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On Optimality Conditions in some Control Problems 

for Memory Kernels in Viscoelasticity 
L. von WOLFERSDORF 

1'he inverse problem of identifying the memory kernel in the stress-strain-relation of Boltzmann 
type for a rod is reduced to an optimal control problem with a quadratic cost functional in the 
state for the related integro- differential wave equation. For this problem necessary optimality 
conditions are derived and transformed into explicit form by means of suitably defined adjoint 
state functions. 
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Recently papers by M. Grasselli, S.I. Kabanikhin, A. Lorenzi and others appeared in 
the literature dealing with the identification of memory kernels in the linear theory of 
viscoelasticity by solving a corresponding inverse problem, see for instance [1 - 3). Fol-
lowing the usual approach in estimating unknown parameters with the help of a related 
minimum condition Y. Yanno (6) and the author [5) reduced some identification problems 
of this kind to optimal control problems for the corresponding wave equation. Whereas 
Yanno deals with the creep memory kernel in an infinite interval with additional informa-
tion about the strain, we consider the relaxation memory kernel in a finite interval with 
additional information about the displacement itself. 

In the present paper for the solutions of the control problems with the integro-
differential equation in (5) optimality conditions are derived by defining suitable adjoint 
state functions. Thereby the class of problems in [5) is slightly broadened. 

1. Formulation of problems 

As in [5] we deal with the following inverse problem for determining the displacement 
U = u(x, t) and the memory kernel m = m(t) in a viscoelastic rod: 

i92 u	282u 
Lu p- j. (x,t) - c —(z,t) + Jm(t - r)-j (x,r)dr = X(x,t)	 (1) 

0 
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for 0< x < 1.0< t < T, 

u(x.0) = (z). u(x.0) = ?h (x)	for 0< x < 1	 (2) 
u(0.t)=u(1,t)=0	 for 0 < t < T	 (3) 

and additionally 

u(x0 . 0	h(t)	for 0 < t < 7'.	 (4) 

where xo E (0, 1). fixed. Here p is the mass density, c2 the instantaneous stress modulus 
and X the outer force density. The wave equation (1) follows from the well-known Boltz-
mann stress-strain relation between the strain c and the stress a, the relation c = 
and the momentum equation p(02 u/(9t 2 ) = 8a/(9x+ x, where we restrict ourselves to the 
most important case of constant p and c2 for m = m(t) (cp. [5]). 

Instead of the point condition (4) we also prescribe more realistic additional conditions 
in integral form

= h 3 (l)	(j = 1, .... q),	 (5) 

where -yj are non-negative weight functions such that the integrals in (5) represent average 
displacements in the neighbourhood of q points x 3 E (0, 1). 

In the corresponding optimal control problems the additional conditions (4) and (5) 
are replaced by the minimum condition 

mm 1-I[m]	 (6) 
EM 

where M is a prescribed class of physically admissible kernels rn and 

H [ m ] = li z - h 11 2 ,	z = u(x, .).	:	 (7) 

or

I[72] =± (11 i - h iI 2	(o >0)	 (8) 

with 

z= J y3 (x)u(x, .).dx	( 7j E L 2 (0,l)),	 (9) 

respectively. Hereu = u[m] is the solution of (1) - (3) corresponding to m. The given 
functions h, h, are from L 2 (0, 'I') and	denotes the norm in L2 (0, T). 

At first we recall some results from 1 51 on the solvability of the initial-value problem 
(1) - (3) which are based on the method in [4: Chap. 6, 2] and on the optimal control 
problem (6), (7). 

For given absolutely continuous kernel"m in [0,T] and data€H(0,l), ib E L2(0,l), 
X E L 2 (Q),Q = (0,1) x (0,T) the problem (1) - (3) has a unique generalized solution 
U E H(Q) which can he represented by a Fourier series 

n(x, 1) =	A(t) sin nirx	 (10)
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converging in H'(Q). If M is a compact subset of the space AC of absolutely continuous 
functions on [0, T], then the optimal control problem (6), (7) has an optimal solution m0. 
Further the functional (7) possesses the Fréchet derivative H'[m] defined by 

H'[m](k) = 2J F(1)Ui (x0 , i) dl,	F(t)	z(l) — h(l),	 (11) 

where U1 € H'(Q) is the generalized solution of the equation 

LU1 (x,t)= —Jk(t—r)uxz(xr)dr	 (12) 

with homogeneous initial and boundary conditions. 
The existence of an optimal control for the problem (6), (7) follows from the proof 

in [5] of the (indeed Lipschitz) continuity of the operator A : M -. L2 (0, T) defined by 
Am = u(x0, .), where u is the generalized solution of (1) - (3) corresponding to the kernel m 
in (1). Using Schwarz's inequality this proof extends to the operators A3 : M —' L2(0,T) 
defined by A,m = JJ -y,(x)u(x, .) dx. Therefore the'existence of an optimal control also 
holds true for the problem (6), (8). 

In the same way the proof in [5] of the Fréchet differentiability of the operator A 
carries 'over to the operators A, such that the functional (8) has the Fréchet derivative 
H'[m] given by 

H'[m](k) = 2J F(x, l)Ui (x, I) dxdt	 (13) 

with

F(x, t) = L oy(x)[z(l) — h(i)] € L2(Q).	
' 

2. Optimality conditions 

Let now M be a convex subset of the space AC. Then there holds the optimality condition 

H'[rn0](m — m0 ) > 0	for all m € M
	

(15) 

for an optimal solution m0 of problem (6), (7) and (6), (8), iespectively. This means 

JFO Ui O ,t)dt>O	for all mEM	 (16) 

and

JF
0(x,l)Ui (x,i)dxdt >0	for all m EM,	 (17)
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respectivel y, where F. = u 0(x 0 ,.) - h E L 2 (0. 7') and 

b(r. 1) =	o 3 (x)[z(t) - h( .t)] E "2(Q)	 (18) 

with r(t) = f (x)t(,r. /) dz and u,, E IP(Q) is the solution of (1) - (3) corresponding 
to rn 0. Analogously, U 1 is related to this solution tz,, of (1) - (3) and the increment 
k = in - m,, in (12). 

We transform the conditioris (16)t and (17) by means of an adjoint state function TP 
defined as generalized solution from H(Q) of the adjoint equation to (1) 

j"
	

P - c2 (x. t) + J m(r - t)	(x, r)dr 
= {	

- x) 

in Q. respectively, with homogenous boundary and terminal conditions. I.e., t/.' E H'(Q) 
fulfils the conditions j'(0, t) = 0(1,1) = 0 and (x,7') = 0 and the integral identity 

J [e21rti - f m 0(r t)7r(X. r)dr . (J_ pUt , t] dxdt 

f F0(t)U(x, ) dl	in case of (6), (7) =	0	 (19)
f F0 (x, t)U(x, I) dzdt in case of (6), (8) 
Q 

for any If E H'(Q) with (1(0,1) = 11(1,1) = 0 and (J(x,0) = 0. Since b E L2 (Q) in case 
of problem (6), (8) the existence of ' e H I (Q) to (19) follows from the considerations in I] as for the state function u. In case of problem (6), (7) we have 

=	(?,.(t) sin nrx ,	 S	 (20) 

where 

pC,.(l) + c2 7r 2 n 2 C.,.(l)	212 J C,.(7)7n 0 (r - I) d7 + Fn (t)	 (21) 

with F,, = 2sin mn 0	 E-12(0, 7') and (1,.(7') = C,,('l') = 0 The' functions C, satisfy
the Volterra integral equations 

(',.(t) - A,,(N,.C,.)(t) =	 (22)
where A, =

'l' 
II 

41,.(() = --
pA^ J 

F,.(.)sin[,.(.s - t)] d,	-	 (23) 

and

•1' 

JCn(r)pn(1,r)dr	 (24)
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with the kernels 

p(t,r) =	Irno(T - s)sinf(s - 1)jds. 

Since m0 E AC the kernels ),,p,, are uniformly bounded and there holds the estimation 
(cp. 151) 

max C5(t)I 15 Const' max 
el0 ,11	-	tE(O,T) 

and hence from (23) there follows C. = 0(1/n) and after an integration by parts in (23) 
C,, = 0(1/n) if additionally b, E AC is fulfilled. Further 

max C,,(t)I !^ Max 'P,,(t)I + Const An Max IC,,(t)I t€[o , t J	- tE(O,T)	 telO,T] 

such that C,, 0(1/n) for F,, E AC, too. Therefore we have 0 e L2 (Q) in general and 
?I' E H'(Q) under the additional assumptions It E AC and u,,(x,,,.) E AC. 

The function U1 E H'(Q) fulfils the integral identity 

I [ciiv 
-
/ m,,(t - T)(Jir(, r) dr yr - p	dxdi 

= J rv1 dxdt	(25) 

r(l) 
= / k(t - r)u,,(x, r) dr 

for any v E H'(Q) with v(O,t) = i)(1, t) = 0 and v(x,7') = 0. Taking the difference of 
(19) for U = U1 and (25) for v = , we obtain the optirnality conditions (16), (17) in the 
desired form 

J 1I(s)[rn_m o](s)ds>0	for all mEM,	
0	

(26) 

where 

If(s) = IT ) (x,t)uox(x,t - s)dxdt.	 (27) 

Theorem: tbr the problems (6), (7) and (6), (8) the optimality condition (26) with 
(27) holds, where the adjoint state function t E H(Q) is defined by the identity (19) 
and in case of problem (6), (7) the additional conditions h € AC and u,,(z,,,.) € AC are 
assumed. 

Remark: Using the Fourier expansion (20) for /' and the corresponding one for U1 it 
can be easily shown that the integrals in (16) and (26) are equal, where 

2 
H(s) = !_	n2 / A,,(t - s)C,,(t) di	 (28) 

51.
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with A the Fourier coefficients of u0 in (10). Therefore if u0 E L2 (Q), the optimality 
condition for problem (6), (7) can be taken also in the form (26) with 

If(s) = _J](x,t)U0 (x,t_s)dxd1,	 (29) 

where the adjoint state function b € L2 (Q) is now simply defined by (20) with (21) or 
(22) or equivalently as a function t/, E L2 (Q) satisfying the identity 

J LU(x, t)dxdt = J F0 (t)U(x0 , t) di	 (30) 

for any U € H 2 (Q) with U(0, t) = U(l,t) = 0 and U(x,0)=0. From (16) and (30) for 
U = U1 with (12) the condition (26) with (29) also follows in a direct way. The addi-
tional assumption u0 € L2 (Q) or u,, € H 2 (Q) is fulfilled if we have data W € H 2 (0, 1), 
Ti' € H'(O,l),X E H I (Q) with W = Ti' = X = 0 for x =0,1 in problem (1) - ( 3), for 
instance (cp. [51). (A corresponding remark is also true for problem (6), (8), of course.) 
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