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On the Solvability of Nonlinear Singular Integral Equations

P. JUNGHANNS and U. WEBER

Three classes of nonlinear singular integral equations of Cauchy type occunng in the treatment of certain
free boundary value problems are investigated. Existence of the solution is proved under weaker condi-
tions than in [13] using the technique which was created in (12, 13] and is based on the application of
Schauder’s fixed point theorem. :

Key words: Nonlinear Cauchy type singular integral equations

AMS subject classification: 45E05, 46G05

1 Ii;troduction

In investigating and solving certain free boundary value problems by means of nonlinear singular
integral operators there occur equations of the form (cf. (2, 3, 10, 11])
o1

F(z,u(z)) = %/u(y)dy.*_c’ -1<z<1,
<1
and
1
"u(:r:) = %/ F(yYu(y)) dy f(x)-*-c, -1 S z S 1.

-1

Thereby, one of the assumptions, under which in [13] the existence of a solution u with p-
summable derivative, p > 1, was proved, is violated, namely the condition

£, |Fe(z, )] < lo(1 - 2)7, (1.1)

where g and § < % are some nonnegative constants. In the above mentioned situation, the last
relation is fulfilled only in case § = -‘2- In {10, 11] one can find some remarks that, nevertheless,
in the special cases considered there the equations are solvable.

In the present paper we show that the restriction on the constant § in (1.1) can be weakened
even in the general situation. In particular, by keeping of all the other assumptions in [13] even
6 > 1 is permissible. The existence of the solution can be proved in principle with the technique
of {12, 13) being based on the application of Schauder’s fixed point theorem. In Section 2 this will
be done for equations of the first type. Equations of the second type are considered in Section
3. Section 4 is dedicated to a third class of equations, for which an example is given in Section 5.
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2 Equations of the first type
We consider singular integral equ.ations of the form.
F(z,u(z)):(S;t)(z)+c, -1 5.25 1, ' (2.1)
where S denotes the Cauchy singular integral operator |
1
-2 /32
-1

We search for continuous functions u and real numbers ¢ satisfying (2.1) and the additional

(Su)(z

=t|--

conditions .
u(—1)~='u(1)=0. : = (2.2)

More precisely, we will ask for functions u for which a real number p > 1 and a function v € L?
exist such that u(z) = [% v(y)dyand u(1) = 0. Here L? = LP(~1, 1) denotes the usual Lebesgue
space of all measurable functlons v for which |v(z)|P is summable, and ||v[|, is the usual norm
in L. The set of all such functions u we will call W(;+. In order to prove the existence of a
solution u € W+ of problem (2.1),(2.2) we assume that the following assumption is fulfilled.

Al: F = F(z,u): [-1,]]xR - R (R := (=00, +20)) possesses a continuous partial derivative
F. and a partial derivative F, which is continuous with respect to u € R for allmost all
z and measurable with respect to z € [-1,1] for all v € R (Carathéodory condition).
Furthermore, there ezist constants lg,l,,13,6 > 0 such that hi; <1 and

-l € Fy(z,u) < 1, (z,u)e[-1,1] xR, (2.3)

Fe(z,u)l Slo(1-2%)"%,  (z,u)e[-1,1]xR, . - ‘ (24)

5 < 3 _ arctanl, + arctaﬁ 12. o ’ . (2.8)
- 4 S 2

We remark that in view of l;{; < 1 the estimation (2.5) is weaker than the condmon 6 < 1/2
from [13].
2.1 - Reduction to a fixed point equation

Let u(z) = [*, v(y)dy be a solution of problem (2.1),(2.2) with the above required  properties.
Then we can differentiate equatlon (2 1) (cf [8], Chapt II ‘Lemmad. 1); Takmg into account
rondmon (2. 2) we oblam ' : t )

a(z)v(x)—(Sv)(z);g(z), ' . R o (2.6)

WhérPia(I)‘ = Fu(z,u(z)) and §(z) = - F,(z,u(z)). Smce, in"view of Assumption Al ‘the

function a is continuous there exist continuous functions a [-1,1] = (0,1)yand 7: [-1,1] —
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such that a(z) + i = r(z)exp[ira(z)]. From (2.2) it follows that the solution v of (2.6) has to
satisfy the condition

/_ll v(y)dy=0. - : : - (2.7)

To find an explicit expression for the solution v of problem (2.6), (2.7) we use the results of [1,
§9.5] (cf. also [4, 7, 8]). With P = 3(I—iS) and Q = I — P = }(I +S) (I denotes the identity
operator) we can write equation (2.6) in the equivalent form

Bv:=[P(a-i)+Qa+i)jv=g

Put ¢(z) = [a(z) - i]/[a(z) + i] = exp[—2mia(z)]). Then, for all sufficiently small p > 1, the
function ¢ admits a generalized LP-factorization ¢(z) = c_(z)(z — i)~ 'c4(z), where

e_(z) =

1
-i [ ow) , | _ (- ilalz)- i
—, &P [—xﬂa(z) +_[ = zdy} = (1= 2)r(z) exp[r(Sa)(z)],

1 .
ce(z)=(1-z)exp [—iﬂa(x) - / ;(_y:)tdy] = a- zzt()z) =il exp[—-n(Sa)(z))
-1 .

Hence, B : LP — LP is a Fredholm operator with index 1, and a right inverse of B is gi\ﬂen by

-1
-1y - S+ . LN g
B s Plati)+Qa-d—=I

where z(z) = (1 — z)r(z)exp[—-n(Sa)(z)]. Because of (2.4) and (2.5) we have g € L? for all
sufficiently small p > 1. We show that v = B(~")g is the solution of problem (2.6),(2.7). For
this end we have to prove that v = B(~Yg satisfies condition (2.7). Indeed, taking into account

_ z
27 Y (al + S)r—zl,_ (2.8)

relation (2.8) we conclude that (a+t)cyv lies in the image of the operator P(a+¢)I + Q(a —#)I,
which implies (cf. [1, §9.5])

1 . .
0= /_l(a+ i)epvfes — e (z - i)z - i) 'dz = /-|(a+ i)(c- 1)vdz = —2:’/_l v(z) dz.

Integrating the obtained expression for v, we can summarize our investigations to the result that
each solution u € Wyt of problem (2.1),(2.2) is a solution of the fixed point equation

W@)= (@)= [ Luut)dy,  weCo @9
where _ . '
_ o(z) I(z) z(y)g(y) dy
L(z u(z)) =TE )y( )+ / (y) 7-¢ y _ (2.10)

and Co = Cy[-1, 1] denotes the Banach space of all continuous functions on [-1,1] satisfying
the boundary conditions (2.2). In the sequel it"will be proved that the kernel L(z,u(z)) is'an
element of L? for some p > 1 if u € Cp. Consequently, each solution of equation (2.9) is also a
solution of problem (2.1),(2.2). B

The expression of the kernel of the integral operator T considered in [13] is a little bit more
complicated than expression (2.10). It is possnble to choose this simpler version since v = B{(~1)g
fulfils condition (2.7).
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2.2 Investigation of the kernel L(x,u(x))

The aim of this subsection is to obtain some preliminary results which give us the possibility
to handle the fixed point equation (2.9} with the help of Schauder’s fixed point theorem. By
llullo = sup{lu(z)| : = € [-1,1]} we denote the norm in the Banach space Cq. In all what
follows we assume {u,} C Co, u € Cp and lu, — uljc — 0 (n — 00) and use the notations
a(z) = Fu(z,u(z)), an(z) = Fy(z,un(z)), and analogous notations for functions depending on
u or u,. Obviously we have

llan = alleo — 0 (n = o0), (2.11)
since the norms [|u,|lco are uniformly bounded. Furthermore, it holds

gn — g a.e. : (2.12)
(cf. Assumption Al1). With y(z) := arctana(z) = 7/2 — ra(z) we can write

2(z) = V1 - 27 (z) expl(S)(2).
From (2.10) we conclude

L(z,(z)) = sinly(2)] h(z) + coslr(2)] Mz, u(2), (2.13)
where h(z) = g(2)/r(z) = cos[y(z)]g(z) and |

Mz, u(2)) = (1 - 2%) 7 exp[~(S7)(2)] (S{(1 = v*)"/*A(y) expl(S1)W)]}) (2).

Lemma 2.1: Let1 < p< §~'. Then h € L? and h, siny, — hsiny in L?. Moreover, the
estimation ||hl, < c(é,p) is valid, where the constant c(8, p) does not depend on u € Cy.

Proof: In view of the estimate (2.4) we have

1 1
/ Ih(z)Pdz < zg/ (1 = 2%)~8dz =: (§, p)P < oo.
-1 -1
From (2.11) and (2.12) it follows h,(z)sinvn(z) — h(z)siny(z) a.e., and (2.4) implies
[hn(z) sinya(z) — A(z)sin v{z)|" < 2”[8(i - z%)~%,

Now, from the Lebesgue theorem we conclude the assertion B

Let us introduce the notations 2w_ := arctanl, — arctanly, 2w, := arctanl; + arctanl;.
Because of 2|w_| < 7/2and 2w, = arctan[(I1+12)/(1-hi2)] € (0,F) we have 3/(1+2|w_|/7) > 2
and 7/2wy > 2. Thus, taking into account (2.5) there exists a k > 2 such that 0 < 3 — 26x,

T 2 3 K s '
20:°8°1 +2|w_|/1r} and 3o < 2wy
Defining u(z) := y(z) — w_ we obtain (cf. (2.3))

x<min{

1-2

(@) Swy (z€[-11])  and  (S1)()= (Sw)(2)+ I

, (2.14)
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and, consequently,

M(z,u(z)) = R(z)(Se)(z), | (2.15)
where
(8e)(z) = N(z)(1-2)"2(S[F-"(9)(1 - v*)"/*e(w)])(2), |

N(I) = (1 _ 1)—!/2—u-/r(1 + z)-l/2+w-/w'
. (2.16)
¢(z) = (1-2)"/"h(z)exp(Sp)(z)),
R(z) = (1-2%)""*exp[-(Sp)(z)].
In view of {2.14) and a lemma from [13, Appendix] we obtain
. T 1/x
”R"K < (m) =: d(w+,n) Vu € Co. (2.17)

Lemma 2.2: It holds R, — R in L*.

Proof: Let ¢ >0, 0 < ¥ < /(1 +¢), and (1 + €)(1 + 9) < 7/2w4. Defining the functions
®(u) = u° and fn(z) = |Ra(z)|* we can estimate

/_l, |1a(2)] #(1fn(2)]) dz
= /'1(1 — 22)~ (402 exp[—k(1 + 9)(Spn)(z)) dz

1
= [ (1= 22D - )2 expl(1 4 9)(Ska)(2)]

1 e(1+¢) 1 1/(1+e)
< {/ (l _ z?)—[¢/2(l+e)+|9/2](l+¢)/zdz} {/ (1 _ z2)—1/2 exp[—u(Sp,,)(z)] dI}
-1 -1 .

v/(1+e)

v

! 2\~1/2-9(14¢)/2 «/lt+e) 2y-1/2
= { [ = apyrrramsnvareaz L - ) expl—(Spa (@)

]

r )1/(1+e)

< const { —————
- (cos(uw+)

where we used the lemma from [13, Appendix] and the notation v := k(1 + €)(1 + 9J). Since
[l4n — gt]loc — O and since the operator S is continuous in L? for all ¢ > 1, it follows Sy, — Su
in measure, which implies, in view of the monotonicity of e*, f, — f in measure. From the
lemmas of Vallée-Poussin and Vitali (cf. [9, Chapt. VI, §3]) we obtain

[ hwdy— [ Ry, veel-1.1),
-1 -1

as well as || Rn|l« — [|R|l<- This yields the assertion B
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Lemma 2.3: For the above defined functions ¢,, and ¢ (cf. (2.16)) we have ||¢pn— ||« — 0.
Proof: Let max{x,x/(3 ~ 26x)} < ¢ < m/2w,, and ¢ = ¥x, where
¥(z) = h(z)(1 = )+ x(z) = (1 - )7 expl(Sp)(2)).
Further, let §:= ¢ and § := ex/(¢ — k). Then p=' + §=! = k=, which implies |||« < [|¥]l5]Ix]l3
where [[xlls < d(ws ,¢) and

. _ ot i
”1/)”! < Ig/ (1- z?)(z+x—26cn)/2(e—x)dx =:e(k,e)i < 00
-1

because of (¢ + k — 26ex)/2(c — &) . In the same manner as in Lhe proof of Lemma 2.2 we
can show that y, — x in L. Smce 1,[),. ¥ a.e. and

[¥a(2) = W) < (2Uo)i(1 = 2)fcr=2erzie=n),
the Lebesgue theorem implies 1, — % in L¢. Hence, ¢, — ¢ in L* B
Lemma 2.4: The operator S (cf. (2.16)) is continuous in the space L*, and
S0 ~ Selle — 0. |

Proof: The assertions follow from [1, §1.4, Lemma 4.2] and Lemma 2.3 B

2.3 Existence proof

Now, we are going to prove some assertions about the image and the continuity of the operator
T defined in (2.9). For constants R, Rg > 0 and A € (0,1) we define

KR Rer={u€Co: ||“||oo < R, [u(z1) - w(22)| < Rolzy — 2o, V21, 72 € [~ 1, 1]}

Proposition 2.5: There ezist constants R, Ro, and A such that for the operator T deﬁned
by (2.9) and (2.10) the inclusion T(Cq) C kR 'Ry, holds. :

Proof: Using (2.13),(2.15), Lemma 2.4, (2.17), Lemma 2.1, and the proof of Lemma 2.3, one
can estimate || L(-,u){|p, p = /2, by some constant Rg. If we define R = 2'/9Rg, ¢~' = 1—p~!
and A = ¢! we conclude || Tu|loo < R and |(Tu)(z;) — (Tu)(z2)| < R0|zl —z*

Proposition 2.8 (cf. [12]): The opemtor T : Co — Cg defined by (2 9) and (2.8) is
continuous.

“ Proof: One can show that '||L(-,u.,,) - L(u)),—o0 N
As a consequence of Proposition 2.5 we obtain T(Kg g ) CAIC,?'RO,,\. Since K@ g, » i a

convex and compact subset of Cy we are able to apply Schauder’s fixed point theorem to equation
(2.9) in accordance to Propositions 2.5 and 2.6. We terminate at the following theorem.

Theorem 2.7: Let Al be fulfilled. Then problem (2.1), (2.2) possesses a solution u € W(}*.'
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Let u € Co be a solution of the fixed point equation (2.9). Then the functions a(z) =
Fu(z,u(z)) and a(z) = } - larctana(z) are continuous. Consequently, the lemma from [13,
Appendix] implies the representation '

2(z) = (1 - 2)y/1 + [a(z)]exp[-7(Sa)(z)] = (1 + 2)* (1 - z)*w(z),

where w, w™! € L” for r € (1,00), B = a(—1), B2 = 1 — &(1), and B; € (0,1), j = 1,2. Hence,
ag/(1+a?) € L*for 1< s< 6. Since the operator (1 + z)~%1(1 - z)~P2S(1 + y)Pi(1 — y)*
is continuous in L? for 1 < s < min {ﬂf‘,ﬂ{'} , it follows, for 1 < p < min {,8,’1, 2”,6“‘},
L(-,u) € L? (cf. (2.10)). Thus, we have proved the following (cf. [13, Part I, Theorem 2]).

Corollary 2.8: Let Assumption Al be fulfilled. Then problem (2.1), (2.2) possesses a solu-

tion u(z) = [ v(t)dt, whereve [} LP and
1<p<po

1 11 1 1 1 1
po—mm{ﬂl ﬂz } ﬁ1=§—;arctanf‘u(—l,0), ﬂ2=§+;arctanﬂ(l,0).

Remark 2.9: The assertions of Theorem 2. 7 and Corollary 2.8 remain valid if instead of
condition (2.4) we assume that there ezist constants by,by > 0 and v € [0, 1) such that

IFI(I,U)I < IO(K)(I - x?)-ﬁ’ (x,u) € [_lv 1] X [—k’vk’]v K > 07
with lo(K) = by + b, K¥ and § > 0 satisfying (2.5) (cf. [13, Part I, §4.1, Remark]).

Proof: Let u € Cy and |lullo < K. From the proofs of Lemma 2.1, Lemma 2.3, and
Proposition 2.5 we conclude

klly < lo(K) e, llllx < o(K)ea, IIL(-u)llp € Lo(K) €3,

where

1 1/p _
= {/ l(1 - 22)_6”(11'} , €3 = ¢ + d{wy,K)||S]|xc2,

1 (e=x)/en e
_ _ g?yletn=28ex)/2(e=x) 4 } <;>
= {[0- y cos(ewn))

If we choose K > 0 such that 2!/9¢3lo(K) < I\',..r‘ =1-p~!, we obtain T(K% Ren) C IC%,RO_,\
for R = 2'/9Ry, Ro = lo(K)es, and A = ¢! . Since Proposmon 2.6 remains valid we can apply
Schauder’s fixed point theorem W

3 Equations of the second type

Now, consider equations of the kind

u@) = (SFCuh@)+ @ +e  -1Sz<l, | (3.1)
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with the conditions
F(—l,u(—l)):F(l,u(l)):O. (32)

The set of functions u for which a real number p > 1 and a function v € L” exist such that
u(z) = u(-1) + fZ, v(y) dy and for which the conditions (3.2) are fulfilled will be denoted by
W}.-+. We distinguish two cases and make the following assumption.

A2: F = F(z,u):[-1,1] x R — R possesses a continuous partial derivative F,, where

Fu(-1,u)2> 0, F(1,u) =0, Vu € R, (3.3)
lim F(-1,u)<0, lim F(-1,u)>0, (3.4)

u——00 u—+oco

-l £ Fu(z,u) <l (z,u)e[-1L1]xR, L,1,20, Lil;< 1 (3.5)

in Case 1, and
0<l < Fyz,u)<lp < o0 ' (3.6)

in Case 2. The partial derivative F, satisfies the Carathéodory condition. The function
f is absolutely continuous and possesses a measurable derivative f'. Furthermore, there
erist constants §, lo > 0 such that ‘

[Fe(z, u)l, 1f(2) S lo(1 - 2275, (z,u) e [-1,1] xR, (3.7)

where, in Case 1,

5 < 3 _arctanl, + arctanl, (3.8)
4 27

and, in Case 2,

1 1
1.1 ‘ 3.9
§< 3 + o arctan/, (3.9)

We remark that in Case 1 the condition F(1,%(1)) = 0 is automatically satisfied.

3.1 Reduction to a fixed point equation
Differentiation of (3.1) with regard to (3.2) yields
v(z) — (Sav)(z) = g(z), (3.10)

where a(z) = F,(z,u(z)) and g(z) = f'(z) + (S[F:(-,u)])(z). We define y(z) = arctane(z)
(principal branch), r(z) = /1 + a%(z), and z;(z) = (1 - z)%2r(z) exp[—(Sy)(z)], where §;;
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denotes the Kronecker delta. Using again the results of [1, §9.5], we obtain the fixed point
equation

u(e) = (Tu)(e) = ks + [ (Li(w )+ 6527 ()ldy, we C (3.11)
in Case j, where
. _9(2) '@ [ aw)zv)ely) dy ‘
Lilz, u(@) = o5+ 4 ./. Pt (3.12)

and the constants k; and ¢; (§ = 1, 2) have to fulfil the equations ¢; = 0,

F(-1,k;) =0, (3.13)

F(l,k2 + /_ll Ly(z,u(z))dz + c2 /_ll z{‘(z)dz) =0. (3.14)

With the same arguments as in Subsection 2.1 one can show that the problem (3.1),(3.2) for
u€ W}f is equivalent to the fixed point problem (3.11) in the respective Case j.
3.2 Investigation of the kernels L;(x, u(x))

We shall investigate the operators T, in the Banach space C = C[-1,1]. To prove the conti-
nuity of T; we consider an arbitrary sequence {u,} C C with ||u, — u|lcc — 0 and use anal-
ogous notations as in Subsection 2.2. Obviously, relation (2.11) remains valid, which implies

[l7n = 7lloo — 0. Analogously to (2.13) we write .
Lj(z,u(z)) = cos®[y(z)g(z) + cos[y(z)|M;(z, u(z)), (3.15)
where h(z) = a(2)g(z)/r(z) = sinl(z)] o(z) and |
M;(z,u(z)) := (1 - 2) =2 exp[(S)(2)) (S{(1 - 9)**h(y) exp[~(S1)(¥)]}) (2)-
Lemma 3.1: If 1< p< 6!, then g, — ¢ in LP. Moreover, we have
loll, < (1 + ISI,)c(8,)  VueC.

Proof: Compare the proof of Lemma 2.1

In Case 1, let 2w_ := arctanl, — arctan!y, 2w, := arctanl; + arctan!;, and, in Case 2,
2w_ := J+arctanly, 2wy = §—arctanly. Furthermore, let u(z) := ¥(z) —w_. We remark that
in both cases we have w, € (0,7/4),6 < 3/4 — wy/m, |u(z)| € wy. Furthermore, the relations
|w-] < 7/4in Case 1 and /4 <w_ < /2 in Case 2 are fulfilled. Again we write

Mj(z,u(z)) = R(z)(5;4)(z). : (3.16)
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S;¢ is defined as in (2.16) (with N instead of N}, where
Ni(z) = (L+z)7=/7(1—z)bare-lm,
#(z) = (1- 22/ h(z)exp[-(Su)(z)], ‘ (3.17)
R(z) = (1-2%)"/*exp[(Sp)(2)],

and the number x can be chosen so that 3 — 26x > 0 and

2<n<min{L32} 5 < L
2wy’ 3-268 " 2wy’
Since k < ﬁ- and |u(z)] < wy, the estimation (2.17) for all u € C and Lemma 2.2 remain

valid. In Case 2 we additionally require

3

K< m . (3.18)

Lemma 3.2: The relation ||¢, — ||« — 0 holds true.

Proof: We proceed in the same way as in the proof of Lemma 2.3. Hence, we put ¢ = (w-i—w),\'
with

wz) = sinfy(@))(1-2")"f(2),
wz) = sinfy(2))(1-23)"(S{(1 - ¥*)7(1 - ¥)" Fely, u(w))]}) (),
x(z) = (1-2%)7*exp[~(Su)(2)],

where 1 = (¢ + k)/2¢x and ¢ is a fixed number such that

K ™
max {x, 5= b <e < |
Define = ¢ and § = ex/(e — ). Then p~' + ¢~ = x7" and ||¢llc < ([llg + lwllg)xlls-
Since 3¢/2ek < 3/2 < K, we obtain §' — 1 < - < ¢~'. Thus, p~'SpI € L(L?), where
p(z) = (1 — 2?)™". Consequently, in the same manner as in the proof of Lemma 2.3 it follows
the assertion and ||¢||« < e(k,€)[l + ||p“SpI|!,;](f(u+,5) a

Lemma 3.3: The operators S;, j = 1,2 (cf. (2.16), (3.17)), are continuous in L".

Proof: As in the proof of Lemma 2.4 we write g, in the form p;ISp,I, where

w 1 w_ 1
(z) = a1(] = z)o2 =Y __ =6, — T 3.19
pi(z) (.1 +z) (1 - z2)?, o — = as 6_12 . P ( )
Because of 2 < K < 3and —=1/4 < w_/m < 1/2 we have 3/2k — | < w_/m < 3/2K, i.e. K11«

oy < k71, Since in Case 1 we have |w_|/7 < 1/4, it also holds 3/2x —1 < —w_/m < 3/2k, which
implies k™! =1 < az < k~'. In Case 2 we obtain from (3.18) that 3/2x -1 < 1 —w_ /7 < 3/2x,
which yields k™1 — 1 < az < k~!, too 11

Corollary 3.4: In both cases j = 1,2 there holds ||§Jd>,, - S,4|l« — 0.
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Lemma 3.5: In Case 2 the L"/7 -norm of z;' is uniformly bounded with respect to u € C.
Furthermore, it holds z{_ — z;' in L2,

Proof: Write 2;'(z) = cos[v(z)]p; '(z)R(z). where p; and R are deﬁned in (3.19) and
(3.17). Since ax < k=1, k = 1,2 (cf. the proof of Lemma 3.3), it holds P2 ' € L*. Thus. in view
of (2.17),

22y < 1oz Hlad(wy, ). . "(3.20)

The second assertion follows from Lemma 2.2 B

3.3 Existence proof

Because of (3.4) there exists a solution k; of equation (3.13) in Case 1. which we will fix for the
sequel. In Case 2 the solutions k; of {3.13) and ko of F(l,i:2) = 0 are uniquely determined.

Lemma 3.6 ([13], Part 11, §3.2): Thcre ezists a constant D > 0 such that

/'l #Y(z)dz>D VueC.
For constants R, Ro > 0 and A € (0, 1) we define

KRRroa = {u € C: |lullo < R, |u(z1) - u(z2)| < Rolz1~ ", Vo, z5 € [-1.1)).
Proposition 3.7: It holds T;(C) C Kp.gy.\ for some constants R, Ro > 0 and A € (0.1).

Proof: We estimate ||L;(-, u)||, (cf. (3.12)). Having regard to (3.20). Lemma 3.6. and

1 —1¢. 1
g = {/ 25 (z) dz} {kg—k; -'/ Lo(z. u(::'))da:} : ' S (3.21)
the proof can be completed in the same way as the proof of Proposition 2. a ]
Proposition 3.8 (cf. {12]): The operators T; : C — C defined by (3.11) are continuous.

In accordance to Propositions 3.7 and 3.8 the operators T; : Kp.gon — AR.Ror. J = 1.2,
satisfy the conditions of Schauder’s fixed point theorem. Thus, the following theorem is proved.

Theorem 3.9: Let Assumption Al for the Case 1 or Case 2 be fulfilled. Then problem
(3.1), (3. 2) possesses a solution u € Wi+

In the same manner as Corollary 2 8 and Remark 2.9 we can prove the follomng assertions.

Corollary 3.10 (cf. {13], Part II, Theorem 2): Under the conditions of Theorem 3.9
the problem (3.1), (3.2) possesses a solution u(r) = u(-1) + fZ, v(t)dt. where v e [ LF

1<p<po
and in
C 1 {l l} Case 2: lin{] ! l}
ase 1: = min e 2: =n — .7
) Po ' ? : H K2 6
where

m = % sup{arctan F,(-l.u):u €R}. jp=1- % inf{arctan F,(1.u): v € R}.

Remark 3.11 (cf. [13], Part II, §4.1, Remark 1): Condition (3.7) (with respect to Fy)
can be replaced by the weaker conditions of Remark 2.9 with § > 0 satisfying (3.8) resp. (1.9).
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3.4 The case F(x1,u)=0
Let us consider the equation
u(z) = (S[F(-, u)))(z) + f(z), -1<z <1, ue WH, (3.22)

under the following assumption.

A3: F = F(z,u):[-1,1] xR — R possesses a continuous partial derivative F, satisfying
—h < FR(z,u) <y, (z,u)e[-1,1]xR, I,,1,>0, L, <1, (3.23)

and

F(£1,u)=0 Vu € R. (3.24)

With respect to F; and f' let Assumption A2 be fulfilled with relations (3.7) and (3.8).

As in Subsection 3.1 we obtain a fixed point equation
x
u(z) = (Tou)z) = ko + [ Lo(w u(w)dy, ueC, (3.25)

which is equivalent to problem (3.22). The kernel Lo(z,u(z)) is given by equation (3.12) and
z0(z) = r(x)exp[—(Sv)(z)]. The constant kg is determined by

bo=Fo-1 [ (=27 [ Loty ulv)dye, (3.26)

where Fy = [ (1 - 22)~1/2f(z) dz. Relation (3.26) follows by multiplying equation (3.22) by
(1= 2%)=/2 and integrating over [-1,1]. Thus, all the results obtained in Subsection 3.2 with
respect to the kernel Ly(z,u(z)) remain valid for the kernel Lo(z,u(z)). Taking into account
(3.26), which yields |ko| < |Fo| + || Lo(-, u)|lp, it is easily seen that Propositions 3.7 and 3.8 hold
true also for j = 0. Thus, the following theorem is in force (cf. [13, Part 11, Theorem 2]).

Theorem 3.12: If Assumption A3 is fulfilled, problem (3.22) possesses a solution u € W,l,-+,

Furthermore, u(z) = u(-1) + [, v(t)dt, whereve () LP.
1<p<1/6

The second part of the theorem can be proved in the same way as Corollary 2.8. Remark
3.11 also remains valid (with é > 0 satisfying (3.8), cf. also [13, Part II, §4.1, Remark 1]).

4 Equations of the third type

We consider the equation

u(z) = (S[F(,u)])(z)+ f(z)+c+dz, -1<z<]1, (4.1)
with the conditions

u(-1)=u(1)=0 (4.2)

and make the following assumption.
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A4: F = F(z,u):[-1,1) x R — R posscsses a continuous partial derivative F,. where

—ll < Fu(I,u)SIQ, (I,H)E [—l]]?([R. 1),1220, Liy < 1. - (4.3)
F(£1,0) =0, ’ T4
Fu(-1,0)20,  F.(1,0)<0. L ~ (45)

The partial derivative F, satisfies the Carathéodory condition. The function f is absolutely
continuous and possesses a measurable derivative f'. Furthermore. there exist constants
é, lo > 0 such that V

|Fe(z, w)l, |f(z)] < bo(1 - 22)7°. (z.u)€[-1,1] xR. (1.6)
where
5 < § _ arctan!; + arctan/; o 4 W
4 2

We seek functions u € Wy* and real numbers ¢, d satisfying (4.1) and (4.2). Having regard
to {4.2) and (4.4), for the derivative v of u. we again obtain equation (3.10) with g + d instead
of g. The index of this equation in L for all sufficiently small p > 1 is equal to zero because of
(4.5). Taking into account

1
. / a(y)xly) dy
r2(z s r(y) y-z
-1
(cf. [4, §1.1]) this leads to the fixed point equation

1
u(z) = /_‘[L(y,u(y))+ dz"\(y)]dy. ueC.

where

L(z,u(z)) =

g(z) '(z)/a(y):(y)y(y) dy

(z) 2(y) y-=z 2(z) = r(z)exp(=(S)(x)].

r(z), v(z) as in Section 3.1, and d = —f_ L(r. u(:r))dz/f_ 2~Y(z)dz . Now. the proof of the
following theorem can be given in the same mauner as that of Theorem 3.9 for the Case 1 in
Subsections 3.2 and 3.3.

Theorem 4.1: Let Assumption A4 be fulfilled. Then. for problem (4.1).(4.2). there erists

a solution u € W3*. Moreover, u(z) = [Z, v(t)dt. whereve (| LP and
1<p<po

Po = min {ﬁi['ﬂ%'%}‘ b= % arctan F,(=1.0). 82 = _:_r arctan F,(1.0)
(B =00 if B; = 0).

Remark 4.2: The condition (4.6) on F, in Assumption A4 can be replaced by the weaker
conditions of Remark 2.9 with é > 0 satisfying (4.7).
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5 An example

In [11] there is considered the problem of two-dimensional free surface seepage flow from a

nonlinear channel (see the picture). The problem is transformed into a nonlinear singular integral

équation
1 n d
t(t)—;/ %-D=R(t), -l<t<, (5.1)
where g(z), 0 SAz < b, describes the shape of the channel and the right-hand side is given by
do

1k re(k, r(k, — H (-
R(t) = / [( c -u] oy rlkit)= H = g [ s

[ o+t

dr

¢
KI=F(\/1'—’C2,1), F(k’()=/0 \/(1_72)(1_k27-2)'

The function z and the parameters k € (0,1) and D € R are unknown, where z has to satisfy

the boundary conditions

z(-1)=b,2(1)=0 (5.2)
Y i
MO 7 Bib)
_— e
free boundary S, free boundary S,
~ ~
seepage region )
+/ D(d,0) ‘ C(c,0)
7 e
drain
Substituting z(t) = u(t) + %(1 —t), from (5.1) we obtain
1
u(:):l/ M—D-m:m), “1<t<l, (5.3)
T J_y s—1t
where
(5.4)

F(t,u):g(g(l —-t)+u)y-H
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b H 1-t
ty=R()~=(1- — . 5.
J() = RO = 301 - 0+ T n (55)
The conditions (5.2) are transformed into the homogeneous conditions
u(-1)=u(l)=0. (5.6)

We assume that g is continuously differentiable with g’(0) < 0, g’(b) > 0 and put

gd0)z+ H , <0,
o-|
gb)Nz-b)+H , z>b,

such that F in (5.4) is defined for all (t,u) € [-1,1] x R. The parameter E in (5.3) is an
additional unknown, which is to be considered as a function E = E(k) of k € (0,1). So we
obtain the equation E(k) = 0 for the determination of k. We ask wether, for each fixed parameter
k , Theorem 4.1 is applicable to equation (5.3). If we assume that g’ is monotonously increasing,
relation (4.3) is satisfied under the condition [¢'(0) ¢’(b)| < 1. Relations (4.4) and (4.5) follow
from.g{0) = g(b) = H and F,(-1,0) = ¢’(b), Fu.(1,0) = ¢’(0). It remains to show the existence
of constants lg > 0 and § > 0 such that ' I C

FOI<b(l-3)%, -1<t<l, (5.7)

and (4.7) are satisfied. By partial integration we obtain from (5.5)

_H 1/k ln:%:ds b
f(t)" T K’ f \/(32—1)(1-]:282)_5(1_‘)’

which implies

o H 1/k? ds b
0= 15 | @ Ve -Fs) ' 2’

Taking into account {7, §22] we conclude (5.7) for 6 = §. Thus, with the help of Theorem 4.1
it is possible to ensure the existence of a continuous solution u of (5.3), (5.4) for each fixed

parameter k € (0, 1) under natural conditions on the shape of the channel.
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