Behaviour of Solutions of a Third Order Differential Equation

M. GREGUŠ and D. ŠIŠOLÁKOVÁ

Properties of proper and regular non-oscillatory solutions of the equation $x''' + f(t)g(x, x', x'') =$ 0, and some sufficient conditions for regular solutions to be oscillatory or non-oscillatory are derived. *X*
X these sufficient conditions for regular
X these sufficient conditions for regular
X order differential equations
X will deal with the differential equation:
X^{III} + *f(t)g(x, x', x''*) = 0,

Key words: *Proper solutions, regular solutions, oscillatory and non-oscillatory solutions, third order differential equations*

AMS subject classification: 34C15

1. We will deal with the differential equation

$$
x''' + f(t)g(x, x', x'') = 0,
$$
 (1)

where

(i) f is continuous on $(a, +\infty), a > -\infty$, and $f(t) > 0$ for all $t \in (a, +\infty)$

(ii) g is continuous on R^3 and $g(y_0, y_1, y_2) > 0$ for all $(y_0, y_1, y_2) \in R^3$ with $y_0 \neq 0$.

Equation (1) is a generalization of equations examined in $[1,2]$ and a special case of equations examined in $[4, 5]$.

2. The aim of this paper is to investigate so-called proper and regular solutions of equation (1).

Definition 1: A function $x \in C^{3}(T_{x}, +\infty)$ $(T_{x} \ge a)$ being a solution of equation (1) is said to be a

a) proper sulution if $\sup\{|x(t)| : t \geq T\} > 0$ for every $T > T_x$;

b) regular solution if it is proper and if for some $T \geq T_x$ it does not have a triple null point in $\langle T, +\infty \rangle$, i.e. there is no $t_0 \geq T$ such that $x(t_0) = x'(t_0) = x''(t_0) = 0$;

c) oscillatory solution if it is proper or regular and if there exists a sequence $t_i \uparrow +\infty$ such that $x(t_i) = 0$ for all *i*;

d) non-oscillatory solution if it is not oscillatory, i.e. if there exists a $T \geq T_x$ such that $x(t) > 0$ for all $t > T$ or $x(t) < 0$ for all $t > T$.

M. Greguš: Univ. J. A. Komenský, Dep. Math., Mlynská dolina, 842 15 Bratislava, Slovakia D. Šišoláková: Univ. J. A. Komenský, Dep. Math., Mlynská dolina, 842 15 Bratislava, Slovakia $\sum_{i=1}^{\infty} I(i) > 0$ for all $t > T$ or $x(t) < 0$ for all $t > T$.

In Greguš: Univ. J.A. Komenský, Dep. Math., Mlynská doli

D. Šišoláková: Univ. J.A. Komenský, Dep. Math., Mlynská doli

ISSN 0232 2064 / \$ 2.50 \bullet Helderman

Theorem 1: Let x be a proper solution of equation (1) on $(T_x, +\infty)$ and let $\rho > T_x$ *be a triple null point of x. Then there exists an* $\epsilon > 0$ such that on $(\rho, \rho + \epsilon)$ either $x = 0$ $or x \neq 0$ and x has infinite many null points with ρ as limiting point.

Proof: It is sufficient to prove that there does not exist an $\epsilon > 0$ such that $x(t) \neq 0$ for all $t \in (\rho, \rho + \epsilon)$. Suppose $x(t) > 0$ for all $t \in (\rho, \rho + \epsilon)$. Then $x'''(t) < 0$ for all $t \in (\rho, \rho + \epsilon)$ and x'' is decreasing. But $x''(\rho) = 0$ and therefore $x''(t) < 0$ for all $t \in (\rho, \rho + \epsilon)$. In the same way we get $x'(t) < 0$ and $x(t) < 0$ for all $t \in (\rho, \rho + \epsilon)$ which leads to a contradiction. In the case $x(t) < 0$ for all $t \in (\rho, \rho + \epsilon)$ the proof is similar

Theorem 2: *Let f and g be functions satisfying conditions (i) and (ii), respectively. Moreover, let there exists for any* $(y_0, y_1, y_2) \in R^3$ with $y_0 \neq 0$

Theorem 2: Let f and g be function
over, let there exists for any
$$
(y_0, y_1,
$$

(iii) $g_1(y_1, y_2) := \lim_{y_0 \to 0} \frac{g(y_0, y_1, y_2)}{y_0}$

and let the function g_1 be continuous on R^2 . Then the trivial solution $x = 0$ of equation (1) fulfilling the initial conditions $x(t_0) = x'(t_0) = x''(t_0) = 0$ $(t_0 > a)$ is unique on $(t_0, +\infty)$. *u ... (t) + I (t)G(t)u = 0* (iii) $g_1(y_1, y_2) := \lim_{y_0 \to 0} \frac{g(y_0, y_1, y_2)}{y_0}$
 et the function g_1 *be continuous on* R^2 . Then the trivial solution
 difiling the initial conditions $x(t_0) = x'(t_0) = x''(t_0) = 0$ ($t_0 \infty$).
 coof: Let x b *(1, y₂)* : = $\lim_{y_0 \to 0} \frac{g(y_0, y_1, y_2)}{y_0}$
 tion g_1 be continuous on R^2 . Then the trivial solution $x = 0$ of equation
 e initial conditions $x(t_0) = x'(t_0) = x''(t_0) = 0$ $(t_0 > a)$ is unique on
 x be a solut

Proof: Let x be a solution of equation (1) with t_0 as triple null point and $x(t) \neq 0$ in $(t_0, t_0 + \epsilon)$ for some $\epsilon > 0$. Then *x* fulfils also the equation

$$
u'''(t) + f(t)G(t)u = 0 \tag{2}
$$

on $(t_0, t_0 + \epsilon)$, where

$$
G(t) = \begin{cases} g(x(t), x'(t), x''(t))/x(t) & \text{for } x(t) \neq 0\\ g_1(x'(t), x''(t)) & \text{for } x(t) = 0. \end{cases}
$$
(3)

Equation (2) is linear and therefore it has only one solution with t_0 as triple null point, namely $u = 0$. But this is in contradiction with the supposition of $x \blacksquare$

Corollary 1: Let x be a proper solution of equation (1) on $(T_x, +\infty)$. Then the *following statements are true.*

- *a) The non-trivial solution x has at most one double or triple null point.*
- **b)** If $x(t) = c$ ($c \in R$) on some subinterval I, then $c = 0$.
- *c)* If t_1, t_2 are triple null points of x with $t_1 < t_2$, then $x = 0$ on the interval $\langle t_1, t_2 \rangle$.
- *d)* The solution x cannot be zero on any different disjoint subintervals I_1 and I_2 .

Proof: a) Let $t_0 > T_x$ be a double null point of x and $t_1 > t_0$ its next double null point. Denote $F(x) = xx'' - x'^2/2$. Then multiplying equation (1) by x and integrating from t_0 to t we obtain F(x(t)) = *J*^{*f*}(*x*(t)) = *J*^{*f*}(*x*(r), *x'*(*r*), *x''*(*r*))*x*(*r*) d*r* = *F*(*x*(*t*₀)). Then the supposition with the supposition of *x* **I** or ordinary 1: Let *x* be a proper solution of equation (1) on $\$

$$
F(x(t)) = \int_{t_0}^t f(\tau)g(x(\tau), x'(\tau), x''(\tau))x(\tau) d\tau = F(x(t_0)).
$$
\n(4)

Because t_0 , t_1 are double null points the function $F(x(\cdot))$ is non-increasing for $t \ge t_0$ and $F(x(t_0)) = F(x(t_1)) = 0$ which contradicts that x is a non-trivial solution of equation (1). The case of a solution *x* with triple null point can be proved by analogous arguments.

b) Let $t_0 \in I$ and $c \neq 0$. Then from (4) we get $F(x(t)) = -\int_{t_0}^t f(\tau)g(c, 0, 0)c d\tau < 0$ for $t > t_0$ and $F(x(\cdot))$ is non-increasing. But $F(x(t)) = F(c) = 0$ which and is possible for $c = 0$ only.

c) - d) The proof of these suppositions follows immediately from the monotonicity of the function $F(x(\cdot))$

3. In this section we will be interested in non-oscillatory solutions of equation (I).

Lemma 1. Let x be a solution of equation (1) on $(T_x, +\infty)$ without null points and *with* $F(x(t)) > 0$ ($t \geq t_1$) for the function $F(x(\cdot))$ defined by (4). Then there exists a *point* $T \geq T_x$ such that, for $t > T$, the functions x, x', x'' are monotone, have no null *point, and either*

sgn $x(t) = \text{sgn } x''(t) \neq \text{sgn } x'(t)$ or $\text{sgn } x(t) = \text{sgn } x''(t) = \text{sgn } x'(t)$.

Proof: From (4) it follows that $x''(t) \neq 0$ and $\text{sgn } x(t) = \text{sgn } x''(t)$ for $t \geq T_x$. From the properties of x and x" it follows that x' is monotone for $t \geq T_x$ and that it can have at most one null point. Therefore there exists a point $T \geq T_x$ such that either sgn $x'(t) = \text{sgn } x(t)$ one null point. Therefore there exists a point $T \geq T_x$ such that either sgn $x'(t) = \text{sgn } x(t)$
or sgn $x'(t) \neq \text{sgn } x(t)$ for $t \geq T$. It remains to prove that x'' is monotone for $t \geq T$. From
 $x(t) \neq 0$ it follows that $x(t) \neq 0$ it follows that $x'''(t) = -f(t)g(x(t),x'(t),x''(t)) \neq 0$ for $t \geq T_x$, that is $x'''(t)$ does not change the sign and therefore *x"* is monotone I and either

sgn $x(t) = \text{sgn } x''(t) \neq \text{sgn } x'(t)$ or $\text{sgn } x(t) = \text{sgn } x''(t) = \text{sgn } x'(t)$.

coof: From (4) it follows that $x''(t) \neq 0$ and $\text{sgn } x(t) = \text{sgn } x''(t)$ for $t \geq T_x$. From the

tries of x and x'' it follows that

Theorem 3: Let x be a solution of equation (1) with $x(t) \neq 0$ and $F(x(t)) > 0$ for all $t \in (T_x, +\infty)$. Let further $\int_{t_0}^{t_0} f(t) dt = +\infty$ for $t_0 > a$ and

$$
\liminf_{t \to \infty} \varphi(t)g(\varphi(t), \varphi'(t), \varphi''(t)) > 0
$$
\n⁽⁵⁾

all $t \in \langle T_x, +\infty \rangle$. Let further $\int_{t_0}^{+\infty} f(t) dt = +\infty$ for $t_0 > a$ and
 $\liminf_{t \to \infty} \varphi(t) g(\varphi(t), \varphi'(t), \varphi''(t)) > 0$ (5)

for any function $\varphi \neq 0$ with $\lim_{t \to +\infty} \varphi(t) = \pm \infty$ and which is monotone with φ' and $\$ *on* $(a, +\infty)$. Then there exists a $T \geq T_x$ such that, for $t > T$, $\liminf_{t \to \infty} \varphi(t)g(\varphi(t), \varphi'(t), \varphi''(t)) > 0$
 xy function $\varphi \neq 0$ with $\lim_{t \to +\infty} \varphi(t) = \pm \infty$ and which is more $+\infty$). Then there exists a $T \geq T_x$ such that, for $t > T$,
 $x(t)x'(t)x''(t) \neq 0$ and sgn $x(t) = \text{sgn } x''(t) \neq \$

$$
x(t)x'(t)x''(t) \neq 0 \qquad \text{and} \qquad \text{sgn } x(t) = \text{sgn } x''(t) \neq \text{sgn } x'(t)
$$

and $x(t)$, $x'(t)$, $x''(t) \rightarrow 0$ *as* $t \rightarrow +\infty$.

Proof: From Lemma 1 it follows that x, x', x'' are monotone on $(T_x, +\infty)$ and therefore having proper or improper limits at infinity. Let e.g. $\lim_{t\to+\infty} x(t) \neq 0$. Then clearly by (5), or directly by (ii), if $\lim_{t\to+\infty} x(t)$ is finite, then $\liminf_{t\to+\infty} x(t)g(x(t), x'(t), x''(t)) \ge$ $c>0.$ From (4) for x there follows the existence of a $T\geq T_x$ such that, for $t>T$, $F(x(t))$ \uparrow and

$$
F(x(t))-F(x(T))=-\int_T^t f(s)x(s)g(x(s),x'(s),x''(s))\,ds<0.
$$

On the other hand we have

$$
F(x(t)) - F(x(T)) = -\int_T f(s)x(s)g(x(s), x(s), x(s)) ds < 0.
$$

ne other hand we have

$$
F(x(t)) - F(x(T)) = -\int_T^t f(s)x(s)g(x(s), x'(s), x''(s)) ds \le -c \int_T^t f(s) ds.
$$

From here for $t \to +\infty$ we obtain a contradiction to $F(x(t)) > 0$ for $t > T_x$ and therefore $x(t) \to 0$ for $t \to +\infty$. From the properties of *x* there follows sgn $x(t) \neq \text{sgn } x'(t)$ for $t \geq$ $T' \geq T$, where *T'* is sufficiently large. From $F(x(t)) > 0$ there follows sgn $x(t) = \text{sgn } x''(t)$ and from the properties of x there follows $x'(t)$, $x''(t) \rightarrow 0$ as $t \rightarrow +\infty$

Example 1: Let us have the differential equation

$$
x''' + x \frac{\arctan\sqrt{1 + x^2 + x'^2 + x''^2}}{\arctan\sqrt{1 + 3e^{-2t}}} = 0
$$

for $t \in (0, +\infty)$. This equation fulfils the suppositions of Theorem 3. Its every solution x defined on $(T_x, +\infty)$ for some $T_x > 0$, with $x(t) \neq 0$ and $F(x(t)) > 0$ for all $t \in (T_x, +\infty)$ has the property $x(t)x'(t)x''(t) \neq 0$, sgn $x(t) = \text{sgn } x''(t) \neq \text{sgn } x'(t)$ for $t \in (T, +\infty)$ ($T \geq$ T_x) and $x(t)$, $x'(t)$, $x''(t) \rightarrow 0$ as $t \rightarrow +\infty$. The function $x = e^{-t}$ is clearly a solution of this equation.

Lemma 2 (see [6]): Let $h \in C(a, +\infty)$ and $\int_{t_0}^{+\infty} t^2 h(t) dt < +\infty$, $t_0 > a$. Then the *differential equation* quation.
 PHIME 2 (see [6]): Let $h \in C(a, +\infty)$ and $\int_{t_0}^{+\infty} t^2 h(t) dt < +\infty, t_0 > a$. Then the
 $y''' + hy = 0$ (6) *g*(*xt*). Let $h \in C(a, +\infty)$ and $\int_{t_0}^{+\infty} t^2h(t) dt < +\infty, t_0 > a$. Then the
 f n htial equation
 f $f'' + hy = 0$ (6)
 g -*scillatory on* $(a, +\infty)$, *i.e. every solution of equation* (6) has a finite set of null

$$
y''' + hy = 0 \tag{6}
$$

is non-oscillatory on $(a, +\infty)$, *i.e.* every solution of equation (6) has a finite set of null *points on* $(a, +\infty)$. *hy* = 0
 latory on $(a, +\infty)$, *i.e.* every solution of equation (6) has a finite set of null
 $a, +\infty$).

times 4: Let f and g be functions satisfying conditions (i) - (iii) and let x be a

equation (1) on $(T_x, +\infty)$ s

Theorem 4: *Let I and g be functions satisfying conditions (i) - (iii) and let x be a solution of equation* (1) on $(T_x, +\infty)$ *such that*

$$
|g(x(t),x'(t),x''(t))| \leq |x(t)|\varphi(t) \quad (t > t_0)
$$
\n(7)

for some positive function $\varphi \in C(t_0, +\infty)$ $(t_0 > T_x)$ *satisfying the condition*

$$
\int_{t_0}^{+\infty} t^2 f(t)\varphi(t) dt < +\infty.
$$
 (8)

Then x is non-oscillatory on $(T_0, +\infty)$.

Proof: Suppose that x is oscillatory. Then x is also a solution of equation (2) and from **Proof:** Suppose that *x* is oscillatory. Then *x* is also a solution of equation (2) and from

our suppositions it follows that $f_{t_0}^{+\infty} t^2 f(t)G(t) dt \leq f_{t_0}^{+\infty} t^2 f(t)\varphi(t) dt < +\infty$. Therefore

from Lemma 2 it follows th from Lemma 2 it follows that equation (2) is non-oscillatory. This is a contradiction with the supposition that x is oscillatory

Example 2: Let us have the differential equation

$$
\begin{aligned}\n\text{upposition that } x \text{ is oscillatory} \\
\text{xample 2: Let us have the dif-
$$
x''' + \frac{1}{t^4} \frac{\arctan x}{1 + x^2 + x'^2 + x''^2} = 0\n\end{aligned}
$$
$$

for $t \in (0, +\infty)$. This equation fulfils the suppositions of Theorem 4 for $\varphi(t) = M >$ $\pi/2$ ($t \in (0, +\infty)$). Therefore any of its solution on $(t_0, +\infty)$ ($t_0 > 0$) is non-oscillatory.

Corollary 2: Let f and g be functions satisfying $(i) - (iii)$ and such that (8) *holds for* $\varphi = 1$. Then equation (1) has no oscillatory solution x bounded with x', x'' *on* $(t_0, +\infty)$, $t_0 > a$.

Proof: Let x be a solution of equation (1) on $\langle T_x, +\infty \rangle$ and let x, x', x" be bounded on this interval. Then from the continuity of *g* and from supposition (iii) there follows the existence of a constant $M > 0$ such that $0 \le G(t) \le M$ for all $t \in (T_x, +\infty)$ where G is given by (3). Then the assertion follows from Theorem 4 for $\varphi = M \blacksquare$

Remark: Theorem 4 and Corollary 2 generalize the results of Theorem 3 and of Corollary 2 of [1].

4. We deduce in this section sufficient conditions for the oscillatory and non-oscillatory nature of solutions of equation (1) by means of the so-called *generalized Kneser criterion* (for second order linear differential equations) generalized in [3] for the linear equation $(6).$

Lemma 3: Let $0 \le h \in C(0, +\infty)$ and $t_0 > 0$.

Lemma 3: Let $0 \le h \in C(0, +\infty)$ and $t_0 > 0$.
 a) If $h \ge 0$, $h(t) \le \frac{2}{3\sqrt{3}} \frac{1}{t^3}$ for $t \in (t_0, +\infty)$ and $h \ne 0$ on any subinterval of $(t_0, +\infty)$,
 n equation (6) is not oscillatory on $(t_0, +\infty)$. *then* equation (6) is not of ϵ *b*) *If the linear* equation (6) *is not oscillatory on* $\langle t_0, +\infty \rangle$ *and* $t_0 > 0$.
 *b) If th*e *is a* $\delta > 0$ *such that h(t)* $\geq \frac{1}{3}(1 + \delta)\sqrt{\frac{1}{3}(4 + \delta)}$ *for t* \in $\langle t_0$

 $equation (6)$ is oscillatory on $(t_0, +\infty)$, *i.e. every solution of equation* (6) with a null *point in* $(t_0, +\infty)$ *oscillates on this interval.*

Proof: The proof is given in [3] as proof of Corollary 2.7 **^U**

Theorem 5: Let f and g be functions satisfying conditions (i) - (iii) on $(0, +\infty)$ and *let* $\delta, t_0 > 0$.

a) If for all $(y_0, y_1, y_2) \in R^3$ *and* $t \in (t_0, +\infty)$

$$
f(t)|g(y_0, y_1, y_2)| \leq \frac{2}{3\sqrt{3}} \frac{1}{t^3}|y_0|,\tag{9}
$$

then equation (1) does not have an oscillatory solution defined on $(t_0, +\infty)$.

b) If for all $(y_0, y_1, y_2) \in R^3$ *and* $t \in (t_0, +\infty)$

Proof: The proof is given in [3] as proof of Corollary 2.7

\ntheorem 5: Let
$$
f
$$
 and g be functions satisfying conditions (i) – (iii) on $(0, +\infty)$ and $a_0 > 0$.

\nIf for all $(y_0, y_1, y_2) \in R^3$ and $t \in (t_0, +\infty)$

\n $f(t)|g(y_0, y_1, y_2)| \leq \frac{2}{3\sqrt{3}} \frac{1}{t^3} |y_0|,$

\nequation (1) does not have an oscillatory solution defined on $(t_0, +\infty)$.

\nIf for all $(y_0, y_1, y_2) \in R^3$ and $t \in (t_0, +\infty)$

\n $f(t)|g(y_0, y_1, y_2)| \geq \frac{1}{3}(1 + \delta)\sqrt{\frac{1}{3}(4 + \delta)} \frac{1}{t^3}|y_0|,$

\n(10)

\nany solution x of equation (1) defined on $\langle t_0, +\infty \rangle$ and having a null point is oscillation of this null point.

then any solution x of equation (1) *defined on* $(t_0, +\infty)$ *and having a null point is oscillatory on the right of this null point.*

Proof: a) Under our conditions x is a solution of equation (2) on $(t_0, +\infty)$ and by (9) satisfies the inequality $f(t)G(t) \leq \frac{2}{3\sqrt{3}} \frac{1}{t^3}$ for all $t \in (t_0, +\infty)$, where *G* is given by (3). Now from Lemma 3 it follows that equation (2) is non-oscillatory, x is a non-oscillatory solution of equation (2) and of equation (1), too.The assertion b) can be proved with the same arguments as in the foregoing assertion \blacksquare

The proof of the next lemma is given in [3: Theorem 3.6].

Lemma 4: Let $h \in C(a, +\infty)$ and $d > 0$ be such that $h(t) \geq d$ for all $t \in (a, +\infty)$. *Then every solution of equation* (6) is oscillatory in $(a, +\infty)$ except solutions y (unique *up to linear dependence) satisfying the conditions* **4 2** *Let* $h \in C(a, +\infty)$ and $d > 0$ be such that $h(t) \geq d$ for solution of equation (6) is oscillatory in $(a, +\infty)$ except solutions $y^2(t) dt < +\infty$ $(a < \alpha < +\infty)$ and $y, y' \to 0$ as $t \to$ arguments as in the foregoing assertion \blacksquare

he proof of the next lemma is given in [3: Theorem 3.6].
 imma 4: Let $h \in C(a, +\infty)$ and $d > 0$ be such that $h(t) \geq d$ for all $t \in (a, +\infty)$.

every solution of equation (6

 $\int_{\alpha}^{+\infty}$

Theorem 6: Let x be a solution of equation (1) on $(T_x, +\infty)$, let the functions f and *g* satisfy the conditions $(i) - (iii)$ and

$$
f(t)|q(y_0, y_1, y_2)| \ge M|y_0| \quad (M > 0)
$$
\n⁽¹¹⁾

for arbitrary $(y_0, y_1, y_2) \in R^3$ *and* $t \in (a, +\infty)$.

a) If $x \neq 0$, then $\int_{T_x}^{+\infty} x^2(t) dt < +\infty$ and $x, x' \to 0$ as $t \to +\infty$.

b) If x has a null point, then x is oscillatory.

Proof: a) The function x fulfils equation (2) and by (11) we have the inequality $f(t)|g(x(t), x'(t), x''(t))| \ge M |x(t)|$ which yields $f(t)G(t) \ge M$. By Lemma 4 equation (2) is oscillatory on $(T_x, +\infty)$ and x is its solution without null points. Again by Lemma **4** it must have the properties stated. Assertion b) follows immediately by Theorem **5**

Lemma 5: Let $h \in C(a, +\infty)$ and $h(t) > 0$ for all $t \in (a, +\infty)$.

a) If equation (6) has an oscillatory solution, then every solution but one (up to linear dependence) is oscillatory and the non-oscillatory solution y has the properties $y(t) \neq$ $(0, \text{sgn } y(t) = \text{sgn } y''(t) \neq \text{sgn } y'(t) \text{ for all } t \in (a, +\infty), y, y', y'' \text{ are monotone on } (a, +\infty)$ *and* $y'(t), y''(t) \rightarrow 0$ *as* $t \rightarrow +\infty$.

b) If y is a monotone solution of (6) and $y(t) \neq 0$, sgn $y(t) =$ sgn $y''(t) \neq$ sgn $y'(t)$ for *all* $t \in (a, +\infty)$, *then* $y(t) \to 0$ *as* $t \to +\infty$ *if and only if* $\int_{t_0}^{+\infty} t^2 h(t) dt = +\infty$.

Proof: The proof of statement a) is given in **[3:** Theorem 2.13] and that of statement b) is given in **[7] I**

Theorem 7: Let f and g be functions satisfying the properties $(i) - (iii)$ and (10). *Then every solution x of equation* (1) with the property $x(t) \neq 0$ in $(T_x, +\infty)$ tends to $zero \ as \ t \rightarrow +\infty.$

Proof: The function x fulfils equation (2). By Theorem 5 this equation is oscillatory (i.e. every solution with a null point in $\langle T_x, +\infty \rangle$ is oscillatory). By Lemma 5/a) equation (2) has only one solution without null points in $(T_x, +\infty)$. Therefore this solution must be x and it has the properties as in Lemma 5/a). It follows from (10) that $f_T^{\pm \infty} t^2 f(t)G(t) dt =$ $+\infty$ and therefore by Lemma 5/b) $x(t) \to 0$ as $t \to +\infty$

The equation in Example 1 fulfils the suppositions of Theorem 7 on $(t_0, +\infty)$ for sufficiently large $t_0 > 0$ and $x = e^{-t}$ is its solution with $x(t) \neq 0$ for $t > t_0$.

References

- (1) Cecchi, M. and M. Marini: *On the oscillatory behaviour of a third order nonlinear differential* equation. Nonlin. Anal. 15 (1990), 141 - 153.
- [2] Gregus, M.: On a nonlinear binomial equation of the third order. Z. Anal. Anw. 11 (1991), 117 -124.
- [3] Gregus, M.: *Third Order Linear Differential Equations*. Dortrecht et al: D. Reidel Publ. Comp. 1987.
- [4] Svec, M.: *Monotone solutions of some differential equations.* Colloq. Math. 43 (1967), 7- 21.
- *[5] Svec, M.: Behaviour of nonoscillatory solutions of some nonlinear differential equations.* Acta Math. Univ. Comen. 39 (1980), 115 - 130.
- [6] Villari, G.: Sul carattere oscillatorio delle soluzioni delle equazioni differenziali lineari omogenee del *terzo ordine.* Boll. Un. Mat. Ital. 13 (1958), 73 - 78.
- [7) Villari, **C.** *Contributi allo studio asintotico dell' equazione z" + p(t)z* = 0. Ann. Mat. Pura AppI. 51(1960), 301 - 328.

Received 21.10.1992; in revised form 10.05.1993