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Necessary Optimality Conditions for Non-Smooth Minimax Problems

D.V. LUU and W. OETTLI

Under a suitable assumption necessary optimality conditions are derived for non-smooth minimax
problems involving infinitely many functions. The results obtained here generalize some necessary

optimality conditions for mathematical programming and minimax problems.
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1. Introduction

Let C be a non-empty subset of a normed space X. and let (2 be a compact topological
space. For all o € Q, let f, be an extended real-valued function on X. We s_ha.ll be

concerned with the minimax problem
(P) min{F(x):: sup,eq folr) | .rGC}.

Optimality conditions for minimax problems involving functions that are differentiable
in the sense of Fréchet or Gateaux are given by several authors, but in this paper we are
interested in gencral necessary conditions of the type given in [4. 5. 10].In recent years.
in non-smooth analysis a calculus for various directional derivatives and snbgraxijénts
of locally Lipschitzian functions and even larger classes of functions has been developed
(see. e.g.. [3, 8. 11 — 15]). The results obtained in (13. 15) S’ield necessary optimality
conditions for problem (P) of the type mentioned above. The purpose of this paper is
to establish various necessary optimality conditions for problem (P) in a rather general
setting. ‘ '

The remainder of the papér is organized as follows. Section 2 is devoted to derive
a general necessary optimality condition for problem ( P) together with some examples.

In Section 3. we give a necessary condition in terms of subgradients and polar cones.
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We also give here examples corresponding to the special cases introduced in Section 2.
Finally, in Section 4 we establish necessary optlmalxty conditions for a mathematical
program with mixed constraints.

2. General necessary optimality conditions

The point z9 € C will be a local minimizer for problem (P). We assume throughout
that' the function a — f,(z¢) is upper semicontinuous and finite-valued on Q. This
implies in particular that F(z¢) = Sup,eq fa(Zo) is finite, since Q is compact.

We recall [3, p.55] that the contingent cone to C at z, is the set

. ' | there exist sequences {d,} C X, {t.} C IR such
Kc(zg)=¢de X .
- thatd, = d, t, | 0, g+ tad, € Cforallne IV

Define the set Qo = {a € Q |fa(z0) = F(z0)}. Assume that for every a € Q we have
an extended real-valued function ¢, on X such that
(1) for all a € Q, ¢, is convex along rays issuing from the origin, and ¢4(0) <0
(2) for all d € Kc(zo), @ — wald) is upper semicontinuous on Q and finite on Q \ Q.
These assumptions are valid throughout.

Let us introduce the following

Assumption 2.1: For all d € Kc(z0) and all sequences {d,} C X, {t.} C R
with d, — d, t, | 0,20 + tnds € C for all n € IN there holds the inequality

¢a(d) 2 limsup fo(zo + tndn) — fa(z0)

n-—oo tYl

uniformly in o € Q.

Theorem 2.2: Let zo € C be a local minimizer for problem (P). Assume that
Assumptxon 2.1 is fulfilled. Then

sup @a(d) >0 - for alld € Kc(zo). (2.1)
a€Qo

Proof: Suppose that inequality (2.1) is false. So, there exists d € K¢(zo) and
# > 0 such that
$ald) < —u <0 for all a € Q. (2.2)
Define 5(d) = fo(z0)+pal(d). It follows from (2.2) that, for all @ € Qq, Ya(d) < M —p,
where m = F(z,). Note that i is finite. We shall begin with showing that there is
d=xe¢ K¢ (zg) such that

Po(d) < forallac Q. - (2.3)
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To do this, we set U = {a € Q|ga(d) < —p/2}. In view of (2.2) onc has Qa C L.
By virtue of the upper semicontinuity of the mapping a — 4(d). @ \ U is compact.
Hence, by the upper semicontinuity of the mapping a — f,(rg). we can find a constant
{ > 0 such that. for all 8 € Q \ U, fs(zp) < m — |, and therefore also

¥3(0) = falzo) + pp(0) <m - L (2.4)

Since the set Q \ U is compact and the mapping a — Pald) is upper semicontinuous

and finite on Q\ U, we can find a constant v € IR such that xpg(a) <~forall 3e Q\U.

whence ‘
¥3(d) = fo(zo) +ppld) S+, (2.5)

For A € (0,1). dy := Ad = Ad+ (1 — A)0 € R¢:(z0). Then by virtuc of the convexity
along rays of ¥, and the definition of U we get that, for all a € U,
Yold2) < Mo(@) + (1= Na(0) S A= 5) 4 (1= D =~ Shu< . (26)
For B € Q \ U, it follows from (2.4) and (2.5) that
Yalda) S AMm+ )+ (1 - Am - =m -1+ Ay +1).

For A small enough. —{ + A(y + 1) < 0, which implies Q’g(d,\) < m. This together with
(2.6) gives (2.3), whence sup,eq(folzo) + (po(g)) < . Then for some number i > 0

we obtain the inequality

~

folzo) +pald) <m—1 for all a € Q. (2.7)

Since d € Kc(xo). there exist sequences {d,} C X. {tn} C IR withd, — d. t, | 0 such
that z¢ + t,d, € C. Taking account of Assumption 2.1, we get

fo(zo +tndn) — falz0) < pa(d) ~ (2.8)

lim sup
n—oo f“

uniformly in a. Combining (2.7) and (2.8) yiclds that

falzo +tndn) = falzo) o o 2 o0

lim sup
n—oo f"

uniformly in a. Conscquently. for € > 0 there is a natural number N (not depending
on «) such that, for all n > N,

fn(l'o + t":ln) - .fﬂ(rﬂ) S m _ﬁ_ fo(io) + &. (29)

We can assumc that ¢, < 1. as t, | 0. So. observing that m — fa(zo) 2 0. from (2.9) it
follows that
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falzo + tndn) < falZa) + ta(M — i — folzo) +€)
= fal(zo) + ta(M — fa(zo)) — ta(fi =€)
< fo(Zo) + 7 = fa(zo) — ta(i — €)
=m—ty(f —€).

In particular, for € < fi we obtain F(zy + tndn) < m = F(zq) for all n > N, which
conflicts with the hypothesis that zg is a local minimizer for (P) |

In the sequel we apply Theorem 2.2 to various forms of derivatives of the functions
fa : X = R. In all these examples, property (1) of the function @ao will be satisfied

automatically. It remains to enforce property (2) and Assumption 2.1.
Example 1. Let the functions f, be Fréchet differentiable at zo. Then, for all
sequences {dn} C X, {tn} C R with d, — d, t, | 0, there holds
li fa(IO + tndn) - fo(-’to)
im

n—oo tn

= (f4(0), d). (2.10)

We set pq(d) = (fi(z0),d). We rcquife for all d € .Kc(zo) that the mapping
a — (f,(z9),d) is upper semicontinuous, and that (2.10) holds uniformly in «. Then
Assumption 2.1 is satisfied, and from Theorem 2.2 we obtain
sup (fi(z0),d) >0 for all d € K¢(z9).
‘a€Qo
- Example 2. Let the functions f, be Hadamard differentiable at zo. This means
that for each a € Q) there exists V fa(zo) € X* such that, for all'd € X,

fa(-’to + td') — f’o(x())
d'—d, t]0 t o

= (Vfa(20),d). (1)

We set pq(d) = (Vf(,(:ro),d). We require for all d € K¢(z4) that the mapping a —
(Vfal(za),d) is upper semicontinuous, and that the limit (2.11) is uniform in a. Then
Assumption 2.1 is satisfied, and from Theorem 2.2 we obtain

sup (V fa(zo),d) > 0 for all d € K(zo).
a€Qo

This is a gencralization of Theorem 1 in (7).

Example 3. Let the functions f, be Lipschitz in a neighborhood of z, with a
Lipschitz constant L being independent of a. Clarke’s directional derivative of f. at zq
with respect to d is defined as

foxo;d) := lim sup fo(z +td) - fa(I)'

z—1I9,t|0 . 13

(2.12)
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We set @a(d) = f%(zo;d). We require for all d € Kc(zo) that the mapping o —
f%(z0;d) is upper semicontinuous and that (2.12) holds uniformly in a. Then Assump-
tion 2.1 is satisfied, since

fa(Zo + tadn) — fa(zo)

lim sup
dn—d, t, |0 tn |

< limsup f2(Fottnd) = fo(zo) + tnLlldn - d|
dn—d, {410 ta

= lim sup f‘.’(xo + tnd) _ fa(To)

tal0 tn

< limsup fa(z +td) — fo(z)
z—zo, |0 t

= fa(zo;d)

uniformly in «. Hence from Theorem 2.2 we obtain

sup fO(zo;d) >0 for all d € Kc(zo).
a€Qo : ,

Example 4. Let the functions fa be directionally Lipschitzian at zo in the sense

that
fi(zo;d) < 0 for all d € K¢e(zo),
where '
fH(zg;d) := lim sup IM (2.13)
' (£.7)=(z0.sa(z0)). t

(£.7)€epito,d'—d,c10
Here epifs := {(z,7) € X X R| v > fo(z)} denotes the epigraph of the function fa. We
set wol(d) = f¥(zo;d). We require for all d € Kc(zo) that the mapping a — f3(zo; d)
is upper semicontinuous, and that the limit (2.13) is uniform in a. Then Assumption
2.1 is satisfied, since A .

o ‘ _ . )
f:(xd;d) > Iimsup fa(2o +td') — fa(zo) > limsup fa(zo + t",d") fa(zo) -
d'—d,t]0 . t n—oo ta

uniformly in a. Hence from Theorem 2.2 we obtain

sup fI(zo;d) >0 for all d € Kc(zo). - -

a€Qo

Example 5. We recall (3, p.53] that Clarke’s tangent cone to a set A at zg is
defined as

‘| for all sequences{z,} C 4, '{t,,'} C R with
Ta(zo) = { d € X |zn — zo, tn | O there exists a sequence{d,} C X
with dn — d, Zn + tadn € A for all n € IN
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For a function f which is finite at zq the Rockafellar directional derivative of f at zo tn

the direction d is then defined as

f'(z'ozd) =inf {r| (d.r) € Tepislzo., f(70))}.

The extended real-valued function f1(xq:-) has the following properties:

Cpif1(.l'0; ) = Tcpi/(IO: f(-TO))
_fI (0;-) is lower semicontinuous and sublinear.

If fl(xo:-) is proper. then f1(x:0) = 0, else f1(29:0) = —oo. If f*(z0;d) < 0o, then
fl(ro:d) = f+(ro;d). For further discussions on the Rockafellar derivative we refer to
(3. 8. 11, 13]. We set now pa(d) = fl(xq;d). We require for all d € Kc(zo) that the
mapping o — fl(zg:d) is upper semicontinuous on Q and finite on Q \ Qo, and that
for all sequences {d,} C X. {t.} C R with d, — d,t, | 0 there holds

f;(‘-f(l;d) > limsup fn(.’to +tndn) - fa(ro)

n—oc f'"

(2.14)
uniformly in a. Then Assumption 2.1 is satisfied, and from Theorem 2.2 we obtain

sup f‘l(l'();d) >0 for all d € K¢e(xy)-
a€Qo

We give now another optimality condition, which also involves fl, but is indepen-
dent of Theorem 2.2.

Assumption 2.3: For all d € K(zo), the following is true:
falrottd)—falzo+td") ) _
t

’ (l) lim illfd;__.d‘ d" —d, g"o(
uniformly in a; for all & € @ and all d € Kc(20), fal(zo + td') and falza + td") are
finite for all t > 0 in a neighborhood of 0 and all (d',d") in a neighborhood of (d, d).

(i) SUPeQ, f(l(xo;d) > F'(Jzn;d) for all d € K¢ (zp).

Proposition 2.4: Let zo € C be a local minimizer for problem (P). Assume that
Assumption 2.3 is fulfilled. Then

sup fl(:ro;d) >0 for all d € K¢ (xo). (2.15)
a€Qo

Proof: Suppose that (2.15) is false. This means that there exist d € K¢(zo) and
# > 0 such that

sup f(',(:to;t_i) < —u<0. ' (2.16)
" a€Qo : :
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It follows from Assumption 2.3/(ii) and inequality (2.16) that F(zo;d) < —p, that is
(d, —p) € epiF(zo;-). Moreover,

epiF(zo;-) = Tepir(zo, F(20)). : (2.17)

Since d € Kc(zo), there exist sequences {dn} C X, {tn} C IR with dn — d,t, | 0 such
that zo + tad, € C. It follows from (2.17) that there exist sequences {d,} C X, {pn} C
R with d, — d, pn — —p such that (zo, F(20)) + ta(d,, n) € epiF, which implies
that

F(zo + tad),) — F(zo) <u
tn -
By Assumption 2.3/(i), for € > 0 there exists a subsequence {n¢} C IN (not depending
on &) such that '

(2.18)

o t" dn — Ja t'\ dl ‘ ‘
fo(@o +tmdn) = falzo ttmdns) . p o hoco (2.19)

tn,
Combining (2.18) and (2.19) yields that
F tn,dn,)— F
(@0 + tmdma) = Flao)

tn,
Since pn, — —pu, there is an N € IN-(not depending on a) such that, for all k > N,

F(zo +tn,dn,) — F(-’CO) < -

tn,

p+ 2.

which implies that F(zg+tn,dn, ) — F(z0) < tn,(2e —p). For ¢ small enough, 2¢ — < 0.
Then for all k > N we have F(zo+t,,dn, )—F(z0) < 0, which contradicts the hypothesis
that zg is a local minimizer for (P) |

Remark 2.5: Proposition 2.4 includes Theorem 6 of (8] as a special case.

3. Necessary conditions in terms of subgradients

In this section we assume that the function ¢, is sublinear for all a € Q. Let X* be
the topological dual of X. Let ' : :

6@0(0) i={z* € X* | (z*,d) < pa(d) forall dé X}.

In what follows M is a closed convex subcone of K¢(zo) with vertex at the origin, M*

denotes the polar cone of M, i.e.,

M*={z*€ X*|(z*,d) >0 foralde M}.
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We write X to indicate that X* is endowed with the weak* topology.

Theorem 3.1: Let ry be a local minimizer for problem (P). Assume that the
hypotheses of Theorem 2.2 hold; 8pq(0) # @ and @,(d) = SUP,« ey, (0)(T",d) for all
a € Qo. Then

0 € cl (co(Uaeq, Fpa(0)) — M*) ' (3.1)

where co and cl.denote convex hull and weak* closure, respectively.
Proof: Taking account of Theorem 2.2 we get

Sup waol(d) >0 for all d € M. ’ (3.2)
a€Qo

We now assume that the inclusion (3.1) is false, i.e.,
0 ¢ cl(co(Uacq, pa(0)) — M*). (3.3)

The right-hand side of (3.3) is weak* closed convex. So from a standard separation
theorem for convex sets (see, e.g., Theorem 3.6 in [6]) there exist dy € (X2)* = X and
v € IR such that :

0> > (£,dy) for all £ € co(Uaeg, Opal0)) — M*.
Since M* is a cone containing the origin this implies
0> (&,do)  forallf € —M* (3.4)

O > 2> (£, do) for all € Uaeq, Ova(0). (3.5)

It follows from (3.4) that dp € M** = M. If follows from (3.5) that

£€0¢a(0)

0>v2 sup (,do) =wa(do) forallae Qo

whence 0 > sup, ¢, waldo). This contrédicts inequality (3.2) |

Remark 3.2: We remark that, conversely, (3.1) implies (3.2), Indeed, assume now
that (3.1) is true. Observe that if 4 is any subset of X*, then @ being an elemenf of the
weak® closure of A implies that for all d € X and £ > 0 there exists a € 4 such that
|(a —@,d)| < e. Hence for every d € X and ¢ > 0 there exist finitely many @i € Qo,
€i € 8pa,(0), X; > 0 satisfying 3, A; = 1, and m* € M* such that

- < Z f\i(civ‘ii) - (m.vd) < Z,"ilpa"(d) — (m.7d>'
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Choosing d € M we get
—£ <Y Aiga,(d) < sup pa(d).
B ) a€Qo
Since ¢ is arbitrary this implies sup,¢q, ¥a(d) > 0. Hence (3.1) implies (3.2).

Remark 3.3: I cl(coUseq, 0pa(0)) is weak® compact, then (3.1) becomes

0 1 U Opa(0)) — M. 3.6
€C(°°oeoo sP()) (3.6)

Indeed, from the general fact that the equality cl(A+ B) = cl(clA+ B) is true, if we take
A = coUae@, O9o(0) and B = —M*, then clA + B is weak® closed. So the assertion is

proved.
For the remaining part of this section we assume that X is a Banach space.

Corollary 3.4: Let z¢ be a local minimizer for problem (P). Assume that the
hypotheses of Theorem 2.2 hold, ¢, is lower semicontinuous, proper and upper-bounded
in a neighborhood of @ for all a € Qo, and that the mapping a v 8p4(0). is upper
semicontinuous from Q into X*. Then0 € cl(coUaeq, Bpa(0)) — M*.

Proof: From Theorem 3.1 and Remark 3.3 we need only to show that the set
cl(coUaeq, Bpa(0)) is weak® compact. By virtue of Proposition 2.1.4 in (3], Opa(0)
for all @ € Q are non-empty weak* compact subsets of X*, and the equality ¢,(d) =
max;-ggy, (0){Z*,d) is true. Making use of the compactness of Qo and the upper semi-
continuity of the mapping a — 9p.(0) we get that Uaseg, Ova(0) is weak® compact
(see, e.g., [2, p.116]). Since X is a Banach space, the set cl(coUaeq, 0pa(0)) is weak®

compact

Examples. We will apply Corollary 3.4 to some of the examples considered already
in Section 2.

1. The functions f, are Fréchet differentiable at zo, and @a(d) := (fi(20),d).
We require that the mapping o - f;(zo) is continuous from @ into X?. Then
from the inequality sup,eq,(fa(%0),d) > 0 for all d € Kc(zo) it follows that 0 €
cl co(Uaeq, fi(z0)) — M*. This is a generalization of a necessary condition in [5, p.59].

2. The functions f, are Lipschitz in a neighborhood of z¢, and p4(d) := f2(z0;d).
Then ¢, is lower semicontinuous, proper, and upper bounded in a neighborhood of 0.
Let ' ‘ ' '

B fa(zo) 1= {z° € X* | (z*,d) < f2(%0;d) for all d € X}.
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We require that the mapping a — 3°f,(x¢) is upper semicontinuous from Q into X.
Then from the inequality sup,eq, fo(Zo;d) > 0 for all d € K¢(zo) it follows that
0€&clco (Uuer aofa(xo)) -

3. Let po(d) := fl(zo;d). Then ¢, is lower semicontinuous. Let
0" fa(z0) := {z* € X* | (z*,d) < fl(z0;d) for all d € X}.

We require that the mapping a — ' f,(zo) is upper semicontinuous from @ into
X2, and that fl(zo;-) is proper and upper bounded in a neighborhood of 0. Then
from the inequality sup,cq, fl(zo;d) > 0 for all d € Kc¢(zo) it follows that 0 €
cl co (Uaeq, 8" falzo)) — M*.

4. A constrained mathematical program

Let us consider the problem
(MP) min{f(z) | z € C, F(z) < 0}

where F(z) = sup,¢q fa(z). Here f is an extended real-valued function on X, f, (o €
Q) and C are as in problem (P), zo € C will be a local minimizer of problem (M P). The
functions f, and ¢, have the same properties as requested at the beginning of Section 2.
The function f is supposed to be finite in zo. The function ¢ is upper semicontinuous

and positively homogeneous on X. A further requirement for ¢ is given in the following

Assumption 4.1: Let the following conditions be true.
(i) For all d € Kc(zo) and all sequences {dn} C X, {t,} C R withd, — d, t, |
0, o + thdy € C there holds '

¢(d) > lim sup (2o + tndn) - f(:ro)‘

n—oo tﬂ

(ii) ci{d € Kc(zo)| supaeq, Po(d) < 0} D {d € Kc(zo) | supaeq, pald) < 0},
where cl indicates the norm closure.

Theorem 4.2: Let zo € C be a local minimizer for prob]em (M P) Assume that
Assumptions 2.1 and 4.1 are fulfilled. Then

@(d) > 0 for all d € K¢(zo) satisfying sup @a(d) < 0. (4.1)
. a€Qo

Proof: We first prove that ¢(d) > 0 for all d € Kc(zo) satisfying sup,eq, Pa(d) <
0. Suppose that this is false. So thereisa d € Kc(zo) satisfying sup,eq, ‘Pa(a) <0
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and ¢(d) < 0. Hence, for some u > 0, ¢(d) < —pu < 0. Define Ya(d) = fa(20) + @ald).
In the same way as in the proof of Theorem 2.2 we can find a d = A € Kc(zq) such
that

sup ‘(/)a(('i) < m, where m = F(zo).

a€Q
Since d € K¢(zo), there exist sequences {dn} C X, {ta} C R with d, — d, t, | 0 such
that zo + tnd, € C. Making use of Assumption 2.1, by an argument analogous to that
used for the proof of Theorem 2.2 we can find an N, € IV such that, for all n > N,
F(zo + tndn) — F(z0) < 0. Hence zq + t,d, is a feasible point of problem (MP). On
the other hand, since ¢(d) < —u it follows from the positive homogeneity of ¢ that
<p(3) = Ap(d) < —fi < 0, where i = Ap. By Assumption 4.1/(i), for € > 0 there is an
Nz € IN, N, > N, such that, for all n > N,

f(zo + tn‘:n) - f(lo) < —fi+te,

whence f(zo + tada) — f(z0) < ta(—f + €). Consequently, for € < & we get f(zo +
tads) — f(zo) < 0, which contradicts the hypothesis that zo is a local minimizer for
problem (M P). So, we have proved that

¢(d) >0 on {d€ Kc(2o) | supyeq, pald) < 0}.
Since ¢ is upper semicontinuous, it follows that
@(d) >0 oncl{d€ Kc(zo) | SUP,eQ, Pald) < 0}.
By Assumption 4.1/(ii), we get ¢(d) > 0 on {d € Kc(2o) | supyeq, Pald) < 0} |

To derive a necessary optimality condition for problem (MP) in terms of subgra-

dients, we now assume that ¢ and ¢, are sublinear for all a € . Let
9p(0) := {z* € X* | (z*,d) < p(d) foralld e X}.
As before, M is a closed convex subcone of Kc(zo) with vertex at the origin.

Theorem 4.3: Let zq € C be a local minimizer for problem (M P). Assume that
Assumptions 2.1 and 4.1 are fulfilled. Suppose, furthermore, that 8(0) is non-empty,
weak® compact and p(d) = supz.eaw(o)(z ,d); for each a € Qo, Bypa(0) is non- empty
and @,(d) = S“Pz'eav,,w)(l' ,d). Then

0 € 3p(0) + cl (cc(Uaeq, 8pa(0)) — M*) (4.2)

where cc and cl denote convex conical hull and weak® closure, respectively.
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Proof: By Theorem 4.2 we get
¢(d) > 0 for alld € Msatisfyingsup,¢q, ¥a(d) < 0. (4.3)

Assume now that (4.2) is not true. So 0 does not belong to the set on the right-
hand side. The latter is weak® closed, since 390(0) is weak* compact. Moreover it is
convex. So from a standard separation theorem (see, e.g., Theorem 3.6 in [6]) there
exist dp € (X2)* = X and 4 € IR such that 4

0> 7 2 (€ do) V& € 8p(0) + cc(Uaeq, Fpa(0)) — M.

Since cc(Uaecg, d9a(0)) and M* are cones it follows from this that

0>73>(€,do) forall € € Dp(0),
0> (£, dO) for all £ € Uaeq, 9pa(0),
0> (€, do) for all £ € —M".

The first of these inequalities implies (dy) < 0. The second implies @q(do) < 0 for all
@ € Qo. The third implies dy € M** = M, which is a contradiction with (4.3) |

Remark 4.4: We remark that, conversely, (4.2) implies (4.3). The proof is similar
to the one given in Remark 3.2.

Remark 4.5: If we assume that the function ¢ is lower semicontinuous, proper,
sublinear, then it can be expressed by equality p(d) = Sup,.ca,(0y(*,d) where 9¢(0)
is non-empty, weak® closed (see, e.g., [3, p.29]). If we suppose, in addition, that ¢ is
upper-bounded in a neighborhood of 0, or that X is a Banach space and ¢ is a finite
function on X, then 8p(0) is weak* compact (see, e.g., Theorem 5 in (8] and Proposition
2.1.4in [3]).
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