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Abstract. The Dirichiet problem for second order elliptic equations will be considered in 
domains of 1R!S with smooth (N - 2)-dimensional edges at the boundary. The authors get the 
asymptotical decomposition of the solution near edges with angles running through a critical 
value. Furthermore, the first terms of the asymptotics of the solution near a polyhedral vertex 
are given for a domain with critical angle 7r/2 in the vertex. 
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0. Introduction 

The present paper concerns the asymptotic behaviour of solutions of the Dirichiet prob-
lem for elliptic differential equations of second order in domains with edges if the angle 
at the edge runs through a critical value. It is known (see, e.g., [3, 4, 7]) that two dif-
ferent cases have to be considered in the description of the behaviour of the solution of 
the Dirichiet problem for the Laplacian near angular points: the resonance case where 
the asymptotics of the solution contains logarithmic terms and the non-resonance case 
without logarithmic terms. Logarithmic terms only occur if the angle at the corner is 
equal to a critical value. For the Laplacian such critical values may be all numbers of 
the form j7r/k where j, k are integers. If we fix an integer number 1 and consider the 
asymptotic decomposition

U = E, + u 
of the solution u with a regular term ut € W I+ 2 (G) , then all angles of the form 

ct =jir/k	(k = 1,2,... ,l+ 1; j = 1,2,...,2k) 

become critical in the above sense. In the study of the asymptotics of the solution of 
the Dirichiet problem near edges one is confronted with difficulties if the angle on the 
edge varies and runs through a critical value. 
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Asymptotic decompositions for the solution of the Dirichlet problem for second order 
differential equations have been obtained by V.A. Kondratjev [5] and V.A. Nikishkin 
[14]. In several papers.of V.G. Maz'ya axidB.A. Plaxnenevskij [6, 81, V.G. Maz'ya and 
J. Rossmann [9, 10], M. Dauge [3], J. Rossmann [17] these results have been generalized 
to boundary value problems for differential equations of higher order. Here critical 
angles have been either excluded-or the authors considered only operators with constant 
coefficients in domains with constant angles at the edges. S. Rempel and B.-W. Schulze 
(see, e.g.; [16, 18, 19]) investigated pseudodifferential equations on manifolds with edges. 
They have given a very abstract description of the asyrnptotics of the solution by means 
of analytic functionals. The only condition in their papers is that the manifold is 
diffeomorphic to

cz={x=(xf,y)E1Fft':yE1R, x'EK} 

in a neighbourhood of each edge point where K denotes a cone in 1R' which is 
independent of y. An explicite representation of the asymptotics of the solutions to 
boundary value problems for elliptic differential equations of second order has been 
first announced by M. Costabel and M. Dauge [1] (detailed proofs are given in [2]). 
Independently of them the authors of the present paper obtained a stable representation 
for the asymptotics of the solution of the Dirichiet problem in plane domains with 
angular points if the opening of the angle belongs to a neighbourhood of a critical value 
a' (see [13]). In this case the singular functions 

(r, 0 denote the polar coordinates) in the asymptotics of the solution were replaced by 
more complicated singular functions 

' S,(z, a) =	 '' (a - a')"	a1 

(a1 - 	k,, 1(k, - ic), z =. re') and conjugate terms. 
The present paper is a direct continuation of [11] and [13]. In Section 3 we will show. 

that the solution of the Dirichiet problem for second order elliptic equations with smooth 
real coefficients near edges can be represented as a finite sum of singular functions 

C(X)6 (z1°i'S(z,a) .#  

and conjugate terms and a regular remainder (see Theorem 2). Along with the values 
a' = jir/k (k = 1,2,...,! + 1; j = 1,2 ...... 2k —1; j 9k k) which are critical for the 
Laplacian we consider the case of the angle at the edge running through the value 7r or 
27r (see Figure 1).	. 

This case was excluded in [1, 2, 11]. The angles a' = ir and a' = 27r can be 
considered as critical too, because in a neighbourhood of such points the domain is. not 
diffeomorphic to a dihedron V = {x = (XI ;r2 ,y) : y  1R12, 0< q!' = arg(x 1 + ii2 ) < 
a) with constant angle a. In these cases it is necessary to consider the problem in a 
more general "dihedron" 

v={x=(x1,z2,y):yEW1_2,o<=arg(xl+iz2)<w(r,y)}



/
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(r = (X2+ x)h1'2, € C0(	x li? 2 )) with angle a(y) = w(O, y) running through 

Fig. 1 

ir or 27r. Note that in the special case when w only depends on the variable y the angles 
ir and 27r are not critical. Then the solution u admits the decomposition 

=	c(z)r1t1n1()	 +u1	 S 

(u, € W i+. 2 + e' if f E W',' 0 < < E) which- is the same as for non—critical angles * (cf. 
[10, 14]). 

In order to illustrate the representation of u for, other critical values a = jir/k (j/k 
non-integer) we consider the Dirichlet problem 

	

Lu = f in C,	u = 0 on OG	(f € W'(G), e > 0) 

in a domain C which coincides with the dihedron V in a neighbourhood of a point z0 
on the edge M. Here we assume that the function w in the definition of V does not 
depend on the variable r and lies in a neighbourhood of a = 7r/2. Firthermore, we 
suppose that	 S	 - 

> 

is an elliptic differential operator with smooth real coefficients satisfying the condition 


a20,0 (0, 0, y)	ao,2 , 0 (0, 0, y)	1,	aj1,o(0, 0, y)	0 .


For constant a the asymptotic decomposition of the solution u € V 1 (G) takes the form 

u=ci(x)ri0sin!±+c2(x)r2 (1_ cos 2s	1—cos2a 
2 sin a	\	4	- 4 sin 2a r srn 2
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ifck7r/2and 

u = c i (x)r2 sin 20 + c2(x)r2 (1 cos24 + t cos 20 + -- log r sin 2) + ui 

if a = 7r/2 where u 1 E W3 , r_3_eui E L2 and ci are functions from some weighted 
Sobolev spaces (see, e.g., [10]). By Theorem 2 of the present paper the solution u admits 
the decomposition 

U = Ci (x)r 0(1) sin 

1— cos 2a(y) / 1r'ci" .	 2 +C2(x) sin	
r	,in 	sin 20 I +u1 4sm2a(y) \	a(y)  

if the angle a is variable und runs through the critical value & = 7r/2. Analogously 
to [9: Corollary 3.2 and Remark 3.3] and [10: Remark 4.1] the coefficients C1 and 
C2 can be replaced by their traces on the edge if f belongs to the space w3 where 
s > 2 + e + sup 7r/a(y). This corresponds to the so-called tensor product decompoiiiion 
of T.v. Petersdorff and E.P. Stephan [15]. 

The results of Section 3 can be applied to the Dirichiet problem for second order 
elliptic equations in polyhedral domains if the angle at one of the edges is critical in a 
vertex. As an example we consider the Dirichiet problem 

Lu=	ak(x)O,O2Ou=f in G,	u=0 onOG 

in a domain G which coincides with the infinite cube (0,00)3 in a neighbourhood of the 
origin. If the principal part of L with coefficients frozen in the origin is equal to the 
Laplacian, then the angle 7r/2 in the origin is critical. It will be shown that the solution 
u € 10(G) . admits the following decomposition in a neighbourhood of the x3 -axis if 
I E W(G): 

u =	(xI)rl'03) sin(7r/a(x3)) 

+ 4(x 	- cos 20') +	
- 7r/2)(cos(2a(x 3 )) - 1) 

sm(2a(xz)) 
,	2-ir/a gW/Q . r sin 20' -	r	sln(7r4 /a(x3)) 

+ 
1 •	 a(x)—ir/2	 ) 

Here u' E W3 (G), r' 3 u E L2 (G), the coordinates	are defined by the equations 
= (ao,2 ,o(0, 0, x3 )/D)"2 x1 - ai,i,o(0, 0, x3 )(ao ,2,o(0, 0, X3 )D) 
= ao,2,0(0,0,x3)_112z2 

z'3=x3 
where

D = a2 ,o,o(0,O,x3 )ao,2 ,o(O,0,z3 ) - 
= (x' + x1)h/2, v' = arg(x'1 + ix), tan a(x3 ) = —2D'/2/ai,i,o(0,0,x3) 

and 4, j2 are some extensions of functions on the x3-axis. 
The authors are grateful to M. Costabel and M. Dauge for useful remarks in con-

nection with this paper.	-

I1
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1. Regularity of the derivatives of the solution in edge direction 
Let V be the dihedron 

	

D={x=(xj,x2 ,y)Ein" :yE1R'2,O<<w(r,y)}	(1.1) 

	

with variable angle c(y) = w(O,y) (see Figure 2). Here r = (x + x)" 2 	arg(z 1 +

ix2 ) are the polar coordinates in the ( X I, X 2 )-plane and w is an infinitely differentiable 

	

function on	x ]RN-2 such that 0 < inf, (r, y) :5 SUPr, y w(r, y) :5 27r. The edge M

of V coincides with the y-axis. We consider the Dirichiet problem 

	

Lu =	E a,p(x 1 , x21 y)o 1 O 2 8u= f in 	u =0 on 0^V.	(1.2) 

Here L is an arbitrary elliptic differential operator of second order with real coefficients 
a, , p E C—(V). Without loss of generality we may assume that 

a2,0,0(0,0,y)	ao,,0(0,0,y)	1,	aj,i,o(O,O,y)	0.	(1.3)


Otherwise we make use of the diffeomorhpism 

x'i = ( ao,2,0(0, 0, y)/D)" 2 z 1 - a j,i o(0, 0, y)(ao,2,0(0, 0, y)D)1/2x2 
= ao,2,o(0, 0, y)1"2x2 

yl = y 

where D = a2 , 0 , 0 (0,0,y)ao, 2 , 0 (0,0,y) - a i,i3O ( 0 , 0 , y) 2 . We introduce the following 
weighted Sobolev spaces. By 1<61 (D) (1 integer,1 > 0,6 E C00(1R2) real-valued) we 
denote the closure of Cr(\M) with respect to the norm

1/2 

= (i	
r2(5_I+tIDPul2dx)
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Furthermore, the space W(V) (1 integer, 1 >_ 0,6 E C00 (JRN 7 2 ) , 6> —1) will be defined 
as the closure of C'°(V) with respect to the norm

1/2 

l u ll W(D) = (I	f26(v)IDPUI2dX)  
D IPI<1 

Note -that the usual Sobolev-Slobodezkij space W1 (D) is continuously imbedded into 
WL(D) if e is a real number from the interval (0,1). Analogously to [8] the following 
lemma can be proved. 

Lemma 1. Let u E V..!(V) be a solution of problem (1.2) with I E V41_(D) 
(1 ^ 0 integer, c E in). Suppose that the support of u is compact. Then u E V(V) 
and

IIUIIvI+2(D) ^'- c (ll u vi (D) + 11flk 1 ,_ ( D )) .	 (1.4) 

Here the constant c depends only on V and the support of u. 

Proof. We only sketch the proof. Let u =0 for lxi > R. There exists a countable 
collection of open balls Bi which cover V fl {x : lxi > R} and satisfy the conditition 
d, = diamB, = dist(B,, M). Furthermore, let B be balls concentric to B, with 
diameter 2d,. From the classical L 2-estimates for solutions of elliptic equations in 
domains with smooth boundaries it follows 

I. E dDudx 
B,nD PI<1+2 

^ c J (>i diDPul 2 -	d F4 lDPfj2  dx. 
BnD  

Multiplying this inequality by d 22 and summing up over all j we get (1.4) I 
If  is an arbitrary function in V (given in cylindrical coordinates r, 4', y) and h E in, 

then we denote by fh the function 

fh(r,c6 , y) = 

1 ( ( 
w(rY1+hY2...YN_2)4,yl+hy2yN2)_f(r4,y)) 

; f 
r,	

i(r,y) 

Obviously,

, y) ;ir, 4,, + w(r, ) (8,w(r, y)) Of(r, 4,, y). 

Note that the derivative

Di = OPJ + ( 4, ) (O 1 w(r,y)) 8	 (1.5)
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(j = 1,...,N-2) is tangential on the sides qS = O and qS = w(r, y) of V. We furthermore 
mention the following property of the operator D': if C is an arbitrary second order 
differential operator of the form 

£ =

	

	 (1.6)

Is+v+IPl^2 

with coefficients	being infinitely differentiable relative to r, , y, then there exists 

an operator Ci of the form (1.6) such that 

DCu = C(D,u) + £,u.	 (1.7) 

Lemma 2. Let u E V 1 (V), f E V.(D) (e € JR) be arbitrary functions on V such 
that u(z) 0,1(x) = 0 for r > R. Then the following inequalities hold with constant., 
C1,C2,C3 independent of h,u and f: 

• IIuhIIv0 (D) :5 cflDufl,/o (V) <C2IIUIVi(D) 

fIfh IIv-'(v) < C3IfflVO(D) 

where V'(D) denotes the dual space of V'(V). 

	

Proof. For simplicity we restrict ourselves to the case N	3. For N > 3 the

lemma can be proved analogously. 

a) Using the equation 

y+h 

11 d / w(r,$) •\ 
U h — I —u(r,	 d 4,ss h j ds \	(r, y)	j 

V 

1 

f(Ou (rw(r,Y+th)4	ih) , y + 
01, \	(r, y) 

0

y + th) Ou / w(r, y + th)q	
th)) dt , w(r, y)	8q4	w(r, y)	y+ 

 

we get

1 00 

fr_2dluhl2dx :5
 Iff f r2C IOu 1 w(r,y-fth)	

th) (kr,	i.i(r, )	
11 + 

V 0 0 IR 0 

•	•	8(r, y + th) Ou w(r, y +. th)	2 

w(r,y)	8.	w(r,y)	th) dc6dydrdt 

oo 

sJJ f r'2IDiuI2ddydr 
0 I 0 

= cf r2IDiuI2dx 

V
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b) It can be easily verified that 

J 
fh v dx = - Jf 

I W y - h)	1 w(r, y) - w(r, y - 
w(r, y)	w(r, y)	h 

V_h+	 dx. 
V	 V 

Consequently,

IV ía vdxl < c lif IIVo (D) (II v_h Iko (v) + IIvIko(D)) I
:5 C III IIVO(D)IIVIIV1(D). 

The result follows U 

In a similar way one can prove the following lemma. 

Lemma 3. Let u € V62 (D) (6 E JR) be an arbitrary function satisfying the condition 
u 0 for r > R. Then the estimate 

II(Lu )a - LuhlIvo(D) :5 C11U1T/2(p) 

is valid with a constant c independent of u and h. 

Now we can prove the following regularity assertion for the derivatives Ou/Oy, (j = 
1,2,... , N - 2). For constant w this assertion has been shown in [5, 9,40]. We use the 
same technique. 

Proposition 1. Let u E *'(V) be a solution of problem (1.2) where I = Ii + 
f2 with Ii € V2(D)J2 E V!11 (D) and D,f2 E •V°+ 1 (D) (j = 1,...,N —2; 
0, e sufficiently small). Moreover, we assume that u	0 for r > R. Then u € 
V(V),Ou/0-y1 € V.± 1 (D) and

N -2 1: II Ou II 

II u Itv(v) +	II	< c (II u IIwicv + 11111) 
j=1 OYiIIvi (v) - 

with a constant c independent of u and f . Here II II denotes the norm 

N-2 

1111! =	inf	{IIfiIIV) + IIf2IIv!.(v) +	IIDiI2IIv.(V) 1 11+12	 I - = 
Proof. At first we show that every solution u € V.!1 (D) of problem (1.2) with I as 

in the formulation of the proposition satisfies the inequality 

II Opa u IIv(V) <	(D) + 11111) .	 ( 1.8) 

Since f E V!e+ i (D) Lemma 1 implies u € V! 1 (D) and 

II U IIV2 (V) <C (II U IIVI (D) + IIfIIv. 1 (V)) :5	(V) + 11111).
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Furthermore, r ut, € W(D). Then the Girding inequality yields 

IIruhD 
Vol (D) < cIIr'uhIII(v) 

< c (I(L(ruh), r ' uh)I + IIreuhII2(D)) 

i. e.

IIr e u h II vJ(v) 15 C (IIL(r_euh)II v1(v) + IIruhIIL2(v)) 

(II[L,r_e]uhII V0'(V) + VrtLuh IIv,_ 1 (D) + IIreuhIILs(v)) 

([L, r] denotes the commutator of L and r). By Lemma 2 and Lemma 3 we have 

IIrtLuhIIV0_1(D) 

< c (ii r (Lu , - (Lu )h11v0_ i(v) + IIfhIIV(D)) 

- (Lu)h Ilvo 1 (D) + II(fl)hII v'(D) + II(f2)hIIv01(D)) 

1 (D) + hill V° (D) + hlD1f2Ilv01(D)) 

for an arbitrary decomposition I = 11 + f2 of the function f where 1' E V!1 (D), 12 E 
V2+ 1 (D) and D 1 f2 € ' 1 (D). Here we have used the continuity of the imbedding 
V.+ 1 (D) C. V'(D). Furthermore, 

hILL , r e iu h II	:5 ceIlr'uhhlv:(p) 

and
IlreuhIIL3(v) = fluh II v° (D) < CIIUIIV1(D) 

with a constant c independent of ' c and h. Consequently, for sufficiently small e we get 

II u hIIV. (D) :S c (II u uvs (D) + huh V0 (V) + hlDif2Vv!.+L(D)) 

i.e.
Ou J I < (U V' (D) + iiuii) OY1 IIV I (D) - 

Analogously one gets the same estimate for the derivatives Ou18y1 (j = 2,. . . , N - 2). 
According to the assumption of the proposition u belongs to C V'(D). Hence, 
by (1 -8), 8,,u E V(D). Then from [4] it follows that u € V!, (D) for sufficiently small 
e > 0 (see also [51) and II u IIv (v) :5 c (hI u II,t ( D) + Ill 1vo). Applying again (1.8) one 
gets the assertion of the proposition U
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Theorem 1. Let u E W 1 (V) be a solution of problem (1.2) with compact support 
where Df € VT 11 (D) for 1 01 < k and e is a sufficiently small non-negative real 
number (this condition on the function f is satisfied, e.g., if I € We(V)). Then 
Du € v 11 (D) C V(D) for 1131 < k + 1. 

Proof. This generalization of Proposition 1 can be easily shown by induction in k. 
Assume that N = 3 and the assertion is true for k - 1. Then we get &,* u € VT1(D) 
for j = 0,1,...,k, i.e. Du E VT 1 (D)forj = 0,1,...,k. From (1.7) it follows that 
L(Du) can be written in the form 

L(Du) = D(Lu) + L(Du) = Df +E L(Du) 

where Li are second order differential operators of the form (1.6). Here Df € V_°e(D) 
and ELa(Du) € V2(D) (since Du € V211 (D) for j = 0,1,... ,k —1). Lemma 1 
implies Du E V2 1 (D). Furthermore, by (1.7) we have 

D1 E L,(Du) = >Z(Du) 

where L, are differential operators of the form (1.6). Hence D1 E L1 (Du) € V.e+i(D) 
and by Proposition 1 we get Du € V11(V), i.e. the assertion of the theorem is true for 
every k. In the case N > 3 the theorem can be proved analogously I 

2. Solutions of the Dirichlet problem for special right-hand sides 

We introduce here the same singular functions as in [13]. Let 1 be a given non-negative 
integer. An angle a is said to be critical if there exists an integer k € (1,2,... , 1 + 1) 
such that ka'/ir is integer. By Zj(a) we denote the set of all tuples ?C = (k0 , k1 ,... , k,,) 
of integer numbers k, where n > 0,0 = k0 <k1 < ... < Ic,, <1+1 and k'a*/ irr are 
integers. For a giventuple K = (k0 ,k1 , . . . ,k,,) € ),(a5 ) we define the function S.,(z,a) 
of the complex variable z = x j + ix2 = re' (0	< 2r) and the angle a € (0, 2irJ as

follows:

(a - a)'z'	 if a 
S,(z,a) =	 3=0 

	 (2.1)


- a*)_zk E ajzki(c_ )/0 if a = 
3=0 

where a = -	k/(k - Ic) for j = 1,. . . , n and ao = 1. In the case n = 0

(i.e. K = (k0 ) = (0)) we set S,(z,a) = 1. It is shown in [13] that S,(z,a) is infinitely 
differentiable relative to a for every z 0. The limit	 S 

lirn(a - a5)_tzk Eaj1(°""
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is a polynomial in log z = log r + iqS of order n. if a is an infinitely differentiable function 
of the variable y € RN 7,2, then S(z, a(y)) is infinitely differentiable relative to y, too. 

We consider the problem (1.2) in the dihedron (1.1) where the angle a(y) of V lies 
in a neighbourhood of the critical angle a'. In the case a' 0 7r, 27r we can assume 
without loss of generality that the function w in (1.1) does not depend on the variable 
r. The cases a' = ir and & = 27r we will consider separately. 

a) The case a' 54 7r, 27r. It is useful to write the Laplace operator in the (XI, x2)—plane 
in the form

O1+O2=48O 

where O =	—iO2) and 0.- = (O +iO 3 ). The following lemma has been proved

in (13: Lemma 61. 

Lemma 4. Let a' be a critical angle and c = (k0 ,k1 ,... ,k) a tuple from )C,(a'). 
Assume that a lies, in a sufficiently small neighbourhood U(a') of a'. Then the problem 

ozoiv = ô {z''"S(z,a)} for 0 < argz < a 

	

v = 0	 for arg z 0, arg z = a 

with non-negative integers q, t, , ii, i + ' > q - 1, ha., a solution of the form 
n 

	

V =	Aj(a)z1__ki07+1S,c1(z,a) 
j=0

n 
+'	B(a)Re {z k F1 _ k,+ ft/Q S (z, a)}	 (2.2) 

j=0 

t+1 

+ E C1 (a)IM {zkn+ k1+uinI5 (Z ' a) 
=0 

where k+i = k +,u + ii + 2 —q, i, = (k0 ,k 1 ,... ,k1 ) and A,,B,,CJ are infinitely 
differentiable functions in U(a'). If q ^! 1, then the first term in (2.2) can be replaced 
by

tzb0+1S.(z,a,) 
V+1. 

Furihermore, C,,. 1	0 if k+ia'/ir is not an integer. 

Remark 1. In Lemma 4 the cases a' = ir and a' = 27r are included. In these 
cases the coefficient C 1 is identically equal to zero in the neighbourhood U(a') of a' 
(see [13]). 

In order to get a similar result for the Dirichiet problem (1.2) in the dihedron 


V={z=(x1,x2,y):yE1R_2, 0<=arg(xi+ix2)<a(y)} 

we need the following assertions on weighted Sobolev spaces. The proof is given, e.g., 
in (9, 101.	-
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Lemma 5. The following assertions are valid. 
a) Let v E W(D) with a smooth function 5 satisfying the condition —1 < mi 5 

sup  < i — i and 1 > 1. Then the trace of v on M lie, in the Sobolev space W'''(M). 
b) Let f E W'— ' -6 (M) (1 >_ 1, —1 <inf S >_ sup  <1— 1). Then the function 

	

v(x) =f)(x) =(r) f f(z+tr)(t l ) ... b(tN2 )dt	(2.3) 

(t = (t1,...,tN_2), x E Co 0(+), stpp x 9 (0, 1], x	1 in [O,], 0 E C°°(1R), 
supp,I, 9 (-1,+1), f s' tI.'( s )ds = 61 ,o for j = 0,1,... ,l - 1, r = (x + is 
an extension of f and belongs to the space W6 (D). The extension operator (2.8) is a 
continuous mapping from W'' 6 (M) into W51 (V) for every v 0. 

C) If f E W'' 6 (M) (1 > 1, —1 <infS < sup  < 0), then 
(i) O 1 O.2 Kf €	''(D) for each i,j, ii, 1 < i + j :5 1 + ii 

(ii) DPKf E V. i +e(V) for 1131 :5 i—i where e is an arbitrary positive number 
(iii) Df = K(Df) for IíI <1 - 1 
(iv) c?Cf - X(cf) E ' 5'i(D) for every c E C—(M), LI <1 - 1. 

d) Ever!) function u E W61(D) (1? 1, —1 <ml S sup  <0) admits the decompo-
sition

U = Pi (u) + v 
where

P,(u) = >	 (ICU,,, ) 2122	uIp = O 1 O 3 UJJ,	V E VI(V) 
p+v^l-1 

We now can formulate the analogon to Lemma 4 for the Dirichiet problem (1.2). It 
corresponds to [10: Lemma 5.11. 

Proposition 2. Let ,c = (k0 , k1 ,... , k,,) be a tuple from	&) and 

f = a(y)Z(x)OO {ztS(z,a(y))} 

where 1<q!5p+v+1,l2+c<p+zi+k_q+tir/a(y)<l_1+e, a€C°°(M), 
KC, CE Hl+k_1_lA_V_k.+9+IYI+t_t1T/a(M) (q,t,p,v,k,l are non-negative integers). 

Then there exists a function

11 [zt0)SK(z, a(y))] v = a(Y)(x)8 4( + 1)0z 

n+1 

+ E b(y)Z +iki+tir/t(v)g
'C' (z,a(y)) 

j=o 
n+1 

+ : 
cj(y)+1/0(Y)S

'C' (z, 
j=0
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(xi =(ko,ki,...,k1),	 b+ic+i0 if k+ia'/ir is not

integer) such that

Lv - I = T + T2 

where

T2 E V-'('D)	(e' = e - k 
V:070>0.

up	
'	

L)

v:a(>' '(Y) - 

and T1 is a finite sum of expressions of the form 

b(x) (Op) Oy-'+ "' Of {zi'+t /a(y)v' S, (z, a(y)) } 

and conjugate terms. Here 

p:5p'+v'+l, 1-1+e<s'+u'+k-p+tir/a(y), 
101 	b€C°°(V). 

In particular, we have D(Lv - f) € V.L(D) if 101 :5 k. An analoguous representation 
holds for q = 0 (cf Lemma 4). 

The assertion follows immediately from Lemma 4 and the properties of the operator 
K. In the proof one can use the fact that L - 48O contains only terms of the form 

a(x i ,x2 ,y)OZ1' &' p	where i+j:51,i+j+JflI2 

and
X2, y)0, 2

	where i+j=2, a(O,O,y)O. 

b) The cases or' = ir, or' = 27r. Assume that the angle a lies in a sufficiently small 
neighbourhood U(cr') of the critical value a' = ir or a' = 27r. In these cases we can use 
a more simple form of the singular functions S(z, a) because kcr'/7r is integer for every 
integer k. Instead of S,(z, a) for the tuple K = (0,1,... , n) we will write S(z, a), i.e. 

n 

Sn(z,a) (a - a')"z"	(_i)1'z1	a)i = ( z°'° - 
, ) .
	(2.4) 

Again we consider at first the auxilliary problem 

Ox8iv = fo = Ozq { z1 10yh#5(z, a)} for 0 <arg z < a + b(r,a) 

v=0
	

for 4 = argz = 0 and 4 = a + 1(r,a) 

where ,,1' is a C°°-function on 34 x U(a') such that &(0,a) = 0. We will construct a 
function v (see Lemma 9) which satisfies the equations 

OzOyvfo	 for 0<argz<a+(r,a) 
v=0	 for argz=0 

V = 0 (rt10+	2_) for argz = a + 10(r, a) 

with an arbitrary given positive integer k. For this we need the following lemmas.
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Lemma 6. Let v = zP+ t I0S(z , a)(t,u integer). Then the restriction of von the 
line 4' = a + 10(r, a) has the form

n 
=	>a1(r,a)r"'Sj(r,a) 

j=o 

where a' € C°°(+ x U(a)) for j = 0,1,...,n and a(r,cx) = (-1)e 1 ' + 
(r, a)ik(r, a), an €	x U(a')). 

Lemma 7. The restriction of the function 

v - Im {z'n1 Z' - Z' S(z, a)} =	im { z,_1_ ( t	)1cxS+i(Z a)} v = IM
v0 

on the line 4' = a + (r, a) has the form 

I 
sin pa rM+tI/t VI+,() = 

( _1)t+1+fla/1 a - 

+ fl(_l)(M 1)a 

n-1;&--1 

	

+	> a
j, (a)r	 o)/aSj(r, a) 

j=O v=O 

n+lp-1 

	

+	> b,(r, a)r	fl_3+1+(1!+V )/ S1 (r, a) 
j=O =O 

with coefficients a, € C°°(U(a*)) and b 1 E. C°°(+ x U(a')). 

Proof. We have 

V I=Q+(rQ) = (- 1)'Im { e 1 r 1' {e' (I+'b/a) r' . /a
 - r14 + cM(a)rM] 

x [e ('/°)Si(r, ) + ci(a)r]Th} 

where
c(a) = (a - a) (ei (1+'/Q) - 

	

Using the fact that (r,a)/r, 	€ C°°(	x U(a')). we obtain the assertion of the 
lemma U 

Corollary 1. Let g = c(cr)r'"f°S(z,a) where t, p are non-negative integers, 
> 1 and c is a C'-function on U(a*) satisfying the condition c(a) qk 0. Then there 

ezi.,ij a function 

p-i 
V =	cv(a)Irn{z'''Sn+i (z,a)}	(c € C°°(U(a))	(2.5)
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such that the restriction of v on the line 0 a + (r, a) satisfies the equation 

n-I p-i 
- g = 	E a1(a)r , fl)	'°)/S,(r, a) 

=0 P=O
(2.6) p-1  

	

+ 	E b1 , (r, a)rL_fl+1_i+(t	° / Sj (r, a) 
j=O v=0 

with coefficients a, E C(U(a)) and b, E C°°(+ x U(a*)). 

Proof. The corollary can be easily shown by induction on p. For it = 1 the 
corresponding result follows immediately from Lemma 7. Assume that the assertion is 
true for p.— 1 (p > 2). Let 

d(a) = c0 (a)(_1) 1 + 1 +t207 r (a - a*)/ (sin(pa) +	 sin a) 

(i.e. d(a) = (— 1)'+	°/co(a)/(n + p) ) and 

p-I 

	

Vi = d(a)	Im	 a)} 

Then Lemma 7 implies 

Vi	 - g = d(a)n(-1)t+1+(T+P_1)0/1r 

Sin a p-i 

	

x	r v+OI+IQ•)/QSn(r a) 
01 - a*. ni 
n-i p-I 

	

+	ajv(a)r)+(tM)/aSj(r,a) 
3=0 =0 
n+i p-I 

+ > > bjv(r,a)rPn+1_J+h1r+/0Sj(r,cx). 
j0 v=0 

By our assumption there exists a function V2 of the form (2.5) such that 

p—i 
- d(a)n(_1)I+	1)o/ir sin a	r +vo/o+P_vSn(r, a) 

a - i'=l 

is an expression of the form (2.6). Then the difference v = V I - v2 satisfies the condition 
of Corollary 1 • 

Lemma 8. Let
g = c(a)ru7ntSn(r,a)
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with non-negative integers t,,v, ju ^! 1, and c E C°°(U(ci')). Then there exists a 
function

n+1 A+n-j 
v =	c,,(r,a)Im {z1flut'0kSj(z,a)} 

j=0 v0 

(civ € C°°(U(a'))) such that 
n-fl L+fl—j 

—g =	ajp(r,a)r I+/'Sj(r,a) 
1=0 '=0 

where the coefficients a, are functions from C(7+ x 
Proof. We prove the lemma by induction in n. Let at first n = 0, i.e. g = 

c(a)r / . If c(a') = 0, then the assertion is true for v = (—l)' Irn z--t1r/0, 

and if c(a') 54 0, we set

a - a' 
v = (_i)t+1 .

	
c(a)IM	

1"'/' - ZM

 I a - a' sin i 

= (_i)t+1	
_c(a)	

Im {z1_1+ si(z, a)} 
sin ya	

V=0 

We now assume that the assertion is proved for n - 1 and show its validity for n. Again 
we have to consider two different cases c(a') = 0 and c(ci') 0. Consider at first the 
case c(a') = 0. If we set 

v1	
c(a) = (_1)t+nc/1T	IM tz1L4t0Sn(z,a)}, 

sin jta	I. 

then we get
- g = gi + 92 

where
n—i 

91 =	
dj (a)r	)+t1Sj(r,a)	and	g2' d(r,a)rP+l+tlT/aSn(r,a) 

j=0 

with some smooth coefficients d, and d (see Lemma 6). By our assumption there exists 
a function

n 

V2 =	cjv(a)Im{zP__ Sj(z,a)} 
j=0 i'=O 

such that
n p+fl—j 

V2 	=	a,(r,a) 
j=0 v=0 

with coefficients a1 , € C00(+ x U(a')). Then v = v1 - V2 satisfies the condition of 
the lemma. In the case c(a') 54 0 the assertion can be analogously proved by means of 
Corollary 1 I



On the Behaviour of Solutions tâ a .Dirichtet Problem - 35 

Corollary 2. Let	 -. 

g = c(a)r tw/Sn (r, cr)	(t,p,zi € W0 , ii? 1, CE C°°(U(a'))). 

Then for every integer k > 1 there exist., a function 

Ic n+i +n+i—j-1 

V =
i1 j=O	v=O 

with coefficient., cij,, E Coo(U(cr*)) such that 

n+ku+n+k—j-1 

V I=Q+ ( r Q) —g = F,	>	a,(r,a) rn_i+(t/aSj(r,a) 

where the coefficient., a, are smooth flhnction,, on	x U(a). 

We now can show an analogón to Lemma 4. 

Lemma 9. Let fo = 8{zPf tw/ M Sn (z , a)} where i,,v,n.E No, i' + v > q - 1. 
Then for every given integer k > 1 there exist, a function 

v =

+ >2Bj(cx)Re {zt'Sj(z,a)}	 (2.7) 

k—I n+1 m4-.—j 
+	> C131 (cx)Im {zm_1:hh910S(z,o)} 

i=O j0 a0 

where m = n + p + v + 2 - q and the coefficients A,,B,C,,, belong to the space 
C°°(U(a)) such that

0.51.-v, =-.f for O<'4=argz<a+(r,a) 
v=O forçb=O 

and

n-I-k—I rn-I-k—i—i 
v =	 a8(r, a) rm+ki_1+(tw+1)/QSj(r, a) for 0 = a + ib( r, a). 

j=O	1=0 

Here the coefficients a 1 are functions from C00(ii. x U(a)). In the case q ^ 1 the 
first term in (2.7) can be replaced by	1r O'' {zI4Ib0S(z,)}.
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Proof. By Lemma 4/Remark 1 there exists a function 
'I 

vi =	
A, (a)z' -q+n-3+t,r/01v+i S1 (z, a) 

n 
+ E B(a)Re {Zm_1+tfaS(z, a)} 

=0 
n 

+ E C,(cr)Im {Zm_1+tI0S,(Z, a)} 
jO 

satisfying the equations O j v i = f and vi I	 = vi	= 0. Hence, the restriction of 
v 1 on the line = a+'(r,a) has the form 

7, 

Vi	 =	' (r, a) rm	J+/ S1 (r, a) 
j=0 

with coefficients aj E C°°(	x U(a')). Corollary. 2 implies the existence of a function 

k—i n-f j m+i—j 
V2 =	

cjjs(a)Im{zm_8i_11(1Sj(z,a)} 
t=1 j=O a0 

such that

n+k—im+k-1—j 
- Vi	

=
a,.(r,a) rm_8_i+(t)/cSj(r,a) 

Hence, v = v 1 + v2 satisfies the conditions of the lemma I 

Now we consider again problem (1.2) in the dihedron 

	

= {x = (x 1 ,x2 ,y) E RN y 	N-2, < q = arg(x 1 +ix2 ) <w(r,y)} 

where w(r, y) = a(y) + tb(r, y) and a(y) = w(0, y) lies in a sufficiently small neighbour-
hood U(&) of the critical angle a' ir or a' = 27r. We denote the sides = 0 and 

= w(r, y) of V by r_ and F, respectively; By means of the last lemma and the prop-
erties of the extension operator IC one obtains the following proposition analogously to 
Proposition 2. 

Proposition 3. Let 1 and k be arbitrary positive integers and let f be a function 
of the form

f = a(y)(z)OO jzhtM"Sn(z,a(y)) 

where

n<l - 1 , q	v+1, l-2+e<n+t+v—q+ft/a(.)<l-1+e 
a E C°°(M), = )c, c € Hl_1_+t_t)(M)
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(q, t, n, ji, v are non-negative integers, e > 0, sufficiently imall). Let furthermore e' be 
an arbitrary positive real number less than e. A,3ume that a(y). lie, in 'a sufficiently 
,mall neighbourhood U(a') of a' (which depend, on 1, k and e - e') for all y E M. Then 
there exists a function 

v = a(y)(x) ( O	di(y)Z"+	 3+t/V+iS,(z, a) 

•	
•+	b1 (y)Re [zm_+t/v)Sj(z,a)]	S 

k—i n+i m+i-3	 - 
+ E E E c ia (y)Im [Z m _i_a+r+aor/oSj(z, a)] ) 

s=Oj=O. .=O	 S 

where m = n +,u + v + 2 - q and the coefficients a 1 , b1 , c,,, are smooth functions on M 
such that 

• Lu—f =T1 +T2 in D,	vu =0,	v, €vL112(r+). 

Here 7.'2 € V±(D) and T1 is a finite sum of expressions 

b(x) (Op) o'o 

and conjugate terms where 

p:5.iz'+v'—s+l, IA'+v'+j—p+tr/a>l-1+e, j<n+k-1 
s<'+v'+1, n++z/+1_q!5'+v'+j<n+js+v+k_q 

and 1131+Fy't <2 

3. Asymptotics of the solution in a neighbourhood of an édgé 
Let G be a bounded domain in J1 which coincides with the dihedron-(11) in a neigh-
bourhood V of the point yo € M. We consider the Dirichiet problem 

	

Lu =	 a1(x)O1O3Ou = f in	. 
i+i+IJ ;C2	.	. 	(3.1) 

u=0	•'	,.	 onSOG	- 

for the elliptic differential operator L with real-valued coefficients a.,p E C°°(). Again 
without loss of generality we may assume that the condition (1.3) is satisfied for 'every 
point (0, 0, y) € V fl M. Suppose that the angle a(y) in the point yo is equal to a critical 
value a', i.e. there exists a number k € 11,2,. ...,l+ 11 such that ka'/ir is integer.


	

In the case a' 54 ir, a'	27r we assume that the function w in the definition of the
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dihedron V does not depend on the variable r. Moreover, let e' < e be sufficiently 
small positive numbers (such that the assertion of Proposition 1 is valid) satisfying the 
condition

t7r/a'[1u+e',ji+ej 
for every non-negative integer ju and t, u :5 l + 1. We further denote by U(a') a 
sufficiently small neighbourhood of a' which depends on 1, e and e'. In particular, we 
assume that a' is the only critical angle in U(a') and that tir/a V bu + e',p +,E) for 
every a E U(a') and every non-negative integer ji, t, j 1 + 1. Then we define the 
neighbourhood V0 c V as 

Vo ={x=(xi,x2,y)EV:a(y)EU(a')} 

The following lemma has been shown in effect, e.g., in [9), [10] for a' 3k 7r, a' 54 27r. By 
means of Theorem 1 this lemma can be proved in a similar way for arbitrary a'. 

Lemma 10. Let u E VL'(G) be a solution of problem (5.1) with support in Von G. 
Suppose that the right-hand side of (3.1) satisfies the condition Df E V'1(V) 
for I/S I <k.. Then 

Du E v:(V) C VL'(V)	for I/S I <k + 1 

and u admits the decomposition 

=	E(r, y) Im	+ uo	 (3.2) 
tEI 

where Ij = {t : t integer, 1+ e < tir/a' < 1 + 1 + e}, Duo E V, 3 '' 'D' for £ +k+'-I,PI" ' 

I$I :5 k,	= ).Cc, ; C, E W' /°(•)(M). 

Proof. In the case I = 0 the assertion Dl,u E V k+2-I0 _E+ k+ l _ I p I (V) follows from Theorem 
1 and the decomposition (3.2) holds analogously to Theorem 4.1, [10: Remark 4.1] and 
[9: Lemma 3.6]. We now assume that Lemma 10 is proved for i - i and show the validity 
of this. lemma for a. given 1 > 1. For simplicity we restrict ourselves to the case N. = 3. 
Lemma 1 implies u E V'tt1(V). Let D 1 = ô +	 be the operator (1.5). 

Then the function v = D i u satisfies the equations 

Lv=F mD,	v=0onOD 

where F = L(D i u) = D 1 Lu+L i u= D 1 f +L;u and L 3 is an operator of the form (1.6). 
Obviously, v E V 1 (D) C VL(V), F E V±(D) C VL(V) and our assumption 
implies Ov € VL(V). Using Lemma 1 one gets Ov E V± k (D). By induction in k 
we can further show that OF € V''(D) for j = 1,... , k.and therefore (by our 
assumption) Ov € V''1 (V) for.j = 1,... , k +1. Furthermore, we obtain. 

V 	+VO	..	.	- .	'	(33)
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where

0'vo € V±'/(V) for j = 0, 1,. . . , k,	=	c1 E W'''°(M). 

Integrating (3.3) we get • 

(v(x i , x 2 , s ) -	, x2 , s)) ds =	
]

 (r, s) Im	ds.

tEIg_i,1 

Here yj is a point on M fl V0 such that u(x i ,x2 ,y) = 0 for y < y. Since the function 

J(v1,x2,$)_vol,z2,$) ds 

u(xix2v)+J [
	s) 

belongs to V. e (V) we get ct = 0 a. e. on M, i e. v = vo and 0v € V.'./(D) 
for j= 0,1,... ,k. It can be shown by induction in k that 

j-1 
L(0v) =  LL(0v) 4Y  + > L(0v) E VL.J'(D) 

(here L1, are certain second order differential operators with smooth coefficients) and 
therefore

	

0v E V±.' (D)	for j = 0,1,... , k. 
This implies

0uEV'7'1(D)	for j=0,1,...,k+1. 

Analogously to Theorem 4.1, [10: Remark 4.1] and [9: Lemma 3.61 one can show the 
validity of the decomposition (3.2) ! 

Proposition 4. Let

	

	ir, c' 27r and le u E W'(G) be a solution of problem 
(8.1) with I E W.(D). Then  has the following representation in V fl G: 

u=E,+u, 

where

u 1 =0  on 81) fl Vo	and	Du1 E V'j(V) for $1 < k


and E, is a finite sum of expressions of the form 

Z(x)00 {zt10rs.c(z,c)}
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and conjugate terms. Here t,p,/2,v are non-negative integers, p :5 j + Li, p < 1, K = 
(k0 , k 1 ,... , k,,) E K,(c), p + ii + k,, - p + t7r/c' <1 + 1 + e and F = ftCc with 

C € 

Furthermore, LE, - PI (f) is the sum of a function fo € V,k (V) and a finite number 
Of expressions of the form

a(x)(z)ô'O {zt0S(z,a)} 

and conjugate terms (K = (ko,k 1 ,... ,k) € )Cj(a), P:5 +v+l, p 5 1+2, 1-1+e' < 
1t+v+k—p+tir/a'<1+k-1+e') with 

= /CC,	C E WI+k_1+I1__Y_k"+P'_t1a()(M). 
Proof. We prove the proposition by induction in 1. Let ei,... ,ej be a suitable 

sequence of positive numbers such that < ej < Ej <	< e < C. We consider at 
first the case 1 = 0. If 7r/a' > 1 + ei, then u E	fl Vo). Furthermore, Lemma 10

implies Du E V,(GflVo) for 1,61 15 k. If7r/a <1 +e, then 

u = Ej(x) Im 1r/ck(y) + Uo 

where

El = Kc 1 , C1 € W k+ f1(M), Du 0 E V2 1 (V) for IfI <k 

and uo = 0 on ÔD fl Vo. Moreover, 

L (Eiirn z'°) = [L,EflIrn z'° + Ej(L - 4OO4Im	= T1 + T2 

([L, El] denotes the commutator of L and El) where T2 E Ve i (D) and T1 is a finite sum 
of expressions of the form	-	S 

a(x) (oEj) o;'o (+i) 

and conjugate terms where a E C°°(flVo), i, zi,p € 1, 171+17'I+p :5 2, p :5 i+t'+1 < 
2. Hence the assertion is true for 1 = 0. 

We prove the assertion for arbitrary 1. For this purpose we assume the assertion to 
be true for 1 - 1. This assumption implies 

u = E 1 _ 1 + ui_i 

where	 - 
a) Du 1 _ 1 E V,'(V) for $1 S k + 1. 
b) E,_ 1 is a finite sum of expressions of the form (x)OOr {z tn/arS,(z,a)} and 

conjugate terms (K = (k0 ,.. . ,.k,,) € Kg_ i (ci'), p !^ 1 i + ii , p 15 1— 1, ji+ii+kn—p+tir/&. < 
1+e, F = Xc, CE Wi+1+II_,u_L-k.'+P+et_t7r/a()(M)).
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C) LEI— 1 - P,_ 1 (f) = A 1 + A2 . Here A2 E VI 	fl Vo) and A1 is a finite sum of 

expressions

a(x)(x)O'O {zt''S(z,a)} 

and conjugate terms (r. ( k01 .. ,k,,) E K,_ i (a'), 1-2+ej <p+v+k —p+tir/a < 
1 + k - 1 + Ej, = )Cc, C E 

From the properties of the operator )C (see Lemma 5) it follows that A1 = A,'+ A21' 
where DA," E VL,(D) for 1,61 < k and A 1 ' is a finite sum of terms 

a(O,O,y)OO	 (3.4) 

and conjugate terms (1 - 2 + e <p + ii + k,, - p + tir/c <1 - 1 + e, p, c, i as in c)). 
Furthermore,

=

	

p. .	 - 

is also a term of the form (3.4) where K = (0), t = p = 171 = 0 and c = f, E Wt_I_P_M(M). By Lemma 6 there exists a function w which is a finite sum of 
terms (x)O'ô	 and conjugate terms with p :5 p + v - 1, ic = 
(k0 ,.. . , k,,) € j (a*), 1 + e < p + v + k - p + i lr/a* <1 + 1 + ell 

= Xc,	c € Wl+k+l+ll_M_v_kn+P+e._/a(M) 

such that

w=O onODflV0 

Lw - P1 (f) + LE,_ 1 = Lw - p(0)(f) - (PI - 1 (f) - LE,_ 1 ) = B1 + B2 

where B2 E V z Jc (V) and B1 is a finite sum of expressions 

a(x) OO {z tJCIiIS(z a)}	 (3.5) 

and conjugate terms (K = ( k0 ,. . . ,k,,) € K 1(f), p 15 p+i'+l, 1-1+e' <p+v+k-
p + tir/cx' <1 + k - 1 + c', = ACc, c E	 ). In particular, 

•	D (Lw -P,(f) + LE) € V' —	'V'	for /3 1 < k. —eg+k—lI' 

Moreover, from the properties of the extension operator AC it follows that


	

Dw € V' 2	(D)	for 1/31 < k + 1. 

	

-e,+k+1	j 

Consequently,

D (u_ 1 - w) € V' 2 ' _e,+k+l_IPt(D) for 1/31 k + 1


	

uj_1—w=0	 0	 onOVflV0
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and
- w) = D(f - P,(f)) - D (Lw - PI(f) - LE1_1) 

€ VT.1(V). 

Let Ii denote the set II = It E 1W : 1 + e < tir/a <1 + 1 + e). Then Lemma 10 yields


ui_i - w = E' + u 

where E' = > gEJ, c(x)Im z t 1 0 (Y) , Duj € V +31P1 (V) for 1,61 :5k, Et = -e'+k+l-tflI 
Ct € Wt+k+1+e'_t10()(M). Furthermore, for T 1 = E,_ 1 + E' + to we get 

LE, - PI (f) = (LE,- 1 - P1 (f) + Lw) + LE' = C1 + C2 

where C2 € V k (D) and C1 is a finite sum of expressions of the form (3.5). This proves 
the proposition I 

Now we can formulate the main theorem of this paper for a qk Ir, ci' 0 . 27r as a 
special case of Proposition 4. 

Theorem 2. Let ci' 36 IT, a' 54 27r and let u € W'(G) be a solution of problem 
(8.1) with I € WL(G). Then u admits the decomposition 

u = E, + u, 

in G fl V0 where uj E V± 2 (G fl Vo) and E, is a finite sum of expressions 

(x)ô {zP+t/vs(Z, ci(y)) }	 (3.6) 

and conjugate terms. Here p,v are integers, it 0, +i' > 0,?c=(ko,...,k)EK,(a'), 
IL+v+kn+tIT/a'<l+1+e' and 

F = kc, CE 

If  E W!1+2 (G), then the coefficients F in (8.6) may be replaced by their traces which 
are functions from W21+3_p_M_k,,+e'_ft/a(.) (M). 

In the same way one can prove the analogous result for the critical angles a = 
and a = 27r by means of Proposition 3. 

Theorem 3. Let a* = IT or	= 27r and let u € W'(G) be ,a solution of problem

(8.1) with f E WL(G). Then u admits the decomposition 

u = E, + ut 

in C fl Vo where ug € V'+' (G) and E 1 is a finite sum of expressions of the form 

x)O {z'"'S(z,a)}



On the Behaviour of Solutions to a Dirichiet Problem	43 

and conjugate terms. Here n, i,p, Li are integer numbers with n	0, t > 0, v	0,

p + v > 0, p + Li + n +tir/a <1+1 -e' and c'= )c is the extension of a function 

C E 
Remark 2. If ci'	ir or	= 27r and the function w in the definition of the 

dihedron V does not dependon the variable y (i.e. (r, y) = a(y)), then the sum E, in 
Theorein 3 consists only of terms of the form 

and 

(cf Remark 1), i.e. the asyrnptotics of u does not differ from that for non-critical angles 
(see, e.g., [3, 9, 10, 14]). 

4. Asymptotics near the vertex of a cube 

In this Section we will investigate the edge asymptotics of a solution u of the Dirichlet 
problem

	

L(x,D)u = f in G,	u = 0 on	 (4.1) 

if the critical angle a = 7r/2 occurs in the vertex of a polyhedron. Suppose that the 
domain G coincides with the infinite cube K = (0, oo)3 in a neighbourhood of the origin 
and that the principal part Lo(O, D) of L with coefficients frozen in the origin is equal 
to the Laplacian. We introduce the following weighted Sobolev spaces in K. For given 
integer I > 0 and real y we define V' , .7 (K) as the closure of C0°°(K\S) with respect 
to the norm

•2y •	 1/2 

hull 

= (	

Jp2 (n ) r2Uol_OlDGut2dx) 
I°l^'K 

Here p = r i, r(x) denotes the distance of z to the x,-axis (j = 1, 2, 3) and r(x) = 
mm, r(x) denotes the distance of x to the set S of the edge points of K. Furthermore, 
W(K)(13> -3/2, > -1) will be defined as the closure of C00(k) with respect to 
the norm

iiuu= (

	
f 'I^	

2fl (ni)27iDui2dz)/2 
IK	7=1 

Let Xi € C°°([0,00)), € C00 ((0,7r/2)) be smoothcut-off functions with support in 
[0, 11 which are equal to one in [0, 1/2). Furthermore, let x be the cut-off function in K 
which is defined by the equation

x(x)=xl(p)x2(t9) 

where p,4i,t9 denote the spherical coordinates in 1R3 (p = in, 4' = arg(x i + in2), 
cost9 = x311 x i) .	-
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We assume that the solution u of problem (4.1) belongs to the Sobolev space 
W'(G) and that the right-hand side I of (4.1) satisfies the condition rf € L2(G), 
r8f/Ox, E L 2 (G) (j = 1,2,3;e > 1/2). Then xu E V' 0 (K) and xl E W!e,_e(K)• 
Since u(x) = z i x2 x3 = p2 sin  Cos  sin 2 t9 COS t9 is a solution of the problem Au= 0 in 
K, u = 0 on OK the function g (4', ) = sin 0 cos 0 sin  t9 COS t9 is a positive eigenfunction 
to the eigenvalue A = 3 of the operator 5 + A2 + A (5 denotes the Laplace-Beltraxni 
operator on the unit sphere in 1R3 ) with the boundary conditions	=	= 

= 0. Using the fact that the only positive eigenfunction of —5 belongs to the 
first eigenva.lue one gets 

	

= XU E V.e,e(K)	and	11 = L(u) E W.e,_e(K) 

(see [12: Theorem A2]) where e' is an arbitrary positive real number larger than 2—ir/a. 
Here a is a function of the variable Z3 which arises from the transformation 

= (ao,2 ,o(O, 0, x 3 )D)"2 Xi - ai , i ,o(0,O, x 3 )(ao ,2,0 (0, 0, x3 )D)"2 x2 
= ao ,2,0 (0, 0, x3)2x2 
= 

(D = a2 , 0 ,0 (0,0,z3 )ao,2 , 0 (0,0,x3 ) - aj,1,0(0,0,x3)). Applying this transformation to 
the equations	 S 

	

Lv=fi in K,	v=0 onOK 

one gets the Dirichlet problem 

	

L'v = f in K',	v = 0 on OK'	 (4.2)


where

K' = {' = (x'1,x'2,x'3) : 0 <x' 3 < 00,0 < Y= arg(x' 1 ± ix' 2 ) < a(z'3)} 

and the coefficients of L' = >.:l+j+k<2 bIJk(xI)O,o,O5 3 k, are smooth and satisfy the 
condition

b2,o ,o(0, 0, x' 3 )	bo ,2,0 (0, 0, x 3 )	1,	b1,1,0(0, 0, x' 3 )	0 .	(4.3) 

Obviously, a(0) = 7r/2. Suppose that the function a satisfies the inequality sup(2 - 
< inf(2 - 7r/a) + e. We want to use the results of Section 3. Therefore, we 

introduce the coordinates	S 

CI = X1 /X3,	e2 = x' 2 1x' 3 ,	t = 109 X' 3 

Then the domain K' corresponds to the dihedron 

v = {(e,e2, t) E iii :t € in, 0< qS' = arg( 1 +i 2 ) <a(et)}.
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in these new coordinates. If we set to = e_3/2)iv, then the function w is a solution 
of theDirichlet problem 

Lw = e_ "2) 'f1 = F in D,	w = 0 on av	 (4.4) 

where L" =	+j+k<2 c t(i , 6, t ) 19 1	is a second order differential operator with 

smooth coefficients satisfying the condition (4.3), i.e., 

c2,0,0 (0, 0, t) E co,2,0 (0, 0, t)	1,	ci,j,o(0, 0, t)	0 

Lemma 11. Let 0 be a function in K' satisfying the condition 

= - for r'	Xt2 + X122	] 

 ________ 1/2 > 1/2. 

Then
E V,' ,7(K')	if and only if	e(I+3/2)t, E V,1 (D) 

Lemma 11 implies that the solution w of problem (4.4) belongs to V.e,(V). Fur-
thermore, one can show that F = e_(E_1/2)tfi E W!e(D) if Ii € W!e,_e(K'). The 
connection between the spaces V' 7(K') and V(D) in Lemma 11 can be used to define 
weighted Sobolev spaces on the x—axis. We define V(li?+) (/3,s E in, s > 0 ) as the 
set of all functions g on liL+ for which the function 

91 (t) = e(fl_a+112)tg(et 

belongs to the Sobolev space W'(JR). For integer 3 the norm in V,'(iFf+) is equivalent 
to the norm

1/2. 

g =	 IzaDs9(x3I2ix3) 

Proposition 5. Let u E TV 1 (G) be a solution of problem (4.1) where rf e L2(G) 
and rOf/Ox E L2 (G) (j = 1,2,3) and c is a real number less than f satisfying the 
inequality sup(2 - 7r/a(x 3 )) <inf(2 - 7r/c(x 3 )) + e. Then xu admits the decomposition 

-	, ,,r/o(x 3) 	I	r. 
u=d i (x)r	sin(

\Y(X3) J 

+(xl)(rl2(1 - cos 20f ) + ((x3) - /2)(cos(2(x3)) —1) 
siii(2a(x3))	 (4.5)


r' sin 2/,' - r 22-7r/a(x3),lr/o(za) 
X 

	sin(1r'/ck(r3))) 

a(x3)—ir/2 

where U' E	 t1 is an extension of a function d1 E. 
d = d(x3 ), and d2 is an extension of the trace Ii I	€ V(in+) into' the -domain -	x1x2=O
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K'. Here," = (x' + x1)h12 and ' = arg(x' 1 + ix' 2 ) are the polar coordinates in the 
W1, X' 2 )-plane and (5 is an arbitrary number between sup(2-7r/a) and inf(2-7r/a)+e. 

Proof. Applying Theorem 2 to problem (4.4) one gets 

w = Ej(,t r	s1n(7r4'/a(et)) 

	

+ ()CFo)(t)(r(1 - cos 	+ (a - /2)(cos(2a(e')) —1) 

	

sin(2a(e'))	 (4.6) 

r 2 sin 	- ,'ir/a(e') sin(7r///a(et)) ) 
+ WI. a(et) - 7r/2 

Here w' E V+6 (V), r = (? + )	r'/x3 , q ' = arg( j + ie2) = arg(x'j + ix'2), 
t) = *CC1 is an extension of a function c 1 E W2+ 6/°(1R) and F0 is the trace of 

F on the edge of D. Multiplying (4.6) by e 312 = x 3'2 one gets (4.5) where 

	

e+3/2_lr/a(zs)ej(e t)	e+3/2—/a ... (!L x ' 2
jl(xc 1	 , — , logx3- x3

X3 X3	J 
1 = 

This proves the proposition I 
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