3% € K, which, by the equivalence of problems (P) and (X), is also a unique solution
of problem (P).

Thus, we can formulate the followmg final theorem

Theorem. If Assumptions I - IV are satisfied and A = max(A, B) is sufficiently
small, so that inequalities (3.25) and (3.35) hold good, then problem (P) has a solution.
This solution is unique in the class K,.
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