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A Nonlinear Neumann-Type Problem 

of a System 

of High Order Hyperbolic Integro-Differential Equations 

A. BORZYMOWSKI 

The paper concerns a nonlinear Neumann- type boundary value problem for a system of hyper-
bolic integro -differential equations of order 2pwith two independent variables. The problem 
is reduced to a system of integro functional equations and hence the existence and unique 
ness of a local solution is proved by using the Banach fixed point theorem. 

Key words: Neumann problem. inte5ro -differential equations, hyperbolic equations and sy-
stems. nonlinear boundary value problems 

AMS subject classification: 351-35, 351-75, 35G30 

0. Introduction 

Neumann and mixed boundary value problems for second order hyperbolic equations 
and systems have been dealt with in many papers (cp. [6, 11, 16 - 19, 221 and the 
references therein). Papers devoted to higher order equations were not so numerous 
and, except paper [9] where the right-hand side of the equation may depend on the 
unknown function but not on its derivatives, concerned only linear problems (cp. [1, 2, 
5, 7 - 10, 12 - 15, 21]). In most of these papers the domain considered is a half-space. 

In this paper we examine a nonlinear Neumann-type problem for a system of hy-
perbolic integro-differential equations of order 2p (where p is any positive integer) with 
two independent variables. The method of treating the problem is different from those 
in the quoted papers and similar to that in bur paper [4] - we reduce the problem to a 
system of nonlinear integro-functional equations, via an auxiliary boundary value prob-
lem analogous to that in [201, and hence prove the existence of a local solution by using 
the Banach fixed point theorem. 

To the best of our knowledge, the problem in question has not been examined so 
far.  
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1. The problem 

Let n, p E N (where N denotes the set of all positive integers), set V = [0, A] x [0, B] with 
0 < A, B < no and consider the class K of all functions (vectors) u = ( Uk): V -, R 
such that the derivatives DDu (where Dr = ô/3x r and D = 08/0y8) exist for 
r. s = 0, 1.....p and are continuous. We introduce the notation (cp. [20]) 

V(vr). W=(wr), Z(zrs),	=(V,W),	 (1.1) 

where
Vr = DD;u, Wr = DDu, Zr = D: D; u	 (1.2) 

(r, s = 0,1..... p - 1). We deal with the system of integro- differentialequations 

L"u(x, y) = Fix, y, Z(x. y), 4(x, y), Il(x, y)]	 (1.3) 

where L = D D and

X" cZ(x,y) = J J g[x,y;t,r,Z(t,r),'1(t,r)]drdt	 (1.4) 
U 0 

with F and g being given functions. By a solution of this system in V we mean a 
function u E K satisfying (1.3) at each point (x, Y) E V. 

Let us consider a system of 2p curves 

r0 ,r,,. .. ,r_,	and	r0 ,[' 1 ,.. . 

of equations y = f,(x) and x = h,(y), respectively, where 

f,:[0,A]-[0,B] and h i : [0,B]-4[0,A]	(i=O,l,...,p-l) 

are given functions of class C'. Denote by n 1 and ñ, the unit vectors normal to r i and 
r. respectively. We examine the following boundary value problem. 

Problem (1'): Find a solution u of system (1.3) in V satisfying the boundary 
conditions

d	) L'u[x,f1(x)] = M(x,Z[z,f1(x)],1[x,f.(x)])
(1.5) 

(d-P) Lu[h(y), y] = N(y, Z[h(y), y], [h(y), y]) 

((x,y)EV; i=0,l,...,p-l). 

We make the following assumptions I - IV: 
I. Let c,, c > 0 and s,, g i 2 0 (i = 01,... ,p- 1) be constants such that the inequalities 

max(s,,..i)	1,	x'	< b1c1A',	y181	b,B'	 (1.6)



A Nonlinear Neumann-Type Problem 731 

((x,y) E D) are satisfied for t 0,1,...,p —2, where b, b, and are positive 
constants. Moreover, let m,, ñz > 0 and a 1 , a, > 0 (i = 0,1,... ,p - 1) be constants 
such that

I	-	 -i/p	-	- i/p 
aA IfiI ( x )I	a,, max l h ,(y ) I <a	and	m, <a	, m <a,	.	(1.7) 

All the said constants except c, and Zi are required to be independent of A and B. We 
assume that the functions fi and h, are of class C' and satisfy the conditions 

f:(-T ) 2 max(f,(x)/m,x,c,z') and h(y) 2 max(h,(y)/ñz 1 y,,y")	(1.8) 

(x E (0,A1,y e (0,B},i = O , l ,..., p— 1). 

II. The functions M,: [0,A] x R4 -+ R° and Ni : [0,B] x R4 - R° (where ñ denotes 
the total number of elements of Z, V and W) are continuous and satisfy the conditions 

K1x° 

	

N,(y,(0)i,(0)2)I	Kiy°' (1.9) 
- M,(x,,)I K2 ( 1 +2) 

	

- N,(y,,) I	K2 ( 1 + .2) 

= q =(i9,) with t9 = (t9,,); w = (,,) (v, = 0,l,...,p— 1); , , and Ca are 
understood analogously, and (0) and (0) 2 denote the appropriate systems of zeros), 
where 

-	 -1	- =	[max(I,,I, I t.", 1)] 02	
IV,M - eV,IAI

(1.10) 

=	{ [max(i9,I, iL1)]°1 1i9, - i,4 + [max(IwI, M)]03_1 iw - 

the exponents a , a2, a3 fulfil the inequalities 

a i > pmax (2,1+ .LL) and min(a 2 ,a3 ) > max (,i +	 (1.11) 

with = max(sp_ i , p-1), and K1 and K2 are positive constants. Moreover, at 
the common points of the curves considered, the functions M, and Ni satisfy suitable 
compatibility conditions. 
III. The function F: V x	- R' is continuous and satisfies the conditions 

F(x,y,(0)i,(0)2),(0)31 <K3 (x$1 +y 
and

- F(x,y,,i)I

$21 K{	{max(I,pI, 
p.11 

+	( [max(Ii,I, i'vi] 	
It9, - &.i	

(1.12) 

V

	

$3-I	- + [max(IwvI, 1 ,D. 1)]
	Iv - v 1) + - i' }
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((Oh is the system of n zeros). where the exponents fulfil the inequalities 

3.234 > niax(p,p— 0— i_ ' )) and min flT> max(1,1 - 1— SP_l)	(1.13) r2,3	 p 

and K3 and K4 are positive constants. 
IV. The function g: V2 x Rn	R" is continuous and satisfies the conditions 

I9(x,y:t.r.(0)).(0)21 <K5 

I g (x. j: t. r., q) - g(x, y;
(1.14) 

1 6	I	-	+	-	+ 1w, - 

where K.5 and Kr, are positive constants. 

Corollary 1.1. It follows from Assumptions II - IV that the inequalities 

M,	 IC I(x,	)I <K,x' +K2	k IvpI 2 +
(Iv3+IwpI03)] 

Q3 l IN( y. . )I <K y ' + K2	i 2 +
	( t9p° + Wj, I n 

V IA	 V 

	

'C	I 

J 
It 3 (x +yTh) 

+K4
 [

II 2 
+ E(II + III) + KI4J 

VIA	 V 

K5 + K6	+	( II +IwI)1 
VIP	 V ] 

are satisfied. 

Remark 1.1. Let us assume that 

r0,r',	to (i =O,l'...,p- 1)	and	fo(A)=B,h0(B)= A 

and that the curves F() and to do not intersect one another apart from the points 
(0,0) and (A, B). Setting F = ro U to and denoting by V the domain bounded by 
r, we can assert that problem (7') is, in the considered case a Neumann-type problem 
for the domain V, with the boundary conditions (1.5) given on its boundary F. The 
compatibility conditions for M, and Ni are in this case 

M(0,,ij ) = N1 (0,,r)	and	M,(A,,i7 ) = N1(B,,ij) 

((.rl)ERñ;i=0,l,...,p_l).

(1.15)
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Example 1.1. We give an example of curves satisfying Assumption I. Let 
riro,r',r0(i=o,1,...,p—i), A=B and 7E(1,2j. 

Set fo(x) = A 1 x' and 
a)ho(y) = A'TyT 
b) ho (y) = (A/ sin A') sin y'. 

Assumption I is satisfied with 
= 1/7,Co =	= 1,80 = - l,rn0 = 1/7 ,ao = 7 

and
a) the same parameters as for fo(x) 
b) b0 = bo,o = = 1,o = s 0 ,ñi0 = 1 1(7( 1 - e)),ào = 71( 1 - ), where 

0 < E < 1 - (1/7) 1/2P (we assume that A is sufficiently small, so that 0 < A < 
[arccos(1 - _2)]'/"). 

2. Auxiliary considerations 
We begin this section with the following lemma whose inductive proof will be omitted. 

Lemma 2.1. If m €N, v E C(V) and s is a non-zero vector, then 
d" 
dsrn

()
V

T 	cos' acosm_k /3	 (2.1) 
M-2 

+	
[m-'-v (rn—i - Z/)DDm_i__P	(cosMccosm 1_P#) 

(a. usual, we set	u, = 0 for m < 2), where (x, y) E 1), and a and /3 are the

angles of s with the positive directions of the axes Or and 0y, respectively. 

As an immediate consequence of Lemma 2.1, we get the following corollary (cp. 
relations (1.2)).	c 

Corollary 2.1. If v e ftC, then 

 L' - u(x, y) 
dn1

= v,(x, y) cos" ' ci, + w,(x, y) cos' 9 
p-I-I 

+	
() 

z) zpk,k+i(x, y) cosk ii cos''	/3 
k=i	 (2.2) 

p-i-2	p-i-i-v	•	- 
+	 (	t 1 

(coscosP_1_i_&_ 13)] 
dn1
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((x,y) ED), where' fi i = n T , ñ 1 ; a =(0x,ñ) and i, =(Oy,ñ 2 ) (i 

Now, let IC I be the class of all functions u E k such that 

v(0,0) = w(0,0) = ;(0,0) = 0	 (2.3) 

(z,j = 0,1,... ,p - 1), and assume that the normal vectors n i and fi i are directed so 
that

	

—f:(x ) -1	 1	 - 
(y) 

h, (Y) cos(x, n 1 ) = e
1 (x)	 e, (y) cos(x,ñ) = '-,	

e1(x) 
cos(y,n,) =	, cos(y,ñi) - (2.4) 

where

	

= .Ji + (f:(x2	and	ëj(y) = 1J1 + (h(y))2 .	(2.5) 

Basing on Corollary 2.1 and using formulas (2.4), we can assert that, in' the class X, 
problem (P) is equivalent to , the following problem () (cp. with those in [3, 201). 

Problem (E): Find a solution u E ftC i ' of system (1.3) in V satisfying the boundary 
conditions

	

v,[x,f(x)] = G', (x)	and	w,[h1(y),y] = H(y)	(2.6) 

((x,y) ED), where

G' (0) = H(0) =0 
G 1, (x) = GO' (x) + GO' (x) for x E (0,A]	 (2.7) 
H,(y)=1,(y)+H,(y) foryE(0,B] 

with

= —(—f(x))"w[x,f(x)1, R,(y) = —( — h(y))'v1[h1(y),y]	(2.8) 

O(x) =	e i (x)

)' 
p—i—I 

-
-	 f(x))k 

) 
Zp_k,k+i[X , fi(x)] 

k=i '	k	 (e(x))P 

-	
(dn'i 
fdv

(2.9)' 
[—f:(x) 	(_i_i_zi) 

e(x) 

x
((ej(x))P—i—I—

 
(_f:( x))M 

)
y=f,(x)} 

M	j)
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and

fi(y) 
=	)	

{ y , Z[h(y),y], (h(y), y]) 

p-g-I 
- ( - i) k (h(y))P_1_k 

Zp_k	 yJ(—l) ,k+iIhi(y), k (ë.(y))P— k=1
(2.9)" 

-
p-i-I-v

p—t— 
dñ' e1(y) 

-

=0

(h(y))P1 
X z__1__+,(x, y) (_1

)')	} 
(ë1(y))P-i-1-v

z=h(p) 

(i=0,1,...,p—i). 

We shall use the following lemma whose validity follows from Taylor's formula with 
the integral remainder. 

Lemma 2.2. If u E lC i , then 

=	(r 
zrs(x,y)

j
"

T ' (p	1)! 
Vr(,y)d 

pj_1 

10 (p
(y +	

- 
k=O ° (p - r-1)! w+k(0,l7)dq --j- 

	

o (p—r—i)! w.(x,)d	
(2.10) =	(y - 

+	f	 )P_a_I p-r-1 

E° (p—s—i)! 
Vr+k(,0)deyk 

((X, Y) E V; r,s = 0, 1,... ,p - 1). If, moreover, u is a solution of system (1.3) in D, 
then 

p-r-1

Vr.fk(Z,0)j 
k=O 

+l y (y - q)P_r_l
F[x, q,	, Z(x ij), 4(z, ,j),	(x, tj)]dt1 

 (p—r—i)!	
(2.11) p-r-1 

wr(x,y) =
k=O 

+ [
(x -	F[, y, Z(, y),	, y),	, y)Jd 

j (p—r—i)!

((x,y)ED;r=0,1,...,p-1). 
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If z,. (r,s = 0,1,... ,p- 1) are expressed in terms of 4' by formulae (2.10), then we 
shall write Z = A ('.A). The expression Q (cp. (1.4)) with Z = A will be denoted 
by Az,. Finally, A = ( 2 A) and A, = (33) will stand for V and W, respectively, 
with Vr and Wr given by (2.11) with Z	and Il = Az,. 

Now, let us consider the following system of integro-functional equations 

v2 (z,y) = T,(x,y), w,(x,y) = T,(x,y)	 (2.12) 

((x,y)ED; i=0,1...,p-1) with the unknown vector 4!-(cp. (1.1), (1.2)), where 

T,(x,y)=G,(x)+ /	9(x,i)dj4. 
J Ii (') 

'I 
t(x,y) = H 1, ( y) + J9(,y)d 

(i=O,i,...,p-1). Here
G(0) = H 1.(0) = 0 

and
G,(x) = G,(x) + G O (x)	for all x E (0, A) 
H(y) = h,(y) + JE(y)	for all y E (0, B) 

where G4, and H denote the expressions (2.8), respectively, with V = A,, W = A 
(we set in (2.11) Z =	= Az,), and G, and H, the expressions (2.9), respectively, 

with Z = A. Moreover, t and t9, are given by 

{vt+i(x,q)
	 for i=0,1,...,p-2	(2.14)
- F[x,q,A(x,),4'(x,j),A(x,)] for i = p - i  

(w1+i(e, y )	 for i=O,1,...,p-2 
1/) = 1 F[, y,	y), 4'(, y),	y)}	for i = p - 1	(2.15) 

The following lemma holds good, the validity of which follows from that of Lemma 
8 in [3]. 

Lemma 2.3. If u is a solution of problem (E), then 4' is a continuous solution 
of system (2.12). Conversely, if 4' is a continuous solution of system (2.12), then the 
function z00 = ' All is a solution of problem (E).
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3. Solution of the problem 
In this section we shall prove the existence and uniqueness of a solution of problem (E) 
(and hence of problem (P)) by using the Banach fixed point theorem. 

Let S be the set of all systems 4) (cp. (1.1)), where the components 

v: V - R't and w,: V. - R'2	(V. = V \ {(0,0)}; i = 0,1,... ,p - 1)


are continuous functions such that 

B4, := max max( sup [(x" + yP) lv(x, y ) I1 ,sup [( xe + yP)I Iw(x,

D.	 V. 

We define the distance by the formula 

d(4),4) = B,_ = max max (sup [(x 3' + y")Ive(x,y) _ti(x)I] 
o<,<P—1

(3.1) 

sup[(x + yP)_Iwj(x,y) - 
V. 

(4' = (V, W) and 4' = (V, W)). It is easily observed that S is a complete metric space. 
Let us consider the set 2 of all points 4' € S such that 

B, <K,	 (3.2) 

where ,c E (0, 1). This is a closed subset of S and hence it is itself a complete metric 
space with the metric given by (3.1). 

In view of system (2.12), we map 2 by the transformation T defined by formulas 
(cp. (2.13) - (2.15))

ii,(x,y) = T,(x,y) and ti'(x,y) = T,(x,y)	 (3.3) 

(( x , Y ) € V.; i= 0,1... ,p - 1). In the sequel, 4) will denote the system (V, W) where 
V (i) and W (ti). We shall find sufficient conditions for the inclusion T(2) C Z. 

In order to estimate the functions i3 1 and ti, let us first observe that the following 
inequality is valid (cp. (1.8), (2.10) and (3.2)):

p-s-i Ak 

K [X2 p— ,(1 + (rna)) + x_r(mia)2P_r	
-]	

(3.4) 

(r,s = 0,1,... ,p - 1), whence, and from Assumption I, Corollary 1.1 and relations 
(2.8), (2.11) and (3.2), we obtain the sequence of inequalities (in which, as well as in 
the sequel, const denotes a positive constant independent of K) 

il Ac 
I%( x )I <(ma)'m	(i + I	 E T!- 

+ const	 [xfh + (f(x))' +	 + XP03 + (P+1),64 

< [(mja) ; m'c + const(1 + K)AI x',
(3.5)
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where	min(w,,1) (i =	,p — 2). For i = p — i, we have 

ĈP I X /	
) Ix 0 1 +(f_i(x)) < (mp _ l ap _ I )P 'm_ lKxP +const 

(f,_ i (x) I. 

+c(x(P)fl2 +x" +X'4)]	
(3.5') 

(m_ia_j)"'m_1Kx" + const(1 + 

where /3 = min(/3,(p+ 1)min(32 ,84 ),/33 ). Inequalities (1.13) and (3.5') yield 

	

G'(x)	[(m..la_i)"m_lK + const(1 + k)A']rf',	(3.6) 

where	is a positive constant, and using (3.5) and (3.6) we obtain 

	

< {(mae)mis + const(1 + K)A°Jx'	 (3.7) 

(x € (0, A]; i = 0, 1,... ,p - 1), where 9 are positive constants. 
We proceed to the examination of G(x) (cp. (2.9) and (2.13)). Let us observe 

that, by Assumption I, Corollary 1.1 and relations (2.5) and (3.4), we obtain 

(
-c(x) 
f:x)	

consti + K)A° ' x,	(3.8) 

where 9' are positive constants and z = 0,1,... ,p — i. Moreover, basing on Assumption 
I and using formulae (2.10) and (3.2), we get the sequence of inequalities 

( _cj(x)\

	

	E: 
p 

f(x) I 
i'	\ p—z—k	 (f1(x)) P 1 

	

<const	(	
) [x))	

(P + (f(x ))) + (f())Pik]	(3.9) k=J 

	

const	[(bA)P_t_k + A']rP 

< const .c A x. 

Thus, it remains to estimate the expressions

( - i—i - V 

	

(i:0'(X) 

	'21d	
/2 

)	 ^(:ffl p- '- I
	

(3.10) 
(-1 (x ))$ 

	

X, t A tl	lLP+1(xy)	
I I Y=Mz)
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(i=0,1,...,p-2). Let us examine the part of/.(x) given by 

e(	
p-a-2 (  (—x)) p-i	

e(x) I	 ) A,(x) = \f: (x)	
(3.11) 

X IA_s_1_v_P+t(x,Y)] \(C(X))P_t_I_v
	

(e(x))_vl 
J y=f(x) 

Evidently,
IL(x)I	4(x) +	(z), (3.12) 

where
p-i-2 

ioiw = 
(fl())P++l	E (P- i - 1 - ii) 1.\s_2t+1Ix, f(x)]f,"(x) (3.13) 

and
x) = (f(x))"'' 

p-i-2 Ip-i-1	 u -	

) x

(Pi1 

v0	O 

--i-+	 ip—i— 1—i'	, [x, M4 (f(x)) (e(x))2 (3.14) 

+	
(P_i_1_v' 

p=2	\	'	I 

X	—+I [x, f(x)]	(f(x))' } f'(x). 

Basing on Assumption I and relations (2.5), (2.10) and (3.2), we have 

(x)	const ,c + 

whence (cp. the derivation of (3.9)) we get 

6 1,(x) <constKA# (3.15) 

with &, being understood as in (3.5). In the same way we obtain 

(x) <constK [(_)	+	9 <const,cA9. (3.16) 

Thus, by (3.12)- (3.16), the expression i.4 (cp. (3.11)) satisfies the inequality 

,(x)I <const,cA'9 (3.17)
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(i=O,1..p-2). 
Using a similar argument and basing on the inequality (cp. (2.4)) lcos(x,n)l 

f:(x), we can conclude that (cp. (3.10) and (3.11)) 

	

(x) - L(x)l <const,cAx".	 (3.18) 

On joining relations (3.8) - (3.11), (3.17) and (3.18), we get 

	

lG(x)l ; const(1 + 'c)A°x"	 (3.19) 

(x E (0, A]; i = 0, 1,... , p - 1.), where 9" are positive constants, and (3.7) and (3.19) 
yield the following estimate of the first term in the first of relations (2.13) (cp. (2.7)): 

IG,(x)l < [(m i ai) 1m't + const(1 + K)A9'] x'	 (3.20) 

(x E [0, A]; z = 0, 1,.. . ,p - 1), where O i are positive constants. 
As for the second term in the first of relations (2.13), we easily conclude, basing on 

Assumptions I, Ill, IV and formulae (2.15),(3.2), that 

fy
< /	t,(x,ij )dij	const(1+ic)A(x+y')	 (3.21) 

Jf,(z) 

(( x , y) E V.), where A = max(A,B). As a consequence of (3.3), (2.13), (3.20) and 
(3.21), we have

I(x,y)I < [ (miai)*mk + const(1 + k)A 0 ] ( x + ?)	(3.22) 

((x, y) E V; i = 0, 1,. . . , p - 1). By a similar argument we show that '(cp. (3.3)) 

1th 1 (x, )I < [ (thIa) 1 th'K + const(1 + K )A °u I
 (x + y")	(3.23) 

((x, y) E V.; i = 0,1.....p - 1). It follows from (3.22) and (3.23) that the functions i3 
and ib i satisfy relations (3.2) if the inequality 

	

max(m.'a:,th'a)k + C(1 + )A° <	 (3.24) 

(i = 0,1,... ,p - 1) is fulfilled, where 0 = mino<<..i 8i and C is a positive constant 
independent of ic. It is evident (cp. (1.7)) that inequality (3.24) holds if A is sufficiently 
small, so that

4i - max(rn'a,r'ã	
1/0 

A <	
)] 1	.	( 3.25) 

C(1+ic)	J 

Moreover, by the definition of 2 and relations (2.7), (2.14) - (2.16), (3.3) and (3.24), 
we can assert that i i and th, (i = 0,1,... ' p — i ) are continuous in V.. Thus, inequality 
(3.25) implies the inclusion T(Z) C Z.
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Now, assuming the validity of (3.25) we shall find sufficient conditions under which 
the transformation T (cf. (3.3)) is a contraction.	 - 

Let 4'= (V. W) and	(V. W) be arbitrary points of Z. and 4 = (V. W) and, 
= (V. W) their images, respectively, in the transformation T. In order to estimate 

the expression V'i - , let us observe that by (1.8). (2.10) and (3.1) the following 
inequalities are valid (cf. (3.4)): 

I''tr.fi(x)] - Ara I
x. f(x)lI 

fo

(x - )P—	
+ (f1(x)))d 

 (p—s—i). 

+	:' 

jf.(r) (f(Z))P_r_1 zjdi	 (3.26) 

< [.r2P^'(l + ( moaj)) + x2P_r(mai)2P_r	d($,4') 

(r, s = 0, 1.....p - 1). whence and from Assumptions 1. III. IV. and relations (2.8). 
(2.11), (2.12) we obtain (cf. (3.7)) 

IGO (x) - G(z)[ < [(rn i o t )'rn' + const A°] .rd(4', 4')	 (3.27) 

(x E (0. Al; i = 0; 1 ..... p—i). Furthermore. basing on Assumptions I - IV and formulas 
(2.9). (2.13) and (3.26). we get the inequality 

d'(-) l <const A°Lr"d(4'. 4')	 (3.28) 

(x E (0. Al; i = 0. 1.....p - 1), where 0" are as in (3.19). On joining (3.27) and (3.28) 
we have (cp. (2.7)) 

IG(z) - G(.r)I < [(m i a i )'m' + const A 8. 1.r P d(4',4')	(3.29) 

(x E [0. A]; i = 0.1.....p - 1), where 0, are as in (3.20). 
As for the second term in (2.3). we easily conclude that (cf. (3.21)) 

f!l

	ff 
4(x.,7)dj_  (r.)dij <eonst.A(x+y')d(4'.4')	(3.30) 

(z) 	V ( z ) 

((x, y) ED.). whence, and from (2.7). (2.13). (3.3) and (3.29). we obtain 

, y ) — ,( z , y )I	[(m.a)'m'+ const A8 1 
( .r + y)d(4','Z')	(3.31) 

((x. y) EL).; i = 0.1.....p - 1). By a similar argument we show that 

I',(x, y) - '(:, 01	[iiñ 'th' + const A 9	+ y9 ) d(4.. ) (3.32)
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((x , Y) e D0 ; i = 0,1,'... ,p— 1), and using (3.1),.(3.31) and (3.32) we can conclude that 

	

d(3,) [max((ma)'m ,(th a ) i th * ) + constA°] d(,').	(3.33) 

It follows from (133) that the transformation T (see (3.3)) is a contraction if the 
inequality

max((m1a)'m',	 + CA° < 1	 (3.34) 

(i = 0, 1,. .. ,p - 1) is fulfilled, where 6 is as in (3.24) and C is a positive constant 
independent of A. Evidently (cp. (1.7)), inequality (3.34) holds good if A is so small 
that

r	 p	-j	1/8 

	

A< i —max(rna,m 1pa8 )	.	
(3.35) 

C 

So, if inequalities (3.25) and (3.35) are fulfilled, then by the Banach fixed point theorem 
applied to the space 2 and transformation T, there is a unique system V = (V°, W°) E 
2 satisfying the system of integral-functional equations (2.12) in D. Setting 

fo	forx=y=0 V* (v)	where v(x,y) = l
v (x , y) for (x, y) e"D 

and
10 W* = (w*)	where w(x,y) = 1 w°(x,y) for (x, Y) E D 

(r = 0,1,. . . ,p - 1), we get a system = (V, W) of continuous functions satisfying 
(2.12) in V. As a result, (cp. Lemma 2.3), problem (E) has a uniqe solution z 0 = 
'4' E K i which, by the equivalence of problems (P) and (E), is also a unique solution 
of problem (2).  

Thus, we can formulate the following final theorem. 

Theorem. If Assumptions I - IV are satisfied and A = max(A, B) is sufficiently 
small, so that inequalities (8.25) and (8.85) hold good, then problem (2) has a solution. 
This solution is unique in the class AC1. 
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