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Under a suitable assumption necessary optimality conditions are derived foi non-smooth minimax 
problems involving infinitely many functions. The results obtained here generalize some necessary 

optimality conditions for mathematical programming and minimax problems. 
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1. Introduction 

Let C be a non-empty subset of a normed space X. and let Q be a compact topological 
space. For all a E Q, let fr, be an extended real-valued function on X. Ve shall he 

concerned with the minimax problem 

(P)	 min {F'(r) := SIIP(IEQ fn(.T) .r € C}. 

Optimality conditions for minimax problems involving functions that are differentiable 
in the sense of Fréchet or Gâteaux are given by several authors, but in this paper we are 
interested in general necessary conditions of the type given in [4. 5. 101.In recent years. 

in non-smooth anal ysis a calculus for various directional derivatives and suhgradients 
of locally Lipschitzian functions and even larger classes of functions has been developed 
(see. e.g.. [3, 8. 11 - 15]). The results obtained in 113. 151 yield necessary optimality 

conditions for problem (P) of the type mentioned above. The purpose of this paper is 
to establish various necessary optimality conditions for problem (P) in a rather general 

setting. 
The remainder of the paper is organized as follows. Section 2 is devoted to derive 

a general necessary optimality condition for problem (P) together with some examples. 

In Section 3, we give a necessary condition in terms of subgradients and polar cozies. 
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We also give here examples corresponding to the special cases introduced in Section 2. 
Finally, in Section 4 we establish necessary optimality conditions for a mathematical 
program with mixed constraints. 

2. General necessary optimality conditions 

The point xo E C will be a local minimizer for problem (P). We assume throughout 
that the function a '-4 f0 (xo) is upper semicontinuous and finite-valued on Q. This 
implies in particular that F(xo) = SUPEQ f(xo) is finite, since Q is compact. 

We recall 13, p.551 that the contingent cone to C at x0 is the set

 ^ 

Kc(xo)={dEXthtdd 
tn O, xo+tndnECforal1nET 

there exist sequences d} C X, {t} C R such

 I 
Define the set Qo = {a E Q If(xo) = F(xo)}. Assume that for every a E Q we have 
an extended real-valued function	on X such that 
(1) for all a E Q, v,, is convex along rays issuing from the origin, and	(0) 0 
(2) for all d E K(x0 ), a i—* p(d) is upper semicontinuom on Q and finite on Q \ Qo. 
These assumptions are valid throughout. 

Let us introduce the following 

Assumption 2.1: For all d E K(zo) and all sequences{d} C X, {t,} C JR 
with d —+ d, t,, 10, x 0 + td E C for all n E f1 there holds the inequality 

W ,, (d) > hmsup f(xo + td) — f(xo)

n-00	tn 

uniformly in a E Q. 

Theorem 2.2: Let x0 E C be a local minimizer for problem (P). Assume that 
Assumption 2.1 is fulfilled. Then 

sup	d) ^! 0	for all d E K(zo).	 (2.1) 
EQo 

Proof: Suppose that inequality (2.1) is false. So, there exists d E K(xo) and 
p > 0 such that

<—p < 0	for all a E Qo .	 (2.2) 
Define 0,, (d) = fG(xQ)+(d). It follows from (2.2) that, for all a e Qo, 0. (d) ( 
where i = F(xo). Note that ñi is finite. We shall begin with showing that there is 
d Ad E K(xo) such that

tI() <ñi	for all a E Q.	 (2.3)
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To do this, we set U = {a e QI(d) < —/2}. In view of (2.2) one has Qn C U. 

By virtue of the upper scinicontinuitv of the mapping o - 0 (d). Q \ U is compact. 
Hence, by the upper semicontinuity of the mapping o	f0 (r), we can find a constant

1 >0 such that, for all 8 E Q \ (.1. 18(10) < ñz —1, and therefore also 

	

0j3 (0) = f8( xo) + ,i(0)	- 1.	 (2.4) 

Since the set Q \ U is compact and the mapping o s— p(d) is upper semicontinuous 
and finite on Q\ U, we can find a constant -y E .111 such that d) <y for all 8 E Q\ U. 
whence

	

(d) = f(xo) + p 8 (d)	i? + '. .	 (2.5) 

For A e (0.1). dA	Ad = Ad+(1 - A)0 E K(xo). Then by virtue of the convexity

along rays of 0,, and the definition of U we get that, for all a E U. 

<A(2) + (1 - A)(0) < A( -	+ (1 - A) =	- Ali < .	(2.6) 

For 13 E Q \ U. it follows from (2.4) and (2.5) that 

0(d) < Á(ñì + ) + (1 - A)(ñz —1) = iii —1 + A(y + 1). 

For A small enough. —1 + A( + 1) <0, which implies i1' 8 (d.) < ñ. This together with 
(2.6) gives (2.3), whence supOEQ (f,.( xo) + d)) < 7i. Then for some number i > 0 
we obtain the inequality 

f(xo)+p(d)	-	for all  eQ.	(2.7) 

Since de Kc(xo). there exist sequences (d } C X. {t } C JR with d,, - d. t,, 10 such 
that X + t a d,, E C. Taking account of Assumption 2.1, we get 

f0(xo+td)—f,(xo) lim sup	 <40(d) (2.8) 

	

n—	 tit - 

uniformly in a. Combining (2.7) and (2.8) yields that 

f(x0+td)—f0(xo) < 

	

Ii... sup	 ni - - f(.r) 
11-00	f TI	 - 

uniformly in a. Consequently. for c > 0 there is a natural number N (not depending 
on a) such that, for all n > N, 

f(xo+td)—f(xo)	——f(xo)+e.	 (2.9) 
tit 

We can assume that t	1. as t, 10. So. observing that ñì - f(xo) ^! 0. from (2.9) it 
follows that
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f(xo + td) < f(xn) + t( - - f(xo) + e) 
= fn(X) + t(iI - f(xo)) -	- 

= -	- c). 

In particular, for e < we obtain F(xo + td) < ñì = F(xo) for all n > N, which 
conflicts with the hypothesis that xo is a local minimizer for (P) I 

In the sequel we apply Theorem 2.2 to various forms of derivatives of the functions 
X -, R. In all these examples, property (1) of the function Pa will be satisfied 

automatically. It remains to enforce property (2) and Assumption 2.1. 

Example 1. Let the functions f, he Fréchet differentiable at x 0 . Then, for all 
sequences {d} CX, It,, I C 111 with d - d, t 10, there holds 

f(XO+tndn)fa(Xo) inn	 = (f0 (xo), d).	 (2.10) fl—oo 

We set d) = (fc(Xo),d). We require for all d E K(xo) that the mapping 
a -* (f(x0), d) is upper semicontinuous, and that (2.10) holds uniformly in a. Then 
Assumption 2.1 is satisfied, and from Theorem 2.2 we obtain 

sup (f(xo).d) 2 0	for all d E Kc(xo).
oEQ0 

Example 2. Let the functions f, be Hadamard differentiable at xo. This means 
that for each a E Q there exists Vf,(xo) E X* such that, for alld E X, 

f(xo + td') - f0(xo) urn	 = (Vf0(xo),d).	 (2.11) d'—d, t i n	t 

We set pn (d) = (Vf0(xo),d). We require for all d E Kc(x0) that the mapping a 
(Vf(,(xo).d) is upper semicontinuous, and that the limit (2.11) is uniform in a. Then 
Assumption 2.1 is satisfied, and from Theorem 2.2 we obtain 

sup (Vf,,(xo),d) 2 0	for all d E K(xo).
aEQ0 

This is a generalization of Theorem 1 in [7]. 

Example 3. Let the functions f,. he Lipschitz in a neighborhood of x 0 with a 
Lipschitz constant L being independent of a. Clarke's directional derivative of f at x0 
with respect to d is defined as 

f(xo;d)	linisup f(x +td) - f(x)	
(2.12) 

z-.zo,tjO	t
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We set con(d)	f(xo;d). We require for all d E Kc(xo) that the mapping a 
f(xo;d) is upper semicontinuous and that (2.12) holds uniformly in a. Then Assump-
tion 2.1 is satisfied, since 

urn sup f0 (xo + td) - fo(xo) 
d—d, i0	 tn 

< lim sup f
0 (xo + id) - f0 (xo) + tLIId - dli 

d —d, I n jO	 tn 

= lim sup fa(Xo + t ad) - f0(zo) 
tn 

< lim sup 
f0 (x+ td) —f0(x) 

z—.zo, (1 0	t 

= f(xo;d) 

uniformly in a. Hence from Theorem 2.2 we obtain 

sup f(xo;d) ^! 0	for all d E Kc(xo). 
c,EQ0 

Example 4. Let the functions f be directionally Lipschitzian at x0 in the sense 
that

f(xo;d) < oo	for all d  K(xo), 

where
+ (xo;	

f0(x+td')—y 
10	d) :=	limsup  

(r.,)-.(o.f(ro)),	 t 
(..n)€ p J. ,d'—.d,UO 

Here cpu 0 (x, -y) E X  .1R1 -y > f0 (x)} denotes the epigraph of the function f . We 
set p0 (d) = f(xo;d). We require for all d E K(xo) that the mapping a - f(xo;d) 

is upper semicontinuous, and that the limit (2.13) is uniform in a. Then Assumption 
2.1 is satisfied, since 

f(xo;d) 2 limsup fo(xo 
+td')—f0(xo) 

>lims up
f0 (xo +td) — f0(xo) 

t	 n—c 

uniformly in a. Hence from Theorem 2.2 we obtain 

sup f(xo;d) 2 0	for all d. E Kc(xo). 
aEQo 

Example 5. We recall 13, p.531 that Clarke's tangent cone to a set A at Zo is 

defined as

for all sequences {xn} C A, {t,1 } C JR with 

TA(xo)= d E X x, --+ XO, tn j.O there exists asequence{d}CX 

with d —* d, x + tndn E A for all n E E
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For a function  which is finite at xo the Rockafellar directional derivative of f at x 0 in 
the direction d is then defined as 

f 1 (ro:d) = infr[ (d. r) E Tepif(Xo.f(Xo))}. 

The ext,ende(l real-valued function 1 1 (10 : . ) has the following properties: 

epi f 1 ( x0 :. ) = T);f(xo,f(xo)) 

f 1 (ro; . ) is lower sernicontinuous and sublinear. 

If f 1 (.ro: .) is proper. then f1 (xo:0) = 0, else f 1 (zo;O) = —. If f+(x o ; (1) < 00, then 
f I (xo: d) = f+( .r o ; d). For further discussions on the Rockafellar derivative we refer to 
[3. 8 1 11. 13[. We set now p(d) = f(xo;d). We require for all d E Kc(xo) that the 
mapping a - f(xo:d) is upper semicontinuous on Q and finite on Q \ Qo, and that 
for all sequences {d} C X. {t} C JR with d -' d, t,, 10 there holds 

fo;d) 2 
limsup f(xo +td) - fa(Xo) (2.14) 

in 

uniformly in a. Then Assumption 2.1 is satisfied, and from Theorem 2.2 we obtain 

slip (xo;d) 20 for all (/E Kc(xo). 
-EQ. 

We give now another optimality condition, which also involves f, but is indepen-
dent of Theorem 2.2. 

Assumption 2.3: For all d E K(xo), the following is true: 

(i) lin1infd'd d"—d, t- 1 0 (f.(ro+td') f.(.o+1d")) = 0 

uniformly in a; for all a E Q and all d E Kc( xo), f(x + td') and fo(xo + td") are 
finite for all t > 0 in a neighborhood of 0 and all (d', d") in a neighborhood of (d, d). 

(ii) SUPCQ0 f(xa;d) 2 F 1 (xo;d) for all d E K(-, (xo). 

Proposition 2.4: Let xo E C be a local minimizer for problem (P) Assume thit 
Assumption 2.3 is fulfilled. Then 

sup fJxo; d) 2 0	for all d E Kc( xo) .	 (2.15) 
0€ Qo 

Proof Suppose that (2.15) is false. This means that there exist d E Kc(xo) and 
z>0such that

sup f(xo;d) < —;z <0.	 (2.16) 
aEQ0
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It follows from Assumption 2.31(u) and inequality (2.16) that Fl (xo;d)	—p, that is

(d, —p ) E epiF T (xo; . ). Moreover, 

	

epiFt (xo; . ) = TepiF(XO, F(xo)).	 (2.17) 

Since d E Kc(xo), there exist sequences {d0 } C X, {t} C JR with dn —d, t 0 1 0 such 
that x0 +t0d5 € C. It follows from (2.17) that there exist sequences {d,} C X, 4 jz} C 
JR with d'0 - , An -, - such that (xo, F(xo)) + tn(d'n ,	E epiF, which implies 
that

F(x0+tnd)—F(x0) < 
tn - 

By Assumption 2.3/(i), for e > 0 there exists a subsequence { nk} C I (not depending 
on a) such that

<C	for 
all 

aEQ.	(2.19)

tflt' 

Combining (2.18) and (2.19) yields that 

F(xo + t n , dn , - F(xo)	
+ tnt' 

Since tint' - -, there is an N E JN(not depending on a) such that, for all k 2 N, 

F(xo + tn,dn t' ) - F(xo)
< — ii + 2e,. 

tn, 

which implies that F(xo +tn t' dn t' )— F(xo) <tn t' (2 - ti). Fore small enough, 2e - < 0. 
Then for all k 2 N we have F(zo +tn,. )—F(xo) <0, which contradicts the hypothesis 
that xO is a local minimizer for (P) I 

Remark 2.5: Proposition 2.4 includes Theorem 6 of [8] as a special case. 

3. Necessary conditions in terms of subgradients 

In this section we assume that the function W,, is sublinear for all a € Q . Let X be 
the topological dual of X. Let	 S 

O(0) := {x' e X I (x* , d) ( W,, (d) for all d € X) 

In what follows M is a closed convex subcone of Kc(xo) with vertex at the origin, M 
denotes the polar cone of M, i.e., 

M*={XEX*l(x*,d)>0 for all dEM}.



716 D V. LUU .rd W. OETTLI 

We write X to indicate that X is endowed with the weak* topology. 

Theorem 3.1: Let x, be a local minimizer for problem (F). Assume that the 


	

hypotheses of Theorem 2.2 hold; O(0) 54 0 and p(d) = supZ . E	(0) (x,d) for all

o E Qo. Then

0 E ci (co(UQQ0 O(0)) - M)	 (3.1)


where co and cI denote convex hull and weak* closure, respectively. 

Proof: Taking account of Theorem 2.2 we get 

sup cp(d) ^! 0	for all d e M.	 (3.2) 
QEQ0 

We now assume that the inclusion (3.1) is false, i.e., 

0 V Cl (co(U 0E Q 0 Op(0)) - M).	 (3.3) 

The right-hand side of (3.3) is weak* closed convex. So from a standard separation 
theorem for convex sets (see, e.g., Theorem 3.6 in 16]) there exist d0 E (X) = X and 

E JR such that 

0 > y> (, d0 )	for all e E co(UEQo	O)) - M. 
Since M* is a cone containing the origin this implies 

0 > (,d0 )	for alk E —M	 (3.4) 

0 > > (,d0 )	for all E U EQ0 a 0 (o).	 (3.5) 

It follows from (3.4) that d0 M = M. if follows from (3.5) that 

O>	sup (, do) =p0 (do)	for 
all 

üEQo

EI'0(0) 

whence 0 > 511PuEQ0	(d0 ). This contradicts inequality (3.2) I 
Remark 3.2: We remark that, conversely, (3.1) implies (3.2). Indeed, assume now 

that (3.1) is true. Observe that if A is any subset of X', then d being an element of the 
weak closure of A implies that for all d € X and e > 0 there exists a E A such that 
(a - d' d) < e. Hence for every d E X and e > 0 there exist finitely many c, E Qo, 
, E Op,.( 0 ), A1 ^! 0 satisfying , A,	1, and m E M S such that 

.—e <	A(.,d) - (m e d)	)1',(d) - (md)
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Choosing d E M we get

E	 < sup pe(d). 
eEQo 

Since e is arbitrary this implies SUP Q0	d) 2 0. Hence (3.1) implies (3.2). 

Remark 3.3: If Cl (co UeEQO Oz(0)) is weak' compact, then (3.1) becomes 

o € ci co U 092cs(0)) - M.	 (3.6)
\ eQ 

Indeed, from the general fact that the equality cl(A+B) = cl(clA+B) is true, if we take 
A COUeEQO 8(0) and B = —M', then ciA + B is weak' closed. So the assertion is 
proved. 

For the remaining part of this section we assume that X is a Banach space. 

Corollary 3.4: Let z0 be a local minimizer for problem (P). Assume that the 
hypotheses of Theorem 2.2 hold, is lower semi continuous, proper and upper-bounded 
in a neighborhood of 0 for all a € Qo, and that the mapping a 1--4 O(0). is upper 
semicontinuous from Q into X. Then 0 € cl(coU0 EQ 0 3(0)) - M'. 

Proof: From Theorem 3.1 and Remark 3.3 we need only to show that the set 
cl (CO U0Q0 'e(0)) is weak' compact. By virtue of Proposition 2.1.4 in [3], Oip0(0) 
for all a € Q are non-empty weak' compact subsets of X', and the equality = 
maxZ . E (o)(x,d) is true. Making use of the compactness of Qo and the upper semi-
continuity of the mapping a i—i Oz(0) we get that U OEQ0 ô(0) is weak' compact 
(see, e.g., [2, p.116]). Since X is a Banach space, the set ci (Co U EQ0 O(0)) is weak' 
compact I 

Examples. We will apply Corollary 3.4 to some of the examples considered already 
in Section 2. 

1. The functions f, are Fréchet differentiable at xo, and (d) := (f(zo), d). 
We require that the mapping a i—+ f,(zo) is continuous from Q into x;. Then 
from the inequality 8up 6Qo (f,(zo),d) 2 0 for all d € K(xo) it follows that 0 € 
Cl CO(UeEQO f,(xo)) - M'. This is a generalization of a necessary condition in [5, p.59]. 

2. The functions f, are Lipschitz in a neighborhood of x 0 , and p0 (d) := f(zo;d). 
Then V,, is lower semicontinuous, proper, and upper bounded in a neighborhood of 0. 
Let

09°f0(xo) := {x' E X' I (x*, d) 5 f(vo;d) for all d  X}.
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We require that the mapping o '-+ O°f(xo) is upper semicontinuous from Q into X. 
Then from the inequality SUPOEQO f(xo;d) 2 0 for all d E K(xo) it follows that 
0 € ci co (U -EQ. O°fn(x0)) — M. 

3. Let p,, (d)	f(xo;d). Then	is lower semicontinuous. Let 

{x € X p (x*,d) <f(xo;d) for all dE X}. 

We require that the mapping o O1fa(X0) is upper semicontinuous from Q into 
X, and that f(xo; . ) is proper and upper bounded in a neighborhood of 0. Then 
from the inequality supQQ0 f(xo;d) 2 0 for all d E K(xo) it follows that 0 € 
ci co (Uc€q o ôhf(xo)) — M*. 

4. A constrained mathematical program 

Let us consider the problem 

(MP)	 min{f(x) I r € C, F(x) :5 0} 

where F(x) = SUPnEQ fn(X). Here f is an extended real-valued function on X, f, (o € 
Q) and C are as in problem (P), Xo € C will be a local minimizer of problem (MP). The 
functions f and W. have the same properties as requested at the beginning of Section 2. 
The function I is supposed to be finite in x0 . The function is upper semicontinuous 
and positively homogeneous on X. A further requirement for W is given in the following 

Assumption 4.1: Let the following conditions be true. 
(i) For all d E Kc(xo) and all sequences {d} C X, {i} C JR with d — d, t . 

0, xo + td E C there holds 

(d) > lim sup f(xo +td)—f(x0) 
in 

(ii) cl{d € Kc(xo)I SUPQ6Q0 p0(d) < 01 J {d € K (xo) I SUPO EQ O cpa(d)	01, 
where cl indicates the norm closure. 

Theorem 4.2: Let Xo E C be a local minimizer for problem (MP). Assume that 
Assumptions 2.1 and 4.1 are fulfilled. Then 

(d) 2 0 for all d € Kc(xo) satisfying sup p0(d) 0.	(4.1)

aEQo 

Proof: We first prove that p(d) 2 0 for all d € Kc(xo) satisfying SUPC,EQ0 (d) < 
0. Suppose that this is false. So there is a d € Kc(xo) satisfying SUPOEQO	<0
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and () < 0. Hence, for some i > 0, () —p < 0. Define 00 (d) = fs(zo) + d). 
In the same way as in the proof of Theorem 2.2 we can find a d = ,\d E K(xo) such 
that

sup t,1 0 (d) < in- ,	where	= F(xo). 
oEQ 

Since 41 E Kc(xo), there exist sequences {d} C X, {i} C JR with d —* d, t, 10 such 
that x0 + indn € C. Making use of Assumption 2.1, by an argument analogous to that 
used for the proof of Theorem 2.2 we can find an N1 € W such that, for all n N1, 
F(xo + td) - F(zo) <0. Hence x0 + td is a feasible point of problem (MP). On 
the other hand, since (d) < —p it follows from the positive homogeneity of that 
(d) = < — < 0, where = )ip. By Assumption 4.11(i), for e > 0 there is an 

N2 € IV, N2 ^! N1 such that, for all n N2, 

f(o+tndn)—f(z0)
— 

tfl	
+e, 

whence f(ro + t,, d,,) - f(zo) < t,, (— + e). Consequently, for < i we get f(xo + 
tndn) - 1(xo) < 0, which contradicts the hypothesis that x 0 is a local minimizer for 
problem (MP). So, we have proved that 

on {d€Kc(xo) I SUpOEQcOcI,(d)<0}. 

Since is upper semicontinuous, it follows that 

(d)>0 onci{d€Kc(xo) I sUpOEQ0,(d)<0}. 

By Assumption 4.11(u), we get (d) ^! 0 on {d € K(xo) I SUPOQ0 p0(d) 01 U 

To derive a necessary optimality condition for problem (MP) in terms of subgra-
dients, we now assume that ip and W,, are sublinear for all a € Q. Let 

Ocp(0):={x'EX'I(z',d)<ço(d) for all d€X}. 

As before, M is a closed convex subcone of Kc(xo) with vertex at the origin. 

Theorem 4.3: Let x0 € C be a local minimizer for problem (MP). Assume that 
Assumptions 2.1 and 4.1 are fulfilled. Suppose, furthermore, that 0(0) is non-empty, 
weak' compact and (d) = supZ.Ea(0)(x',d); for each a € Qo, O'(0) is non-empty 
and p 5 (d) = supX.Ea,(o)(x,d). Then 

0 € 8(0) + ci (cc(U0 E Q0 O(0)) - Al')	 (4.2)


where cc and cl denote convex conical hull and weak' closure, respectively.
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Proof: By Theorem 4.2 we get 

V(d) > 0 for alld E Msatisfyingsup Q0 p0(d) 0. (4.3) 

Assume now that (4.2) is not true. So 0 does not belong to the set on the right-
hand side. The latter is weak * closed, since 0p(0) is weak* compact. Moreover it is 
convex. So from a standard separation theorem (see, e.g., Theorem 3.6 in 161) there 

exist d0 E (X) = X and y E IR such that 

0 > y ^!	do) VC E O(0) + CC(UOEQ O ô'0(0)) - M*. 

Since CC(UOEQ O 61(0)) and M' are cones it follows from this that 

0>'y^!(,do)	for all €8(0), 

o > (, do)	for all € UOEQO 0p(0), 

0>(,do)	for all E_M*. 

The first of these inequalities implies w(do) <0. The second implies (do) 0 for all 

o E Qo . The third implies d0 € M = M, which is a contradiction with (4.3) U 

Remark 4.4: We remark that, conversely, (4.2) implies (4.3). The proof is similar 
to the one given in Remark 3.2. 

Remark 4.5: If we assume that the function V is lower semicontinuous, proper, 
sublinear, then it can be expressed by equality p(d) supX .E(o ) (x , d) where O(0) 
is non-empty, weak closed (see, e.g., [3, p.29]). If we suppose, in addition, that p is 
upper-bounded in a neighborhood of 0, or that X is a Banach space and is a finite 
function on X, then O(0) is weak compact (see, e.g., Theorem 5 in [8] and Proposition 
2.1.4 in [31). 
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