
Zoitschrltt fur Analysis 
urid lhre Anwecdurigen 
Vol. 12(1993). 683-698 

On the Solvability of Nonlinear Singular Integral Equations 

JIJNGHANNS and U. WEBER 

Three classes of nonlinear singular integral equations of Cauchy type occuring in the treatment of certain 
free boundary value problems are investigated. Existence of the solution is proved under weaker condi-
tions than in [13] using the technique which was created in [12, 13] and is based on the application of 
Schauder's fixed point theorem. 
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1 Introduction 
In investigating and solving certain free boundary value problems by means of nonlinear singular 
integral operators there occur equations of the form (cf. [2, 3, 10, 11]) 

F(x,u(x))=1 
fu(v)dY  C,	—1<x<1, 

lrj y — x 

and

—ixi 
lrj 

-1	
y — z 

Thereby, one of the assumptions, under which in [13] the existence of a solution u with p-
summable derivative, p> 1, was proved, is violated, namely the condition 

If'(x)I, IF(z,u)I lo(1 - z2 ) , ( 1.1) 

where lo and 6 < 1 are some nonnegative constants. In the above mentioned situation, the last 
relation is fulfilled only in case 6 = . In [10, 111 one can find some remarks that, nevertheless, 
in the special cases considered there the equations are solvable. 

In the present paper we show that the restriction on the constant 5 in (1.1) can be weakened 
even in the general situation. In particular, by keeping of all the other assumptions in [13) even 
6 > 1 is permissible. The existence of the solution can be proved in principle with the technique 
of [12, 13] being based on the application of Schauder's fixed point theorem. In Section 2 this will 
be done for equations of the first type. Equations of the second type are considered in Section 
3. Section 4 is dedicated to a third class of equations, for which an example is given in Section 5. 
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2 Equations of the first type 

We consider , singular integral equations of the form. 

F(x,u(x)) = (Su)(x) + c,	—1 < x < 1,	 (2.1)


where S denotes the Cauchy singular integral operator 

(Su)(x)	U Iu(Y)--dy 
ir	y — x 

We search for continuous functions u and real numbers c satisfying (2.1) and the additional 
conditions	 0 

u(—I)'='u(l)—_O. ' (2.2) 

More precisely, we will ask for functions u for which a real number p > I and a function v E L' 
exist such that u(x) = J' v(y) dy and u( 1) = 0. Here L = L P (—1, 1) denotes the usual Lebesgue 
space of all measurable functions v for which Iv(x)I is summable, and Jjvjj p is the usual norm 
in L. The set of all such functions u we will call W. In order to prove the existence of a 
solution u E W01 of problem (2.1),(2.2) we assume that the following assumption is fulfilled. 

Al: F = F(x, u) : [-1, lJxlR -. IR (lR := (—rx, +)) possesses a continuous partial derivative 
F and a partial derivative F which is continuous with respect to u E R for ailmost all 

and measurable with respect to x E [-1,1] for all u E lit (Carathéodory condition). 
Furthermore, there exist constants 1 0 , 1 1 , 1 2 , 6 > 0 such that 1112 < 1 and 

- l :5 F- (-, u) 	12,	(x, u) E [-1, 1] x IR,	 (2.3) 

F1 (x,u)[ < 10(l - z 2 ) 8	(x, u) E [ - 1, 1] x IR,	 (2.4) 

3 - arctan l + arctanl2	
(2.5) 4	'2ir 

We remark that in view of 1112 < 1 the estimation (2.5) is weaker than the condition 6 < 1/2 
from [13]. 

2.1 Reduction to a fixed . point equation	. 
0 

Let u(x)	f v(y) dy be a solution of problemmi (2.l),(2.2) with the above required' properties 
Then we can differentiate equation (2.1) (cf. [8], Chapt. II, Lemma6.1). Taking into account 
condition (2.2) we obtain	0	 , 

a(x)v(x) — ( Sv)(z) = g(x), 	(2.6) 

wherea(x)	F(x,u(x)) and g(x) = — F(x,u(x)). Since in view of Assumption Al, the

function a is continuous there exist continuous functions o : [-1', 1] -. (0, l)and r : [-1, 1]
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such that a(x) + i = r(z)exp[iira(x)]. From (2.2) it follows that the solution v of (2.6) has to 
satisfy the condition 

Jv(y) dy = 0. - ( 2.7) 

To find an explicit expression for the solution v of problem (2.6), (2.7) we use the results of [1, 
§ 9.5] (cf. also [4, 7, 8]). With P = (I -iS) and Q = I - P = (I + iS) (I denotes the identity 
operator) we can write equation (2.6) in the equivalent form 

By := [P(a - i) + Q(a + i)]v = g. 

Put c(x) = [a(x) - i]/[a( x ) + i] = exp[-27ric(x)]. Then, for all sufficiently small p > 1, the 
function c admits a generalized LP-factorization c(z) = c_(x)(x - i)'c+(x), where 

r	I

z - t c- X) =	exp -iiro(x)+ J	

=	- i)[a(x)- iJ
exp[ir( Sc)(x )I, 

J 
l-z y-z	 z)r(z) 

c(x) = (1- x)exp [_ilro(x) _J
1d] = 1 - z)[a(z) - jj exp[-ir(So)(x)]. 

Hence, B : L -p LP is a Fredhoim operator with index 1, and a right inverse of B is given by 

B - ' = ±_[P(a + i) + Q(a - i)j-±-I = z'(aI + S)-1,	 (2.8) 

where z(x) = (1 - x)r(z)exp[-r(Sa)(x)]. Because of (2.4) and (2.5) we have g E L' for all 
sufficiently small p > 1. We show that v = B 1 'g is the solution of problem (2.6),(2.7). For 
this end we have to prove that v = B 1 g satisfies condition (2.7). Indeed, taking into account 
relation (2.8) we conclude that (a + i)cv lies in the image of the operator P(a + i)I + Q(a - i)I, 
which implies (cf. [1, §9.5]) 

0 J(a + i)cv[c_ - c;'(z - i )1( x - i)'dx = J(o + i)(c - 1)vdx = _2iJ v(x)dx. 

Integrating the obtained expression for v, we can summarize our investigations to the result that 
each solution u E W of problem (2.l),(2.2) is a solution of the fixed point equation 

u(x) = (Tu)(x) := 
J 

L(y,t4y))dy,	u E Co,	 (2.9) 

where 

L(x,u(x)) = 2()9(z) + 
z1(x) j z(y)g(y) dy	 (2.10) 

and Co = C0[-1, 1] denotes the Banach space of all continuous functions on [-1,1] satisfying 
the boundary conditions (2.2). In the sequel it will be proved that the kernel L(z,u(x)) is an 
element of L P for some p > 1 if u E Co. Consequently, each solution of equation (2.9) is also a 
solution of problem (2.1), (2.2). 

The expression of the kernel of the integral operator T considered in [13] is a little bit more 
complicated than expression (2.10). It is possible to choose this simpler version since v = B(')g 
fulfils condition (2.7).
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2.2 Investigation of the kernel L(x,u(x)) 

The aim of this subsection is to obtain some preliminary results which give us the possibility 
to handle the fixed point equation (2.9) with the help of Schauder's fixed point theorem. By 
II u II	sup{Iu(z)I : x E [-1, 1]) we denote the norm in the Banach space Co. In all what 
follows we assume {u} C Co, it E Co and II u ,1 - - 0 (n - oc) and use the notations 
a(x) = F(x,u(x)), a(x) = F(x,u(x)), and analogous notations for functions depending on 
u or u,. Obviously we have 

II a - aIk —p0	(n .- oo),	 (2.11)


since the norms IIit,II are uniformly bounded. Furthermore, it holds 

gn -+ g a.e.	 (2.12)


(cf. Assumption Al). With 7(z):= arctana(x) = ir/2– 7rct(x) we can write 

z(x) = Vi - x 2 r(x)exp[(S7)(z)]. 

From (2.10) we conclude 

L(x, u(x)) = sin[y(x)] h(x) + cos[-y(x)] M(x, u(x)),	 (2.13)


where h(x) = g(x)/r(x) = cos[7(z)]g(z) and 

M(x, u(z))	(1 _z2)_h/2 exp[–(S)(x)] (s{( 1 - y2 ) 112h(y) exp[(S7)(y)]}) (x). 

Lemma 2.1: Let 1 <p < ö'. Then h  LP and hfl sin y -i h sin 7 in L. Moreover, the 
estimation IIh II < c(,p) is valid, where the constant c(6,p) does not depend on it E Co. 

Proof: In view of the estimate (2.4) we have 

j 1 
h(z)dx loP J (1 - x 2 ) 8 dz =: c(,p) < 00. 

From (2.11) and (2.12) it follows h(x) sin 7(X) -* h(x)sin(x) a.e., and (2.4) implies 

Ih(x) sin -fn(X) - h(x) sin y(x)' < 2'l(l - 

Now, from the Lebesgue theorem we conclude the assertion U 

Let us introduce the notations 2w_ := arctanl 2 - arctanl 1 , 2w.4. arctanl2 + arctanl1. 
Because of 21w_I < 7r /2 and 2w+ = arctan 1(11+12)1(1 –1 1 12 )] E (0, ) we have 31(1+2Iw_I/r) > 2 
and ir/2w.j. > 2. Thus, taking into account (2.5) there exists a c > 2 such that 0 < 3 - 25c, 

.f	 and 
ir2	3	1	 ___ < —.


	

2w+ 5 l+21w_I/lr)	 3-25c	2w.4. 

Defining ju(x) := 7(x) - w_ we obtain (cf. (2.3))

	

w.	l–x 
I,z(x)I	w.. (z E 1-1,1])	and	(Sy)(x) = (Sz)(z) + - In	,	 (2.14) 

	

7	1+x
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and, consequently, 

M(x, u(x)) =
	

(2.15)


where

()(x) = N()(1 - 2 ) I / 2 (s[1cT - I (y)(1 - 

	

= (1 - x) /2_.../r(1 + x)_h/2+_/,	
(2.16)


q5(x) = (1 - x2)h/2"h(z)exp[(S/2)(x)), 

(x) = (1 - x2)/2'exp[-(Sp)(4. 

In view of (2.14) and a lemma from [13, Appendix] we obtain 

(

ir


	

cos(rw+)) 	
=: d(, c)	Vu € Co.	 (2.17)


Lemma 2.2: It holds R -. R in L's. 

Proof: Let e > 0, 0 < i9 < e/(1 + e), and ?c(1 + e)(1 + t) < r/2. Defining the functions 
4'(u) = U'9 and f(x) = R5(x)I we can estimate 

.1 

J fr,(x)I4(If(x)I)dx 
-1 

= 1 (1- x 2 )	2exp[-ic(1 + 10)(Si)(x))dx

J-I 

= 1 (1 -	 1 - X2)-1/2( ' +E) exp[—( 1 + t9)(S14)(x)] dx 
J-i 

r e(I+e)	 1/(I+e) 

 

( I - x2)_12(14+6/2kdz}	{J ( i - x 2 ) 2 exp[-v(Sj)(x)] dx} 

= jJ ( i - x 2 )_ 1 /2_ I2tdx}
c/(1+e)
 1(1 - x2)-h/2M exp[_-(Szn)(x)1II° 

< const (cos	^) i) 
I/(I+e) 

where we used the lemma from [13, Appendix] and the notation v	ic(1 + 6)(1 + i9). Since 
llYn- -. 0 and since the operator S is continuous in L 9 for all q > 1, it followsS jun -i Si 

in measure, which implies, in view of the Inonotonicity of e', f,. -+ I in measure. From the 
lemmas of Vallée-Poussin and Vitali (cf. [9, Chapt. VI, §3]) we obtain 

J,,(y)dy 
-p J R(y)dy,	Vx € [-1,1], 

as well as 11411. -i	This yields the assertion I
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Lemma 2.3: For the above defined functions 4 and 0 (cf. (2.16)) we have II—II -. 0. 

Proof: Let max{k,?c/(3 - 26)} < e < 7r/2w+, and	tI,x, where 

1r(x) = h(x)(1 - x2)(e+.)I2ec x(x) = (1 - x2)_'2eexp[(S11)(x)j. 

Further, let 0 := c and 4 := ec/(e - sc). Then	+	= ,c, which implies III :5 II'IIIIxII, 
where IIxII < d(w,e) and 

11 10 1 144 
51J(i - x2 )	26121'dx =: e(K,e) < 

because of (e + sc - 26eK)/2(e - sc) > —I. In the same manner as in the proof of Lemma 2.2 we 
can show that Xn -p x in L. Since i,b,	VY a.e. and 

1'(x)1 < (21o)( - 

the Lebesgue theorem implies i -	in L. Hence, q5, 	in L' U

 Lemma 2.4: The operator S (cf. (2.16)) is continuous in the space L', and 

In - S4II,c - 0. 

Proof: The assertions follow from [1, § 1.4, Lemma 4.2] and Lemma 2.3 U 

2.3 Existence proof 

Now, we are going to prove some assertions about the image and the continuity of the operator 
T defined in (2.9). For constants R, R0 ^: 0 and A E (0, 1) we define 

1C 0	= {u e C0 : II uII 	R, Iu(xi) - II(X2)1 S RoIxi - x21 A , Vx 1 , x2 E 1-1, 1]}. 

Proposition 2.5: There exist constants R, R0 , and A such that for the operator T defined 
by (2.9) and (2.10) the inclusion T(C0 ) C holds. 

Proof: Using (2.13), (2.15), Lemma 2.4, (2.17), Lemma 2.1, and the proof of Lemma 2.3, one 
can estimate II L(, u )II, p = sc/2, by some constant R0 . If we define R = 2' 1 R0 , q1 = 1p_I, 

and A = q' we conclude IlTu lko !^ R and (Tu)(x i ) - (Tu)(x 2 )I -5 Rox 1 - x 2 1 A I 

Proposition 2.6 (cf. [12]): The operator T : Co -i Co defined by (2.9) and (2.8) is 
continuous.	 S 

Proof: One can show that II L ( . , un) - L(, u )IIp	0 1 

As a consequence of Proposition 2.5 we obtain C Since is a 
convex and compact subset of Co we are able to apply Schauder's fixed point theorem to equation 
(2.9) in accordance to Propositions 2.5 and 2.6. We terminate at the following theorem. 

Theorem 2.7: Let Al be fulfilled. Then problem (2.1), (2.2) possesses a solution u E Will
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Let u E Co be a solution of the fixed point equation (2.9). Then the functions a(x) = 
F(x,u(x)) and s(x) = 1 - arctana(x) are continuous. Consequently, the lemma from [13, 
Appendix] implies the representation 

Z(X) = (1 - x)Ji + [a(x)]2exp[—ir(Sa)(x)) = (1 + x)'31 (I - 

where w, w	EL T for r E (1, 00), 13 = a(-1), 02 = 1— o(1), and #j E (0, 1), j = 1, 2. Hence, 
ag/(1 + a 2 ) E L' for 1 < s <	. Since the operator (1 + x) 131 (1 - x)-02S(1 + y)'(1 - y)132


is continuous in L' for i < s < min {1i',/3} , it follows, for 1 < p < mm 

L( . , u) E L (cf. (2.10)). Thus, we have proved the following (cf. [13, Part I, Theorem 2]). 

Corollary 2.8: Let Assumption Al be fulfilled. Then problem (2.1), (2.2) possesses a solu-
tion u(x) fff 1 v(t) dt, where v E fl LP and 

I <p<po 

t 1 1	1	 1	1 
Pa = mm /3 = - - —arctan F,(—1,0),	12 = - + —arctan F(1,0). 

131 02 6	2	ir	 2	ir 

Remark 2.9: The assertions of Theorem 2.7 and Corollary 2.8 remain valid if instead of 
condition (2.4) we assume that there exist constants b 1 , b2 ^! 0 and v E [0, 1) such that 

IF(x, u)( < 10 (K) (1 - x 2 ) 6 ,	(x, u) E [-1, 1] x [—K, K], K > 0, 

with 10(K) = b 1 + b2 K' and 5 > 0 satisfying (2.5) (cf. [13, Part 1, §4.1, Remark]). 

Proof: Let u E Co and II u II= < K. From the proofs of Lemma 2.1, Lemma 2.3, and 
Proposition 2.5 we conclude 

11 h 119 :5 10(K) c, IIIL < 10(K) c2, 11 L( . , u )II < 10 (K) C3, 

where

= {f 1 ( i - x2)_5Pdz}	, C3 = c1 + d(+,)IIIIc2, 

I	I f I/c 
C2 =	1 (1 - X2)(_25e/2(C_)dX} 

If we choose It > 0 such that 2'/0o(10 K, q = I - p, we obtain T( RA ) C 
for R = I/'0, R0 = lo(K)c3 , and .\ =	. Since Proposition 2.6 remains valid we can apply 

Schauder's fixed point theorem I 
3 Equations of the second type 

Now, consider equations of the kind 

u(x) = (S[F(.,u)])(x) +f(x)+ c,	—1 < x	I,	 (3.1)
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with the conditions 

F(—1,u(—l))=F(l,u(l))=0.	 (3.2) 

The set of functions u for which a real number p > I and a function v E L P exist such that 
u(x) = u(-1) + f, v(y)dy and for which the conditions (3.2) are fulfilled will be denoted by 
W. We distinguish two cases and make the following assumption. 

A2: F = F(x,u) : [-1,1] x IR -* ft possesses a continuous partial derivative F, where 

F,(-1,u)^!0, F(1,u)=0,	VuE, 

lim F(—1,u) <0, lim F(—1,tz) >0, 
t+00 

—I i S F,.(x,u)<12, (x,n)E I—1,l]xGt, 1 1 ,12 ^! 0, 1 1 12 <1	(3.5) 

in Case 1, and 

0<l :5 F(x,u) <12 <00	 (3.6) 

in Case 2. The partial derivative F satisfies the Carathéodory condition. The function 
f is absolutely continuous and possesses a measurable derivative 1' . Furthermore, there 
exist constants b, 1 > 0 such that 

IF.(-, u)I, If'(x)I < lo( I - 
x2 )_6,	(x, u) E [-1, 11 x a,	 (3.7) 

where, in Case 1, 

4	 2ir 
3	arctan 11 + arctan 12	 (3.8) 

and, in Case 2, 

	

< !Larctan 1	 (3.9) 
2	2ir 

We remark that in Case 1 the condition F(1, u(1)) = 0 is automatically satisfied. 

3.1 Reduction to a fixed point equation 

Differentiation of (3.1) with regard to (3.2) yields 

v(x) — (Sav)(x) = g(x), (3.10) 

where a(x) = F(x,u(x)) and g(x) = f'(x) + (S[F(.,u)])(x). We define -y(x) = arctana(x) 
(principal branch), r(x) = Jl + a2 (x), and z, (x) = (1 - x)1J2r(x)exp[_(S7)(X)], where 

(3.3) 

(3.4)
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denotes the Kronecker delta. Using again the results of [1, § 9.5], we obtain the fixed point 
equation 

u(z)	(Tu)(x) := k + J [L(y,t4y))-i- cz(y)]dy, u E C	 (3.11)


in Case j, where

z(z) ' a(y)z,(y)g(y)dy +)	
f 

L,(x, u(x)) =	_____ ___________ (3.12) r2 (X)	ir 	r2(y)	y - x 

and the constants k, and c3 (j = 1, 2) have to fulfil the equations c 1 = 0, 

F( - 1,k,) = 0,	 (3.13) 

Z2 1 	=0.	 (3.14) 

With the same arguments as in Subsection 2.1 one can show that the problem (3.1), (3.2) for 
U E W is equivalent to the fixed point problem (3.11) in the respective Case j. 

3.2 Investigation of the kernels L(x, u(x)) 

We shall investigate the operators T, in the Banach space C = C[— 1, 1]. To prove the conti-

nuity of T, we consider an arbitrary sequence {u} C C with II u - u U,,, -. 0 and use anal-

ogous notations as in Subsection 2.2. Obviously, relation (2.11) remains valid, which implies 

-	-. 0. Analogously to (2.13) we write 

L,(z,u(x)) = cos 2 [(x)jg(x) + cos[(x)]M3(r,u(x)),	 (3.15)


where h(x) = a(x)g(x)/r(x) = sin[7(x)] g(x) and 

M,( x, u(x)) := (1 - x)52 exp[(Sy)(z)] (s{( 1 - y)1)2h(y) exp[—(S7)(y)j}) (x). 

Lemma 3.1: if 1 < p < 6—i, then g, - g in L. Moreover, we have 

II g II :5 (1 + II S II) c( 15 , p)	Vu E C. 

Proof: Compare the proof of Lemma 2.1 I 

In Case 1, let 2w. := arctanl2 - arctanl 1 , 2+ := arctanl 2 + arctanl 1 , and, in Case 2, 

:= 1 +arctan1 i , 2+ := 1 —arctanl 1 . Furthermore, let z(x) := y(x)—_. We remark that 

in both cases we have w E (0,7r/4), 5 < 3/4 - L)+ /lr, jz(x)I !^	. Furthermore, the relations 

< ir/4 in Case 1 and 7r/4 <w_ < r/2 in Case 2 are fulfilled. Again we write 

M(x,u(x))	(x)(5)(x).	 (3.16)
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S jo is defined as in (2.16) (with N3 instead of N), where 

N,(x) = (1 + z) I ( 1 - 

	

O(X) = (1 - x2)1/2'h(x)exp[-(Sj)(x)],	 (3.17)


R(x) = (1 - x 2 ) I2c exp[(Sz)(x)], 

and the number ,c can be chosen so that 3 - 2 > 0 and 

	

.I ir	2)	___ 2<,c<min—,3,-?,	 < -. 

	

2w	 3-2K 

Since K <	- and I IL(X)I <	, the estimation (2.17) for all u E C and Lemma 2.2 remain

valid. In Case 2 we additionally require 

3 
2(1 -,../ir) 

Lemma 3.2: The relation 110, -	-i 0 holds true. 

Proof: We proceed in the same way as in the proof of Lemma 2.3. Hence, we put 
with

(x) = sin[y(z)](1 - x2y'f1(x) 

(x) = sin['y(x)](i - x 2 )(S{(l - y2 )"[ ( i - y2 )F(y, u(y))]})(x), 

X( X ) = 0 - 

where ij = (e + K)/2,-r. and & is a fixed number such that 

I	K)	 ir 
maxK, 

I. 3-2bj 

Define P = & and 4 = &c/(& - K). Then j	+ 4	= K	and 1 1011. !^ (Ikb Il + Ik"II)IIxII 

Since 3E/2eK < 3/2 < K, we obtain	- 1 < — i < tv'. Thus, p 1 SpI E C(L), where


P(X) = 0 - x 2 ) -". Consequently, in the same manner as in the proof of Lemma 2.3 it follows 
the assertion and IIII,c < e(K,)[l + Ii	SpII]d(w+,E) U 

Lemma 3.3: The operators S,, j = 1,2 (cf. (2.16), (3.17)), are continuous in L'. 

Proof: As in the proof of Lemma 2.4 we write S, in the form p, 'Sp,I, where 

pj(x)	(1 + x)°'(l - X)12,	=	-	, O = 6j2 -	-	 ..	(3.19) 
ir	2K	 ir	2K 

Because of 2< K < 3 and -1/4< w_/ < 1/2 we have 3/2K — 1 < _/ <3/2k, i.e. ' - I < 

a l < ic'. Since in Case 1 we have I w_I/ir < 1/4, it also holds 3/2K- 1 < -i_/7r < 3/2K, which 
implies ,c - 1 < 02 < K. In Case 2 we obtain from (3.18) that 3/2K - I < 1 - '../ir < 3/2K, 

which yields K I - 1 < 02 < K', too U 

Corollary 3.4: In both cases j	1,2 there holds JjS j o,, - S J I — 0.

(3.18)
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Lemma 3.5: in Case 2 the L''2 -norm of z is uniformly bounded with respect to u E C. 
Furthermore, it holds	-z in L''2. 

Proof: Write z. '(z) = cos[7(z)]p(x)(x). where P2 and ii are defined in (3.19) and 
(3.17). Since ak < k = 1,2 (cf. the proof of Lemma 3.3), it holds p,- I E L". Thus, in view 
of (2.17),

(3.20) 

The second assertion follows from Lemma 2.2 U 

3.3 Existence proof 

Because of (3.4) there exists a solution k 1 of equation (3.13) in Case 1. which we will fix fort lie 
sequel. In Case 2 the solutions k2 of (3.13) and 47 2 of F(1, k2 ) = 0 are uniquely determined. 

Lemma 3.6 ([13], Part II, §3.2): Thcrf exists a constant D > 0 such that 

Jz
1 (x)dx>D	VuEC. 

For constants R, R0 ^! 0 and ) E (0, 1) we define 
/C 0 {u € C: j jujj,, < R, lu(xi) - u(x2)1 < R0 x 1 - x 21', Vx 1 . x2 E [-1. I]). 

Proposition 3.7: It holds T,(C) C kR,RO ,.\ for some constants R. R0 ^! 0 and ,\ € (0.1). 

Proof: We estimate ll L (, u )ll (cf. (3.12)). Having regard to (3.20). Leimimna 3.6. and 

C2 	 k2_ k2_ J LAX, u(x))dx}	 (3.21) 

the proof can be completed in the same way as the proof of Proposition 2.5 U 

Proposition 3.8 (cf. [121): The opemtors T3 : C -. C defined by (3.1!) are continuous. 

In accordance to Propositions 3.7 and 3.8 the operators T : K R.RO ..\	&:R.R0.\. j = 1.2. 

satisfy the conditions of Schauder's fixed point theorem. Thus, the following theorem is proved. 

Theorem 3.9: Let Assumption Al for the Case 1 or Case 2 be fulfilled. Then probknm 

(3.1), (3.2) possesses a solution u E W. 

In the same manner as Corollary 2.8 and Remark 2.9 we can prove the following assertions. 

Corollary 3.10 (cf. [13], Part II, Theorem 2): Under the conditions of l'heore7n 3.9 
the problem (3.1), (3.2) possesses a solution n( x) = u(— 1) + J u(t) di. where v E

	

	fl LI

l<p<po 

and in
(1	1 H 

Case 1: po=min{__.}.	 :	
=	IPI P2 it,

Case 2 j)	min -. -. - 

where 

II I =	sup(arctan F,(-1.u): U ER). /2 = I -	inf{arctan F(l.u): u €	}. 
ir 

Remark 3.11 (cf. [13], Part II, §4.1, Remark 1): Condition (3.7) (uuth respect to I",.) 

can be replaced by the weaker conditions of Remark 2.9 with 6 > 0 satisfying (3.8) ri'sp. (71.9).



694 P. JUNGHANNS and U. WEBER 

3.4 The case F(±1,u) 0 

Let us consider the equation 

u(x) = (S[F(.,u)])(z)+ 1(x),	—1	x < I, u € Wj,	 (3.22) 

under the following assumption. 

A3: F = F(x,u) : [-1,1] x CR - lit possesses a continuous partial derivative Fu satisfying 

 —I i !^ F,.(z,u) <12 , (x,u)E [—I,l]xCR, 11,12 ^!O, 1112<1,	 (3.23) 

and

F(±1,u)=O	Vu€CR.	 (3.24) 

With respect to F and 1' let Assumption A2 be fulfilled with relations (3.7) and (3.8). 

As in Subsection 3.1 we obtain a fixed point equation 

u(x) = (Tou)(z) := k0 + J Lo(y, u(y)) dy, u E C,	 (3.25) 

which is equivalent to problem (3.22). The kernel Lo(x,u(x)) is given by equation (3.12) and 
zo(x) = r(x)exp[—(S.y)(x)]. The constant k0 is determined by 

k0 = F0 - !J(1 - z2)_h12jZ Lo(y, u(y)) dy dx,	 (3.26) 

where F0 = f'(1 - x 2 ) 112f(x)dx. Relation (3.26) follows by multiplying equation (3.22) by 
(1 - x2)_1/2 and integrating over [-1,1]. Thus, all the results obtained in Subsection 3.2 with 
respect to the kernel L i (x,n(z)) remain valid for the kernel Lo(x,u(x)). Taking into account 
(3.26), which yields Ikol :5 IF0 I + II Lo(,)II, it is easily seen that Propositions 3.7 and 3.8 hold 
true also for j = 0. Thus, the following theorem is in force (cf. [13, Part 11, Theorem 2]). 

Theorem 3.12: If Assumption A3 is fulfilled, problem (3.22) possesses a solution u € W.t 
Furthermore, u(z) = u(_l)+fn i v(t)dt , where v €	fl L'. 

1<p<1/& 

The second part of the theorem can be proved in the same way as Corollary 2.8. Remark 
3.11 also remains valid (with 6 > 0 satisfying (3.8), cf. also [13, Part II, §4.1, Remark 1]). 

4 Equations of the third type 
We consider the equation 

u(x) = (S[F(,u)])(x)+ f(x)+c+dx,	—1 <x <1,	 (4.1) 

with the conditions

(4.2) 

and make the following assumption.
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A4: F = F(x, u) :(-1, 11 x R - IR poss.cMs a continuous partial derivative F. whfr 

—I t 15 F,(x,u)l2 , (x,u)E [—I.1]x. 1 1, 12^! 0. 1112<1.	 (4.3) 

F(±1,O) = 0,	 (4.4) 

F(-1,O)^!0,	F(1,0)<0.
	 (4.5) 

The partial derivative F satisfies the Carathéodory condition. The function f is absoltitdy 

continuous and possesses a measurable drivative 1'. Furthermore, there exist constants 

6, l > 0 such that 

F1(x,u)I, If'( x )I < lo(l - 
2)_6	(x. u) E [-1,1] x UL	 (.1.6) 

where 

6	
- arctanl 1 + arctanl2	

(4 
4	2ir 

We seek functions u E WO, 
+ and real numbers c, d satisfying (4.1) and (4.2). Having regard 

to (4.2) and (4.4), for the derivative v of ii. we again obtain equation (3.10) with g + d instead 

of g. The index of this equation in LP for all sufficiently small p > 1 is equal to zero because of 
(4.5). Taking into account 

Z(x) 
+ 

I	a(y)z(y) dy - 
r2 (x)	irf	r2 (y) y — x - 

(cf. [4, §1.1]) this leads to the fixed point equation 

U(X) = J [L(y,u(y))+ dz(y)]dy.	u  C. 

where 

L(x,u(x)) 
=	+	

x)I a(y)z(y)g(y)	
z(x) = r(x)exp(—(Si)(z)]. 

r(x), y(x) as in Section 3. 1, and d = - f L(x. ti(r)) dxl f'1 z- 1 (x) dx. Now, the proof of the 

following theorem can be given in the same manner as that of Theorem 3.9 for the Case I in 

Subsections 3.2 and 3.3. 

Theorem 4.1: Let Assumption A4 be fulfilled. Then, for problem (4.1). (4.2). lluri i xists 

a solution u E W. Moreover, u(x) = f e(I)dt, where v E fl L and 
I <r<po 

p0 = rain	 iii = !arcta ii p(_l.0). 32 = —1arctan Fu( 1.0) 

= oo if 0, = 0). 

Remark 4.2: The condition (4.6) On F. in Assumption A4 can be replaced by the wuikr 

conditions of Remark 2.9 with 6 >— 0 .cati.cfymg (4- 7).
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5 An example 
In [11] there is considered the problem of two-dimensional free surface seepage flow from a 
nonlinear channel (see the picture). The problem is transformed int6 a nonlinear singular integral 
equation 

X(t) - 
i f 

g(x(s))ds - D = R(t),	—1 < t < 1,	 (5.1) 

where g(x), 0 < z < b, describes the shape of the channel and the right-hand side is given by 

I	1/k [r(k, a)	r(k —ci)	 H	-'	dci 
dci, r(kt)=H_j	

(ci2_1)(i_k2ci2)' 

K' = F(Vi -- k', 1),	F(k,() f V(l - r2 )(l - k2r2) 

The function x and the parameters k E (0, 1) and D E a are unknown, where x has to satisfy 
the boundary conditions 

z(-1)=b, x(i)=0.	 (5.2) 

y

A(0,H)	I7	- 
- - 

free boundary 52	 free boundary S 
\ 

seepage region ci 

D(d,0)	I	 C(c,0)

X 

drain 

Substituting x(t) = u(t) +(l - t), from (5.1) we obtain 

1 !' F(s,n(s))ds U(t) 1	$— t	—D—EL=f(t),	—1<t<1,	 (5.3) 

where 

F(t,n) = g((1 - t) + u)— H,	 (5.4)
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f(t)=R(t)—(1—t)H
	1—I 

+ — ln — ---.	 S	 (5.5) 

it	1+t 

The conditions (5.2) are transformed into the homogeneous conditions 

ti(-1)u(1)0.	 (5.6) 

We assume that g is continuously differentiable with g'(0) < 0, g'(b) > 0 and put 

I	g'(0)z+H	, z<O, 
1 g'(b)(x - b) + H , z > b, 

such that F in (5.4) is defined for all (t, u) e [-1,1] x R. The parameter E in (5.3) is an 
additional unknown, which is to be considered as a function E = E(k) of k E (0, 1). So we 
obtain the equation E(k) = 0 for the determination of k. We ask wether, for each fixed parameter 
k, Theorem 4.1 is applicable to equation (5.3). If we assume that g' is monotonously increasing, 
relation (4.3) is satisfied under the condition Ig'(0)g'(b)I < 1 . Relations (4.4) and (4.5) follow 
fromg(0) = g(b) = H and F(-1,O) = g'(b), F,(1, O) = g'(0). It remains to show the existence 
of constants lo > 0 and tS > 0 such that 

WWI <l0(l—t2)-8,	—1 <t< 1,	 (5.7) 

and (4.7) are satisfied. By partial integration we obtain from (5.5) 

H	 1nds	b 
At) - 1)(1 - k2s2) - (

l - I), 

which implies

H	1/k2	 ds	 b 
= rK'(12 - s)(s - 1)(1 - Vs) + 2 

Taking into account [7, §221 we conclude (5.7) for 5 = .. Thus, with the help of Theorem 4.1 
it is possible to ensure the existence of a continuous solution u of (5.3), (5.4) for each fixed 
parameter k E (0, 1) under natural conditions on the shape of the channel. 
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