On the K-Theory Groups of Certain Crossed Product C^* -Algebras

A. Paolucci

Abstract. Given α, β two irrational numbers in (0,1) we define an analogue of the irrational rotation C^* -algebra on $T^2 = S^1 \times S^1$. Hence we compute explicitly the K-theory groups associated to that crossed product C^* -algebra.

Keywords: C^{*}-algebras, crossed product C^{*}-algebras, K-theory AMS subject classification: Primary 46L80, secondary 19K99

Let $C(T^2)$ be the C^* -algebra of continuous functions on $T^2 = S^1 \times S^1$ and let $\rho_{(\alpha,\beta)}$: $T^2 \longrightarrow T^2$ be the automorphism corresponding to a rotation of angles $2\pi\alpha, 2\pi\beta$ where α, β are irrational numbers, i.e., $(z_1, z_2) \longrightarrow (e^{2\pi i \alpha} z_1, e^{2\pi i \beta} z_2)$. Then the group Z acts as a transformation group on

$$T^2:(z_1,z_2)\longrightarrow (e^{2\pi i n\alpha}z_1,e^{2\pi i n\beta}z_2) \ (n\in \mathbb{Z})$$

by powers of the rotation automorphism. We can extend this action to the C^* -algebra of continuous functions on T^2 so it gives an action of \mathbb{Z} on $C(T^2)$. We define $A_{(\hat{\alpha},\beta)}$ to be the crossed product C^* -algebra of $C(T^2)$ under the automorphism $\rho_{(\alpha,\beta)}: n \longrightarrow \rho_{(\alpha,\beta)}(n)$ $(n \in \mathbb{Z})$. By [4] we have that $A_{(\alpha,\beta)} = C(T^2) \times_{\rho_{(\alpha,\beta)}} \mathbb{Z}$ is a simple C^* -algebra.

Denote by U_1 the unitary operator in $A_{(\alpha,\beta)}$ corresponding to the element $n = 1 \in \mathbb{Z}$ and defined by

$$(U_1f)(z_1, z_2) = f((e^{2\pi i\alpha})z_1, z_2) \qquad (f \in L^2(T^2))$$

and similarly denote

$$(V_1 f)(z_1, z_2) = f(z_1, (e^{2\pi i\beta})z_2) \qquad (f \in L^2(T^2)).$$

Let W_1 be the multiplication operator on $L^2(T^2)$. Therefore we have

$$U_1V_1 = V_1U_1, \qquad U_1W_1 = (e^{2\pi i\alpha})W_1U_1, \qquad V_1W_1 = (e^{2\pi i\beta})W_1V_1.$$
 (1)

Let $C^*(U, V, W)$ be the C^* -algebra generated by three unitary operators U, V, W such that they satisfy relations (1). Then by [3: Formula (7.6.6)] and by the fact that $A_{(\alpha,\beta)}$

ISSN 0232-2064 / \$ 2.50 © Heldermann Verlag Berlin

A. Paolucci: Univ. Iowa, Dep. Math., Iowa City, IA 52242, USA

A. Paolucci

is simple we can conclude that $A_{(\alpha,\beta)}$ is isomorphic to the C^{*}-algebra $C^*(U,V,W)$, where the isomorphism maps $U_1 \longrightarrow U, V_1 \longrightarrow V, W_1 \longrightarrow W$. Let $A_{\alpha} = C(T) \times_{\rho_{\alpha}} \mathbf{Z}$ be the irrotational rotation C^* -algebra, i.e., the crossed product of the C^* -algebra of the continuous functions on the unit circle by the automorphism corresponding to a rotation of angle $2\pi \alpha$. This C^{*}-algebra is simple (see [4]). It is generated by two unitaries u, wsuch that $u w = (e^{2\pi i \alpha}) w u$ (see [5]).

By the same argument we can conclude that A_{α} is contained in $A_{(\alpha,\beta)}$.

Let γ_{β} be the automorphism of A_{α} defined by $\gamma_{\beta} = a dV$, with V the unitary operator in $A_{(\alpha,\beta)}$. Then we form the C^{*}-algebra crossed product $A_{\alpha} \times_{\gamma_{\theta}} \mathbf{Z}$. We observe that

 $\gamma_{\beta}(u) = V u V^* = u$ and $\gamma_{\beta}(w) = V w V^* = (e^{-2\pi i \beta})w$

so that the automorphism γ_{β} leaves the operator u fixed. Therefore we have uV = $V u, u w = (e^{2\pi i \alpha}) w u$ and $V w = (e^{2\pi i \beta}) w V$. By using [1: Prop. 5.1] we have $\Gamma(\alpha) = T$ and by [2: Formula (8.11.12)] we get that the C^{*}-algebra $A_{\alpha} \times_{\gamma_{\theta}} \mathbf{Z}$ is simple.

Similarly we can consider the irrational rotation C^* -algebra A_{θ} generated by v, wand form the crossed product C^* -algebra $A_{\beta} \times_{\gamma_{\beta}} Z$ under the automorphism γ_{α} given by $a \, d \, U$. Let (π, V) be a covariant representation of $(A_{\alpha}, \gamma_{\beta} Z)$. Let $\tilde{\pi} : A_{\alpha} \times_{\gamma_{\beta}} Z \longrightarrow$ $A_{(\alpha,\beta)}$ be defined by $u \longrightarrow U_1, w \longrightarrow W_1, v \longrightarrow V_1$. Then by [3: Formula (7.6.6)], since both C^* -algebras are simple $\tilde{\pi}$ gives an isomorphism. Similarly $A_{(\alpha,\beta)}$ and $A_{\beta} \times_{\gamma_{\alpha}} Z$ are isomorphic. Therefore the C^{*}-algebras $A_{(\alpha,\beta)}, A_{\alpha} \times_{\gamma_{\beta}} \mathbb{Z}$ and $A_{\beta} \times_{\gamma_{\alpha}} \mathbb{Z}$ are all isomorphic.

Let $A_{\alpha} = C(T) \times_{\rho_{\alpha}} \mathbf{Z}$ and $A_{\beta} \times_{\gamma_{\alpha}} \mathbf{Z}$ be the irrational rotation C^* -algebras and let p and \tilde{p} be the Rieffel projections in A_{α} and A_{β} , respectively (see [5]). There exists a unitary operator \mathcal{U} in $M_n(A_{(\alpha,\beta)})$ such that for the boundary map ∂ we have $\partial[\mathcal{U}] = [p]$, where M_n stands for the $n \times n$ -matrices. As in [6: Section 8.5], let us call [Q] the Bott generator of $K_0(C(T^2))$.

• Our main result is the following

Theorem. The following two statements are true.

(a) The group $K_0(C(T^2) \times_{\rho_{(\alpha,\beta)}} Z$ is isomorphic to Z^4 and it is generated by $[1], [p], [\tilde{p}], [Q].$

(b) The group $K_1(C(T^2) \times_{\rho(\alpha,\beta)} Z)$ is isomorphic to Z^4 and it is generated by $[U], [V], [W], [\mathcal{U}].$

Proof. (a) Let $C(T^2) \times_{\rho_{(\alpha,\beta)}} Z$ be the C^{*}-algebra generated by three unitary operators U, V, W satisfying relations (1). Let the C^{*}-algebra C^{*}(U, V) be generated by $U, V, C^*(U, W)$ by U, W and $C^*(V, W)$ by V, W. Observe the identities

$$C^{*}(U, V) = C(T^{2}), \qquad C^{*}(U, W) = A_{\alpha}, \qquad C^{*}(V, W) = A_{\beta}$$

and that all of these C^{*}-algebras are contained in $A_{(\alpha,\beta)}$. By [3] we have the following

· · · ·

exact sequence:

where $i: A_{\alpha} \longrightarrow A_{\alpha} \times_{\gamma_{\beta}} \mathbb{Z}$ is the inclusion map and ∂ is the index map coming from the Toepliz extension for $(A_{\alpha}, \gamma_{\beta})$. Starting from the left upper side of the sequence we see that, since $K_0(A_{\alpha})$ is generated by [1] and [p], $(id)^* - (\gamma_{\beta})^*$ is the zero map on $K_0(A_{\alpha})$, then [1] and [p] generate a copy of \mathbb{Z}^2 in $K_0(A_{\alpha} \times_{\gamma_{\beta}} \mathbb{Z})$. On $K_1(A_{\alpha})$ the map $(id)^* - (\gamma_{\beta})^*$ is the zero map and because of $K_1(A_{\alpha})$ is generated by [U], [W] we have a copy of \mathbb{Z}^2 in $K_1(A_{\alpha} \times_{\gamma_{\beta}} \mathbb{Z})$. Note that since

$$A_{oldsymbol{eta}} \longrightarrow A_{oldsymbol{eta}} imes_{\gamma_{oldsymbol{lpha}}} oldsymbol{Z} \quad ext{and} \quad K_0(A_{oldsymbol{lpha}} imes_{\gamma_{oldsymbol{eta}}} oldsymbol{Z}) \simeq K_0(A_{oldsymbol{eta}} imes_{\gamma_{oldsymbol{lpha}}} oldsymbol{Z}), \quad C^*(W) \longrightarrow A_{oldsymbol{c}}$$

we have the following diagram:

$$\longrightarrow K_0(A_{\alpha} \times \mathbb{Z}) \xrightarrow{\tilde{\partial}} K_1(A_{\alpha}) \xrightarrow{(id)^* - (\gamma_{\beta})^*} K_1(A_{\alpha}) \longrightarrow$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad (3)$$

$$\longrightarrow K_1(A_{\beta}) \xrightarrow{\partial} K_1(C^*(W)) \xrightarrow{0} K_1(C^*(W)) \longrightarrow$$

where the vertical rows are the inclusion maps. The above diagram is obtained by considering A_{β} as the C^* -algebra crossed product $C(T) \times_{\rho_{\beta}} \mathbb{Z}$ where $C^*(W) = C(T)$. By the exactness of the bottom line of the diagram we get $\partial[\tilde{p}] = [W]$. Now the rectangles in the diagram commute so also on the top line we have $\hat{\partial}[\tilde{p}] = [W]$. Let us show that $\tilde{\partial}[Q] = [V]$. So considering $C^*(U, V) = C(T^2)$, then we have the following diagram:

where $C^*(V) = C(T)$. The bottom part is the Pimsner-Voiculescu six term exact sequence for the C^* -algebra $C(T^2)$ by seeing it as the crossed product of $C^*(V)$ by the trivial action of Z. As in [6: Section 8.5] let [Q] be the generator of $K_0(C(T^2))$. Then we have $\partial[Q] = [V]$ and $\partial[\mathbf{1}] = 0$, since the diagram commute this holds also for the top part so $\partial[Q] = [V]$. Hence we can conclude that $K_0(A_{(\alpha,\beta)}) = \mathbb{Z}^4$ with generators [1], $[p], [\tilde{p}], [Q]$.

(b) The map $(id)^* - (\gamma_\beta)^*$ on $K_1(A_\alpha)$ is the zero map and because of $K_1(A_\alpha) = \mathbb{Z}^2$ we have a copy of \mathbb{Z}^2 in $K_1(A_{(\alpha,\beta)})$ with generators [U], [W]. Also at the $K_0(A_\alpha)$ level the map $(id)^* - (\gamma_\beta)^*$ is the zero map. Thus we get another copy of \mathbb{Z}^2 in $K_1(A_{(\alpha,\beta)})$. Let \mathcal{U} be the unitary operator in $M_n(A_{(\alpha,\beta)})$ such that $\partial[\mathcal{U}] = [p]$. As in (3) we consider the diagram

By the exactness of the bottom line of the diagram we get $\partial[W] = [1]$. Now the rectangles in the diagram commute. Since this holds also for the top part, we have $\tilde{\partial}[W] = [1]$. Thus statement (b) is proved

References

- [1] Olesen, D.: Inner *-automorphisms of simple C*-algebras. Comm. Math. Phys. 44 (1975), 175 190.
- [2] Pedersen, G.: C^{*}-Algebras and their Automorphism Groups. New York: Academic Press 1979.
- [3] Pimsner, M. and D. Voiculescu: Exact sequences for K-groups and Ext-groups of certain cross-product C^{*}-algebras. J. Oper. Theory 4 (1980), 93 - 118.
- [4] Power, S.C.: Simplicity of C^{*}-algebras of minimal dynamical systems. J. London Math. Soc. 18 (1978), 534 538.
 - [5] Rieffel, M.A.: C*-algebras associated with irrational rotations. Pacific J. Math. 95 (1981), 415 - 429.
- [6] Taylor, J.: Banach algebras and topology. In: Algebras in Analysis. Proc. Instr. Conf. Birmingham, Sept. 3 - 22, 1975 (ed.: J.H. Williamson). London: Academic Press 1975, pp. 118 - 186.

Received 06.07.1993