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A Class of One-Dimensional Variational [nequalities
and Difference Schemes of Arbitrary Given Degree of Accuracy

[.P. GAWRILYUK

A new class of one-dimensional variational inequalities with obstruction on the boundary is
investigated and a theorem of existence and uniqueness of solution is proved. The investigated
properties of the exact solution give an opportunity to construct the three-point difference
relations for this solution (exact difference scheme). A numerical three - point approximation
of arbitrary given degree of accuracy (truncated difference scheme) is proposed.
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1. Introduction

The problems of determination of the temperature distribution in a long tunnel with air condi-
tioning or determination of the fluid (gas) pressure in a long pipe with semipermeable end-
walls imbedded into corresponding fluid (gas) surroundings are of practical interest. If u deno-
tes the temperature (pressure), then under the assumptions of stationary state and of suffi-
cient smoothness of the functions one can derive the following mathematical model (see [1,5]):

Lu = -(k(x)u'(x)) + q(x)ulx) = f(x), x €(0,1) 1)

~u(0)u(0) = u(u(1) =0, u(0),-u(0), u(l),u(l)=20,

where f, k, g are given functions, k(x) 2 k, = const > 0, g(x) 2 0. Let us consider the bilinear
form

2°0uv) = [(Kxu v () + guavin)ax,
the linear functional
1°(v) = [f(x)v(x)dx

defined on certain space Vand the closed convex set of functions

K = {veV:v(0),v(1) 2 0}.
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It is well-known that problem (1.1) can be formulated as problem of minimization (see [1,5])
Find u ¢ K such that J(u) = in;\_.l(v), J(v) = a%(v,v) - 21°%v) ' (1.2)
. veK . )

or as problem of solving the variational inequality
Find u ¢ K such that a®u,v -u) 2 1°(v - u) for all v € K. (1.3)

The approximation of solutions of (1.1) - (1.3) by various numerical schemes can be done as in
(5]. Our goal is to generalize the statement of the problem (1.3) and to construct three - point
difference approximations which are either exact or have arbitrary given degree of accuracy
on the network. We give minimal conditions (as far as we know) of smoothness of input data
which guarantee the existence of a unique solution from the class W,'(0,1) of the correspond-
ing variational inequality and construct for this problem the exact and truncated difference
schemes. Such schemes for the linear boundary value problems in classical and variational
formulations have been considered in [8,9] and for the problem (1.1) in [2]. -

2. Formulation of the problem, existence and uniqueness of solution

Let us consider the bilinear form

a(u,v) = a[o"](u, v)

(2.1)
= [k uTx)vi(x) - Q(x)(ulx)vix)))dx + Q(Du(Dw(1) - Q(0)u(0)v(0)
]
and the linear functional
. .
Lv) = Ipo q3(v) = _f(fo(x)v(x) - £(x)vi(x))dx : - (2.2)
o

defined on the Sobolev space W,'(0,1) where f,, f,, k, Q are given functions satisfying the fol-
lowing conditions, where K = {v e W,}(0,1): v(x) 2 0}:

k is measurable, 0 < k, s k(x) < k, < +, where k,, k, some constants (2.3)
QeWMO,1) (p22,1/p<xs1) (2.9)
fyeL,(0,1) and f ¢ W,¥0,1) (q,r22,0<9s1) (2.5)
'J:O(x)v'(x)dx + Q(1)v(1) - Q(0)v(0) 2 qo_fo‘v(,\")dx Vv vek, g, 20a constant. " (2.6)

We first study some properties of the bilinear form and connected linear functionals.
In analogy with [4], for the case g, > 0 one can obtain

la(u,v)l scllu IIWz; v "w,‘
2 .
a(v,v) 2 alvilyy (o= min{ky,qo}) and L) s BV llyyy (o = max {1l 14,0 })

Wwhere the constant ¢ does not depend on u and v. Hence for the functional J(v) = a(v,v) -2 I(v)

]
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there holds
) 2 1V Iy - 2819 llyy > +e0 when lIvllyy — +oo. (2.8)

Let g, = 0, i.e. instead of (2.6) the inequality

’ . — =
-fO(.\')v'(.\')a‘.\' +Q(v(1) - Q(O)v(0) 20 forall ve K (2.9)
o
is true. Let us clarify the sufficient condition which implies J(v) >+ when IIVII“,z, —> +00,

Set ¥(x) = v(x) - v(0), where ¥(0) = 0, ¥ ¢ W,(0,1) for ve W}(0,1). For such functions we have
the inequality :

1, X 1 x
i, =J(OV'(s)ds)2d.\- s E)[.\-J(v'(s))zdsd.\- 50,5173, (2.10)
Since v(x) = ¥(x) +v(0) we can write

Jv) = R ())2dx - [JQx)(v3x))dx + Q(DvE(1) - Q(O)v2(0)
[¢]

1

= 2f(£ 0 (x) - £V () dx - 2v(0)jf°(.\")dx.
) o

]

By virtue of (2.3) - (2.5), (2.9), (2.7) we further obtain
ll
2 ~
JV) 2 Kol¥130 - 2817l - 2v(0)Jf°(x)d.\'. (2.1)
In view of (2.10) we can write
19150 = E1V130 + (- DIPIG,0 2 28070, (1 - ©IPI,
. _ P _ 205 h2
> Eﬁ%)fljmln{2i.l ,E} v ||W21 =51v "Wz‘
and now from (2.11) we obtain
N 1
J(v) 2 3k 17y - 2817 llwyy - 2v(0) [f(x)dx .
o

Since ¥(x) = v(x) - v(0), for v(0) 2 O there follows | llv "\Vz‘ - v(0)] s IIVII\,sz .1t is obvious that
when [|v llyy1 = +o two cases are possible:

a) |lIv il - v(0)] s ¢ < + (c a constant) which yiélds v(0) > +oo.
b) [llv llwys - v(0)] = +oo, which yields I¥ llyyp —> +oo.

By virtue of (2.12) in both cases J(v) - +c if Ilv"llwz‘ -+, v(0) 2 0 and the condition

frxrax <o _ _ S (213)
o
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holds. Let us state the following problem, where K = {v ¢ W}(0,1): v(0), v(1) 2 0}:

(P1) Find an element u € K such that J(u) = in}‘(!(v).
vE

This problem is equivalent to the variational inequality (see [5])
(P2) Find an element u € K such that a{u,v - u) 2 (v - u) for all v e K.

Now we can formulate the following assertion.

Theorem 2.1: Let a(u,v), I(v) in (P1), (P2) be defined as in (2.1), (2.2) and the conditions
(2.3) - (2.6) with q, > O or the conditions (2.3) - (2.5), (2.9), (2.13) with Q(0) + Q(1) be satisfied.
Then the problems (P1), (P2) have unique solutions.

Proof: The existence of a solution follows from the above mentioned propefties of the bi-
linear form a(u, v), the linear functionals /(v), J(v) and from [5: Theorem 2.1]. If the conditi-
ons (2.3) - (2.6) with g, > 0 are satisfied, then the inequalities (2.7) yield the strict convexity
of the functional J(v) and due to [S: Theorem 2.2] the solution of the problems (P1) and (P2)
are unique. ) .

Let us assume that instead of (2.6) with g, > 0 the conditions (2.9), (2.13) are true which
together with conditions (2.3) - (2.5) guarantee J(v) — +o when |lv Ilvvzx — + and therefore
the existence of a solution. Further we give the proof of uniqueness by contradiction. Let u,, u,
denote two solutions of the problem (P2), namely u, * u,. Then

alu,v-u)zKv-u) and alu,,v-u,)2lv-u,) forallvek.

After substitution v = u, in the first inequality and v = u, in the second one and summation we
have -a(w, w) 2 0 or a(w, w) =0 where w = u, - u,. As a result of the equality a(w, w)=0 and
(2.9) we obtain

fk(.\')(w'(.\'))zd.\' =0 and —Jb(x)(wz(x))’d_v ;o(l)w(l) - Q(0)w(0) = 0.

The first of these equalities yields w(x) = ¢ = const. It follows from the second equality that
c(O(1) - Q(0)) = 0 and since Q(0) * Q(1) we have ¢ =0. Hence w=u, -u, =01

Let us consider the following problems:

(P3) Find u; ¢ K; such that J(u;) = in’f;_ J(v) (i=0(1)4)
VE i

where
Ko = {veW20,1): v(0) =v(1) =0} - . Ky = {veW}0,1): v(0)=0}
K, = {v e W2(0,1): v(1) = 0} K, = WX0,1).

Since K; are linear subspaces of W}(0,1) the problems (P3) can also be formulated in the
following form:

{P4) Find Elements u; ¢ K; such that a(u;,v) = I(v) for all v e K; (i =0(1)4).
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Due to the properties of the bilinear form a(u,v) and the linear functionals /(v), J(v) each of
the problems (P3) or (P4) have a unique solution.

Theorem 2.2: Let the conditions of the Theorem 2.1 hold. Then the solution of the prob-
lem (P1) coincodes with one of the solutions of the problems (P3) ((P4)).

Proof: Let u®e¢ K C W2(0,1) be the unique solution of the problem (P1). We assume that
u*e K,, i.e. u™(0) = 0 and u"(1) 2 0 (other possible cases are: u®¢ K, with u®™(0) > 0 and u*(1)
= 0; u”e K, with u®(0) > 0 and u*(1) > 0; u™ e K, with u*(0) = 0 and u*(1) = 0). We shall prove
that J(u®) = minveK‘J( v). Suppose (proof by contradiction) that the problem (P3) for i =1 has
a solution u, + u®. If u,(1) 2 0, then we have u, ¢ K, u®¢ K, and as a result of the uniqueness
theorem we obtain the contradictory inequalities

Ju,) = inf J(v) < J(u®) = inf J(v) < Ju,).
veK,; veK

Hence u,(1) < 0. The imbedding theorem W,! C C implies the continuity of the function u, on
(0,1] therefore u(x) vanishes at least in one point of this interval. Let ¥ be the maximal of
these points and let us put

B
Ka.g)(¥) = J(£(xIV(x) = £(xIV(x))dx

8
a[e. pfu,v) = f(k(x)u'(x)v'(x) - O(x)(u(,\')v(x))') dx + Q(B)u(BWV(B) - Qla)u(a)v(a)

Jeo,61(¥) = A, p3(Vi¥) - 2o, g1(V).
Then
J(V) = J[0.1](v) = J[o_,—‘](v) +J[,—‘.ﬂ(v).

Suppose Jr 5, 13(u,) 2 0. In this case we consider the function T = u,¥(o, z], Where x4 denotes
the characteristic function of the set M. [t is obvious that T ¢ K, and

I7) = J[O,i](ﬁ) + JL;‘U(U) = J[o"-‘](ul) < "[0,:2]( ul) + ./[;"u( U1) = J( ul) = inlf‘_ij(v).

Since U # u, we have obtained a contradiction. In the case Jy; 1(u,) < 0 for the function T = u,
X X[0.%] * €U, X[%.1]» € > 1 we arrive at the conclusions 7 ¢ K, and

.I( F) =J[o',-‘](u,) +cC 'I[)_(,I](ul) < J[o_,-‘](u,) 4""_)2,1](“1) = ./( U‘) = mf(t.l(v)
ve

and again we have a contradiction. Considering the other three possible cases in a similar way
‘we obtain the complete proof B

Theorem 2.3: Let u be the solution of problem (P2). Then u(x) = max{ u;(x): i ='1(1)3} for
x € [0,1], where u; are solutions of problem (P4).

The pi'oof of this theorem is completély similar to that of {6: Theorem 42.3] L B
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3. Exact and truncated difference schemes for variational inequality and their properties

For each problem (P4) ((P3)) analogous to [4] we can construct the following exact scheme:

Au; = -p(x)forxew . .
' " (i =0(1)3) (3.1)
IO(AOUi‘ ui) =0 and ll(Alui‘ Ui) =0

where
h = {.\',- =jh: i = 1(1)(N-1), h=1/N}, By = whu{O,l}

L(Aguju;) = Kdui(0) + (1 - KAqu; and I(A,u;u;) = Kju (1) + (1 - KA u;

K°i={0 fori=2,3 and

1<"={° fori=1,3
1 fori=0,1 !

1 fori=0,2

Au = (aug), - du, Agu'=-u, (O) + X by(0) + pl Au = ug(1) +xlu(l) )

and the coefficients a, d, x",u (i = 0,1) are defined in [4] by means of the solutions v,{(x),
vi(x), v ee; =(x;_ ;X0 €6 =(0,x,), en = (xXn-,, 1) of generalized Cauchy problems.

Let u be the solution of problem (P2). Due to the properties of the functnons v, we
have v2, v,V ¢ K. Since K is a cone one can obtain from (P2)

a(u,v) 2 I(v) forall v e K. : (3.2)

Substituting in (3.2) by turns v =v2 and v = v,V we find A u,A,u 2 0. Theorem 2.2 states that
the function u coinsides with one of the functions u;. For this reason (3.1) implies the following
relations for the function u:

Au = -p(x) for x € wy, (3.3)

u(0)A u =0, u(1)A,u-=0 and u(0),Aju,u(l),A,u 20.

Analogously to [8] one can prove that the exact three-point scheme (3.1) for each problem
(P4) is unique, hence the exact three - point difference scheme (3.3) for problem (P2) is unique
as well. The question about uniqueness of the solution of exact difference schemes we shall
consider later. ; )

A constructive approach to the exact difference scheme (3.3) is the truncated-difference
scheme of rank m

Ay (m) = _olmX(\) for x € wy,

y(m)(o)A(om)y(m) =0 and y(m)(l)A(lm)y(m) =0 . (3.4)

y(m)(o)' A(om)y(m)'y(m)(l)' A(lm)y(m) 20

which one constructs as in [4]. If the solution of the exact difference scheme (3.4) exists,
then it obviously coinsides with one of the solutions of the problems
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A(m)yi(m) - '(P(m)(.\’) for x € wp,
(3.5)

lo(A(om).Vi(m)v J',i(m)) =0 and l:(A(xm)yi(m)v .Vi(m)) =0 fori=0(1)3.

In analogy with [4] one can prove that under the assumptions (2.3) - (2.6) with g, > 0 the fol-
lowing estimates are valid:

o™ Po(u; = ¥ ™l o < chZ ™D PiF(m h) for i = 0(1)3 (3.6).
where

o(x) =x(1-x) and llully, = max{lu(x): x €@y},

no = no(py, Pa.ps X, 19, q.m) = max{ng, ng -9 +1,n, - 9 +1}

n

i = 0i(pupyp X r 8, q.m) = max{ng,ng -9 +1n, +ng,.n tng, -1-1/p,n,}

Po'*p t*py ! =1 withpy,p,p, 21

Ny gy Mgy Ny s e, Ny, are defined in [4]

Pu
F{m, h) = F{m, h, k, Q. f,, f,) are bounded or vanish when h — 0
c is a constant independent of A.

Further we shall prove some properties of the exact and truncated difference schemes.

Theorem 3.1: Let the conditions (2.3) - (2.6) with g, > 0 hold. Then a solution of the trun-
cated difference scheme (3.4) exists. :

Proof: We first remark that under the assumptions made the following estimates are valid

(see [4]):

0<cgtsalx),al™(x)sk, and d(x),d™(x)2 qolcok,)?
hao(2k,) ™t s %, x$™ < ¢ (2100, n) “h2PION b - (3.7

hgo(2k) 7 s ) k(™ s co(200llery - pay + BP0 poen)-

The theorem will be proved when among y,»(”')(i = 0(1)3) there exists yé’")'such that y,:’"‘)(O).
yif)’")(l), A(o’"zyiim), A(‘"’)yii)”’) 2 0. The existence of such yif)’")can be obtained as in [2] using
the inequalities (3.7) and the discrete maximum principle [7] @

The inequalities (3.7) and the maximum principle in analogy with [2] yield the following
two theorems as well.

Theorem 3.2: Suppose the conditions (2.3) - (2.6) with qo > 0 hold. Then u;(x) < y(x) and
yim(x) s yUmXx) for x € @), and i = 0(1)3, where y is a solution of the exact differenece
scheme (3.3) and y$™) is a solution of the truncated difference scheme (3.4).
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Theorem 3.3: Suppose the conditions (2.3) - (2.6) with qo > 0 hold. Then exact difference
scheme (3.3) and the truncated difference scheme (3.4) have a unique solution.

Using these results and estimate (3.6) in complete analogy with [2] we can prove as next

statement the following

Theorem 3.4: Suppose the conditions (2.3) - (2.6) with q, > 0 hold. Then the solution of
the truficated difference scheme (3.4) converges to the solution of the variational inequality
(2.15) if h— 0 and the estimate

”p-t/po(u _y(m))"w'w <ch 2(m‘l)-n,"_—‘(m'h)

is valid, where n = max{n,,..., n,}, the functional F(m, h) = ﬁ(m,h, k, Q,f,, f,) is bounded or
tends to zero together with h, the constant ¢ does not depend on h.

An algorithm which is based on the statements of Theorem 3.2 and (3.5) can be con-
structed for computational realization of the truncated difference scheme (3.4). This algo-
rithm can be rarried out applying the elimination method for three -point equations not more
than two times (see [3]) and needs O(N) arithmetical operations.
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