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On the Behaviour of Solutions
to the Dirichlet Problem ' ,
for Second Order Elliptic Equations near Edges
and Polyhedral Vertices with Critical Angles

V. G. Maz’ya and J. Rossmann

Abstract. The Dirichlet problem for second order elliptic equations will be considered in
domains of R™ with smooth (N — 2)-dimensional edges at the boundary. The authors get the
asymptotical decomposition of the solution near edges with angles running through a critical
value. Furthermore, the first terms of the asymptotics of the solution near a polyhedral vertex
are gi,ven for a domain with critical angle 7/2 in the vertex.
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0. Inti‘oduction

The present paper concerns the asymptotic behaviour of solutions of the Dirichlet prob-
lem for elliptic differential equations of second order in domains with edges if the angle
at the edge runs through a critical value. It is known (see, e.g., [3, 4, 7]) that two dif-
ferent cases have to be considered in the description of the behaviour of the solution of
the Dirichlet problem for the Laplacian near angular points: the resonance case where
the asymptotics of the solution contains logarithmic terms and the non-resonance case
without loga.nthmxc terms. Logarithmic terms only occur if the angle at the corner is
equal to a critical value. For the Laplacian such critical values may be all numbers of
the form jn/k where j, k are integers. If we fix an integer number ! and consider the
asymptotic decomposition
u=X;4+uy

of the solution u w1th a regular term u; € W'+2+¢(G), then all anglm of the form
a® =jn/k (k—12 GI+1 5 =1,2,...,2k)

become critical in the above sense. In the study of the asymptotics of the solution of
the Dirichlet problem near edges one is confronted with difficulties if the angle on the
edge varies and runs through a critical value.
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Asymptotic decompoéitions for the solution of the Dirichlet problem for second order
differential equations have been obtained by V.A. Kondratjev [5] and V.A. Nikishkin
[14]. In several papers.of V.G. Maz’ya and -B.A. Plamenevskij (6, 8], V.G. Maz’ya and
J. Rossmann (9, 10], M. Dauge (3], J. Rossmann [17] these results have been generalized
to boundary value problems for differential equations of higher order. Here critical
angles have been either excluded or the authors considered only operators with constant
coefficients in domains with constant angles at the edges. S. Rempel and B.-W. Schulze
(see, e.g.;, [16, 18, 19]) investigated pseudodifferential equations on manifolds with edges.
They have given a very abstract description of the asymptotics of the solution by means
of analytic functionals. The only condition in their papers is that the manifold is
diffeomorphic to

Q={z=(z,y)eR":ye RY, ' € K}

in a neighbourhood of each edge point where K denotes a cone in IRN~7 which is
independent of y. An explicite representation of the asymptotics of the solutions to
boundary value problems for elliptic differential equations of second order has been
first announced by M. Costabel and M. Dauge [1] (detailed proofs are given in [2]).
Independently of them the authors of the present paper obtained a stable representation
for the asymptotics of the solution of the Dirichlet problem in plane domains with
angular points if the opening of the angle belongs to a neighbourhood of a crmcal value
a* (see {13]). In this case the singular functions

r:x/a+p¢(¢)

(r, ¢ denote the polar coordinates) in the asymptotics of the solution were replaced by
more complicated singular functions

tfr/o-#p-—us (z a) _ zu+k,,+t1r/a =¥ (a a ) n za zk (a®*~a)/a .

Jj=0

(aj =— z:y_l i K o (ky — kj), 2= re"’) and conjugate terms.

The present paper is a direct continuation of [11) and [13]. In Section 3 we will show
that the solution of the Dirichlet problem for second order elliptic equations with smooth
real coefficients near edges can be represented as a finite sum of singular functions

o(@)0 (#1735 (2, )

a.nd conjugate terms and a regular remainder (see Theorem 2). Along with the values

a* =jnfk(k=1,2,...,141; j =1,2,...,2k — 1; j # k) which are critical for the
Laplacian we consider the case of the angle at the edge runmng through the value 7 or
27 (see Figure 1).

This case was excluded in'[1, 2, 11]. The angles a* = 7 and a* = 27 can be
considered as critical too, because in a neighbourhood of such points the domain is.not
diffeomorphic to a dlhedron D={z= (z,,zg,y) y€ RV-2, 0< ¢ = arg(z +iz3) <
a} with constant angle a. In these cases it is necessary to consxder the problem in a
more general "dihedron”

D= {:z: = (zl,'xé,y) ty € BN_z, 0 < ¢ = arg(z1 +iz2) < W(’ﬁ/)}
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1/2°

(r=(z}+423)"", we C°(R; x RV-?)) with angle a(y) = w(0,y) running through

Fig. 1

7 or 27. Note that in the special case when w only depends on the variable y the angles
7 and 27 are not critical. Then the solution u admits the decomposition

u= Y (gt oW logt oy (6,y) Fur -

(w1 € W2+ if f € Wite . 0 < ¢’ < ¢) which'is the same as for non~—critical angles (cf.
(10, 14)).

In order to illustrate the representation of u for other critical values a* = jr/k (j/k
non-integer) we consider the Dirichlet problem

Lu=f inG, u=0 ondG (f € W*(G), ¢ > 0)

in a domain G which coincides with the dihedron D in a neighbourhood of a point z¢
on the edge M. Here we assume that the function w in the definition of D does not
depend on the variable r and lies in a neighbourhood of a* = n/2. Furthermore, we
suppose that : : 4 ‘

L= 'Y ous(2)d,8:,8f

u+v+18i<2

is an elliptic differential operator with smooth real coefficients satisfying the condition
ag,o,o(0,0,y) = 00'2',0(0,0, y) = l, a;ll,o(0,0!y) =0. '
For constant a the asymptotic decomposition of the solution u € VV‘(G) takes the form

oo Q 2(1-cos2¢ 1-cos2a , . o
u = c1(z)r™/°sin S + ca(z)r ( 1 Tonon " 8sin2¢ | + u,
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if a #7/2 and o :
. 1- 2

u = ¢(z)r? sin2¢ + co(z)r? (%‘ﬁ ¢ cos2¢ + — logrsm 2¢) + uy

if a = m/2 where uy € W3¢, r=3-¢y, € L; and ¢; are functxons from some weighted

Sobolev spaces (see, e.g., [10]). By Theorem 2 of the present paper the solution u admits
the decomposition

u = Cy(z)r™/*Wsin %

1 — cos2a(y) n/a(y) n$ 2 :
+ Ca(z) Zsin2a(y) ( sin — o) ~ r‘sin2¢ ) + u,

if the angle o is variable und runs through the critical value a* = 7/2. ‘Analogously
to [9: Corollary 3.2 and Remark 3.3] and [10: Remark 4.1] the coefficients C; and
C2 can be replaced by their traces on the edge if f belongs to the space W* where
8> 2+ e +supn/a(y). This corresponds to the so-called tensor product decomposition
of T.v. Petersdorff and E.P. Stephan [15].

The results of Section 3 can be applied to the Dirichlet problem for second order
elliptic equations in polyhedral domains if the angle at one of the edges is critical in a
vertex. As an example we consider the Dirichlet problem

Lu= Y au(z)0%0%,85u=f inG, u=0 ondG

ptv+k<2 . ’
in a domain G which coincides with the infinite cube (0, 00)® in a neighbourhood of the
origin. If the principal part of L with coefficients frozen in the origin is equal to the
Laplacian, then the angle 7 /2 in the origin is critical. It will be shown that the solution

u € W‘(G) -admits the following decomposition in a neighbourhood of the zj3-axis if
f € Wit¢(G):

u= 21(2:')7""/"(") sin(n¢/a(z3)) - | |
.X 2 sin2¢’' — xg‘w/arm/a sin(7r¢'/a(1:3)) ,
. - " a(z3) — 7/2 +u.

Here u' €‘W3(G), r'.._au € L2(G), the coordinates z\, x4, z} are defined by the equations
z} = (a0,2,0(0,0,z3)/ D)/ *z) — 161,1,0(0,0,23)(a0,2,0(0,0,z3)D) "%z,
Ty = ap2,0(0,0,z3)" "%z,
T3 =z3
where
D = az,0,0(0,0,z3)a0,2,0(0,0,23) — $a1,1,0(0,0,z3) :
P =(z2+ 2'2)1/2 ¢’ = arg(z] +iz)), tana(zs) =-2D'?/a,, 0(0,0,z3)

and dl, dg are some extensions of functions on the z3- axis.
The authors are grateful to M Costabel and M. Dauge for useful remarks in con-
nection with this paper.
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1. Regularity of the derivatives of the solution in edge direction
Let D be the dihedron

D= {z =(z1,22,9) € RY : y € R"7%,0 < ¢ < w(r,y)} (1.1)

with variable angle a(y) = w(0,y) (see Figure 2). Here r = (22 + :z:%)l/2 , ¢ = arg(z, +
iz,) are the polar coordinates in the (z},z2)-plane and w is an infinitely differentiable

Y

Yo

Fig. 2

function on Ry x RN ~2 such that 0 < inf, , w(r,y) < sup, , w(r,y) < 2n. The edge M
of D coincides with the y-axis. We consider the Dirichlet problem

Lu= Y auup(21,72,y)0% 0%,8°u=f inD, u=0 ondD. (1.2)
stv+)81<2 :

Here L is an arbitrary elliptic differential operator of second order with real coefficients
au,vp € C°(D). Without loss of generality we may assume that :

a2,0,0(0,0,y) = a0,2,0(0,0,y) =1, a1,1,0(0,0,y)=0. - - . (13)

Otherwise we make use of the diffeomorhpism

7} = (a0,2,0(0,0,4)/D)" 21 ~ 301,1,0(0,0,y)(0,2,0(0,0,y)D) "z,
5 = a0,2,0(0,0,y) 7%z, o
V'=y

where D = a3,0,0(0,0,¥)ao,2,0(0,0,y) — %a,'ll,o(0,0,y)z. We introduce the following
weighted Sobolev spaces. By V{(D) (I integer,! > 0,6 € C®°(IRN-?) real-valued) we
denote the closure of C{°(D\M) with respect to the norm

D 18It

1/2
||”||V}(1>) = (/ Z r2(6(v)—l+lﬂl)|Dﬂu|2dz) )
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Furthermore, the space W}(D) (I integer,! > 0,6 € C®°(R¥=?),§ > —1) will be defined
as the closure of C§°(D) with respect to the norm

1/2
'”*‘"w,'(v) = (/ Z ”m")lDjs |2d2) .

pist

Note that the usual Sobolev—Slobodezku space W'+¢(D) is cont.muously imbedded into
WL, (D) if € is a real number from the interval (0,1). Analogously to [8] the following
lemma can be proved.

Lemma 1. Let u € V! (D) be a solution of problem (1.2) with f € Vii1-e(D)
(1 > 0 integer, £ € IR). Suppose that the support of u is compact. Then u € V,f:lz (D)

and
lullyzea oy < e (Iullva o + I fllve,,_ o) - (1.4)

I41-¢

Here the constant ¢ depends only on D and the support of u.

Proof. We only sketch the proof. Let u =.0 for |z| > R. There exists a countable
collection of open balls B; which cover DN {z : |z| > R} and satisfy the conditition
dj = diamB; = dist(B,,M). Furthermore, let B} be balls concentric to B, with
diameter 2d;. From the classical L,-estimates for solutions of elliptic equations in
domains with smooth boundaries it follows

3> d""'|Dﬂu|2dz

B "D lﬂ|<l+2
<c¢ / (Z d?lﬂllDﬂuP + E d?""*‘]D"f]’) dz.
B’nD )

1811 IBIst

Multlplymg thJs inequality by d; 72¢? and summing up over all j we get (1.4) 8

If f is an arbitrary function in D (given in cylindrical coordinates r, ¢,y) and h € R,
then we denote by fa the function

fh(rv 4’,!/) = ) . .
1 , hyya,...,yn—
E (f (T, w(r LE +w(3,2y) N 2) ¢ay1 +h 1 Y2, ) (1‘ ¢) y))
Obviously,

lim fu(r,4,y) = a,,f(r 89) + e )(ay,w(r,y))au(r 8.9)
Note that the derivaf.ive

=8, + ) (av,“’(" y)) O - (1.5)
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(7 =1,...,N-2) is tangential on the sides ¢ = 0 and ¢ = w(r,y) of D. We furthermore
mention the following property of the operator Dj: if £ is an arbitrary second order
differential operator of the form-

L= Y aup(r ) "ord;08 - (1.6)
stv+(8]<2 o

with coefficients a,,g being infinitely differentiable relative to r, ¢, y, then there exists
an operator £; of the form (1.6) such that

D;Lu = L(Dju) + Lju. 1.n

Lemma 2. Letu € V1 (D), f € V°,(D) (e € R) be arbitrary functions on D such
“that u(z)'= 0, f(z) =0 for r > R. Then the folfowmg mcquaht:ca hold unth constants
€1,€2,C3 mdcpendent of hyu and f:
lunlive (p) < c2llDrullye (p) < c?”“"V_“(‘D) o

Wally-2p) < csllfllve, ()

where V-}(D) denotes the dual space of V(D).

Proof. For simplicity we restrict ourselves to the case N = 3. For N > 3 the
lemma can be proved analogously. ' i
a) Using the equation

+h

wet [ (sEge)e

_[(%( w(ry+ th)¢
‘0/ (5 (=65 ! _“',‘)
Byw(r,y +th) Bu ( w(r,y + th)$ . m)) i

+¢ w(r,y) 3¢~’ w(r,y)

we get

' 1 oo wny) :
- [ —2.|0u [ w(r,y+th)
r2¢uy|2dz < L et —(;-, _ _.¢,!/+",)
[rtaracs [T oe{ ot
Oyw(r,y + th) Ou ( w(r,y +th)
- w(r,y) 94 w(r,y)

w(ry)

/ / / r=2| D, u[*dgdydr
0

- / r=%|Dyuldz < cllull?s ).
D . :

) éy+ th) dédydrdt
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b) It can be easily verified that

/f,. vdz:—/f(w———(r’y_h‘)v_h-f ! u:v(r,y)—w(r,y—h)v) dz
D D

w(r,y) w(r,y) h

Consequently,

< cllflve, @)y (lv-allvepy + llvllvacpy)

‘/Df,.vdz

The result follows B

< ellfllve, pyllvllvacoy.

In a similar way one can prove the following lemma.

Lemma 3. Letu € V}(D) (6 € RR) be an arbitrary functwn satisfying the condition
u =0 for r > R. Then the estimate

I(Lu)a — Luallvpp) < cllullvz(p)
18 valid with a constant ¢ independent of u and h.

Now we can prove the fbllowing regularity assertion for the derivatives du/dy; (j =
1,2,...,N —2). For constant w this assertion has been shown in [5, 9, '10). We use the
same technique.

Proposition 1. Let u € Wl('D) be a solution of problem (1.2) where f = f) +
f2 with fy € V2 (D), fa € V2,4 1(D) and Dif, € V2, ,,\(D) G =1,...., N -2 ¢ >
0, ¢ sufficiently small). Moreover, we assume that u = O for r > R. Then u €
V1,(D),8u/dy; € V,(D) and

llullvl mt E

Jj=1

< c(llullwr oy + 1)

ay:

V2 (D)
with a constant c independent of u and f. Here || - || denotes the norm
N-2
Nfll = f—l f ||f1||v° @ +lfallve,my+ D IDifallve (2 ¢ -
i=1

Proof. At first we show that every solution u € V2 (D) of problem (1.2) with f as
in the formulation of the proposition satisfies the inequality

18y, ullva, oy <  (llullvs, o + 11 - (18)
Since f € V2,,,(D) Lemma 1 implies u € V2, ,,(D) and

luttvz, 0 < ¢ (Iullv,oy + Illve,, ) < ¢ (lullv, oy + 1171 -
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Furthermore, r~¢u, € W!(D). Then the Garding inequality yields

lIr=*unliVs (o) < cllr " unlliys (o)

< e (ILEun), run)l + Ir~uslil )

Ir=*usllvg oy < e (ILCun)lyms oy + e~ unllzacm)

< e (2, Junllyz oy + I Lunllyzs(p) + I ualliac))
([L,r~¢] denotes the commutator of L and r~¢). By Lemma 2 and Lemma 3 we have

lIr=* Lunlly-1(p)
<c (||r"‘(Lu;. -~ (Lually-r(py + ||fh||v_-}(1>))

< e (Iun = @whallve,, @ + IDMlly=30) + 12NV, ()

<c (||“||v= @ + Lhllve, @) + I1D1 fallve (v))

—s41 ~—s41

for an arbitrary decomposition f = f; + f, of the function f where f; € Vf;('D), f2 €
V2. +1(D) and Dy f; € VY (D). Here we have used the continuity of the imbedding
V2, 11(D) C. V2 (D). Furthermore,

L, r~*Junlly-1(py < cellr™unllv(p)

and
Ir=*uallzo) = llunllve, () < cllullvs, (D)

with a constant ¢ independent of ¢ and k. Consequently, for sufficiently small ¢ we get

luallvz, @) < e (llullva, , 0 + M fillve, 2y + D fallve,, 20

ie.

o
o

Analogously one gets the same estimate for the derivatives du/dy; (j = 2,...,N — 2).
According to the assumption of the proposition u belongs to W!(D) C Vi (D). Hence,
by (1.8), 3y, u € V3/(D). Then from [4] it follows that u € V2, (D) for sufficiently small
€ > 0 (see also [5]) and ||ullys (2 < c(llullvy(p) + Ifllve,(p))- Applying again (1.8) one
gets the assertion of the proposition 8

< ¢ (lullva, oy + A1) -

Vi(D)
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Theorem 1. Let u € W' (D) be o solution of problem (1.2) with compact support

where D8 f € VEZIL (D) for 18] < k and ¢ is o sufficiently small non-negative real

number (thw condition on the function f is satisfied, e.g., if f € WE,(D)). Then

Dfu e VXTI (D) C VA(D) for 1B] S k+1.

Proof. This generalization of Proposition 1 can be easily shown by induction in k.

Assume that N = 3 and the assertion is true for k — 1. Then we get 6’ u€ V"x,‘_ J i (D)

for j =0,1,...,k, i.e. Diu V"::;i,('D) for j =0,1,...,k. From (1.7) it follows that
L(D*¥u) can be written in the form

k-1
L(Dfu) = D}(Lu)+ »_ L;(Dju)=D}f + ZL (Diu
Jj=0 j=0
where L; are second order differential operators of the form (1. 6) Here Dif € VO, (D)
and ¥ L;(DJu) € VO,(D) (since Diu € V2,,1(D) for j = 0,1,. —1). Lemma 1

implies Dfu € V2, (D). Furthermore, by (1.7) we have

k-1 k
Dy ) Lj(Dju)=) L;(Dju)
j=0 j=0
where L are differential operators of the form (1.6). Hence D, ¥ Lj(Diu) € V. 0e+1(D)

and by Proposxt:on 1 we get Dfu € V! (D), i.e. the assertion of the theorem is true for
every k. In the case N > 3 the theorem can be proved analogously ®

2. Solutions of the Dirichlet problem for special right-hand sides

We introduce here the same singular functions as in [13]. Let ! be a given non-negative
integer. An angle a® is said to be critical if there exists an integer k € {1,2,...,1+ 1)}
such that ka® /= is integer. By K;(a*) we denote the set of all tuples x = (ko, k1 oo kn)
of integer numbers k; wheren > 0,0 = ko <'k; < ... < kn <1+ 1 and kja° /1r are
integers. For a given tuple K= (ko, ki,... k) € K::(a‘) we define the function S«(z, a)
of the complex variable z = z; + iz; = re"’ (0 < ¢ < 27) and the angle a € (0,2r] as
follows: .

(a - a‘)"‘ kn 2 a;j z"l("‘ ~a)/a ifa # a*
Sk(z,a) = y=0 . (2.1)
limg—qe(a = a®) " zkn ‘Eo ajzti(e’-o)/a if g = q*
J=

wherea,:—n‘,_ly;é ky/(k, —k;)for j =1,...,nand ap = 1. In the case n = 0
(i.e. x = (ko) = (0)) we set Sc(z,a) = 1. It is shown in [13] that S,‘(z a) is 1nﬁmtely
dlfferentm.ble relative to a for every z ;é 0. The hmxt

_ ae\—n_k, kj(a®—a)/a
ali.n;.(a a®)™"z Z%a,z: b
’=
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is a polynomial in log z = logr +i¢ of order n. If « is an infinitely differentiable function
of the variable y € RV =2, then Sc(z,a(y)) is infinitely differentiable relative to y, too.

" We consider the problem (1.2) in the dihedron (1.1) where the angle a(y) of D lies
in a neighbourhood of the critical angle a*. In the case a* # 7, a® # 27 we can assume
without loss of generality that the function w in (1.1) does not depend on the variable
r. The cases a* = 7 and a* = 27 we will consider separately.

a) The case a* # x, 27. It is useful to write the Laplace operator in the (z;, z2)—plane
in the form

a2, +02,=49,0z
where 9, "= 3(8:, —i8;,) and 8; = 1(3;, '+i0,,). The following lemma has been proved
in 13: Lemma 6]. o o '

Lemma 4. Let o* be a critical angle aﬁd & = (kosky,...,kn) & tuple from Ki(a*).
Assume that a lies.in a sufficiently small neighbourhood U(a®) of a*. Then the problem

8,0;v = 97 {zp+hr/03vsx(z,a)}' for 0<argz < a
v=0 : for argz2'=0, argz = a

with ﬁon-négative integers g,t,u,v, p+ v > q — 1, has a solution of the form

n
v = ZAj(a)zp-{-l—q-i-k,.—k;-{»tx/ofv-f-lS“j (z,a)
=0

+,i Bj(a)Re {zkn+l—k;’+tx/05,‘i (2,0)} " (2,2)
y=0
- |

+ 30 Clam { Ao titenios, (2, )}

=0

where kny1 = kn +p+ v +2—gq, 85 = (ko,k1,...,k;) and Aj, B;,C; are infinitely
differentiable functions in U(a®). If ¢ > 1, then the first term in (£.2) can be replaced
by

” i , a! {z“-""""’?’“S,‘(z,a-)} .

F\;rthe'nrioré, Crt1 = 0 if knpra® /7 is not an integer.

Remark 1. In Lemma 4 the cases a® = 7 and a* = 27 are included. In these
cases the coefficient Cn4, is identically equal to zero in the neighbourhood U(a*) of o*
(see [13]). : s

In order to get a similar result for the Dirichlet problem (1.2) in the dihedron
D= {z = (z1,22,y) : y € RVN72, 0 < ¢ = arg(z; +iz2) < a(y)}

we need the following assertions on weighted Sobolev spaces. The proof is given, e.g.,
in [9, 10].
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Lemma 3. The following assertions are valid.

a) Letv € W;('D) with @ smooth function § satisfying the condition —1 < infé§ <
supé < I—1and !> 1. Then the trace of v on M lies in the Sobolev space W"‘“’(M).

b) Let f € W!T1=8(M) (121, =1 <infé > sup§ <l—1). Then the function

v(z) = (Kf)(z) = x(r) / Sz +tr)p(t) - p(tn—z)dt (2.3)

IRN-2

(t = (t1,...,tN-2), X € Cgo(ﬁ+)’ suppx € [0,1], x = 1 4n [0’%]: Y € C§°(R),

suppyp C (-1,+41), fnsjtl:(s)ds =460 forj=0,1,...,1-1, r = (zf +x§)l/2) s

an eztension of f and belongs to the space W)(D). The eztension operator (2.9) is a

continuous mapping from W!=1~8(M) into W;I:('D) for every v > 0.
)IffeW!1=5(M) (121, -1 <infé <supé < 0), then

(i) 8. 0i.Kf € VI I(D) for each i,jv, 1<i+j<i+v
(i) DEKS € V2 ,(D) for |B] < 1—1 where ¢ is an arbitrary positive number
(i6i) DEKS=K(DES) for 1B <1-1
(w) cKf —K(cf) € V;{L(D) for every c € C®(M), || <1-1.
d) Every function u € W)(D) (1 21, —1 < infé < supé < 0) admits the decompo-
sition
u=Pu)+v

where

1
P(u)= i Kuw)zies,  w =000 ulm, veVi(D).
ptv<i-1 Ky

We now can formulate the analogon to Lemma 4 for the Dirichlet problem (1.2). It
corresponds to [10: Lemma 5.1].

Proposition 2. Let k = (ko,k1,...,kn) be a tuple from Ki—;(a*) and
f = aly)&(=)0}08 {#+7/°W2* 5, (2, a(y))}

where1<g<pu+v+1,1-2+e<pu+v+kn—gqt+tn/a(y) <l-1+¢, a € C®(M),
€=Kc, c € Hitk-1-p-v-katgtlvlte-tn/a(MY) (gt 4 v k1 are non-negative integers).
Then there exists a function '

v= «z(y)s(z>a:{‘4(,,1+ 5

n+1 .
+ ) bi(y)etenThiterleW g, (2 a(y))

j=0

n+1
+ ) cj(y)Ftnnhitirle g (z,a(y))}

=0

6;’" [z,.+m/o(v);vs,‘(z,a(y))]
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(mj = (Ko, k1,...,k)), kns1=kn+p+v+2—q, but1 = cn41 =0 if knyra®/m is not

snteger) such that
a.
-1
a(y) I)
and Ty is a finite sum of ezpressions of the form ’

b(z) (afi?) 6;""”65 {zn’ﬂw/a(v)-z-v'g,‘j (z,a(y))}

Lv—f=T+T;

where

—-g!

V“’"('D) (e' =ec—k,

sup
y:a(y)>a®

and conjugate terms. Here
p<u+v+1, I-l+e<p +v' +kj—p+tnfa(y), |Bl+|<2
Bl+ 1< (W' +v' +kj-p)~(p+v+ka—gq), beC™(D).

In particular, we have D8(Lv — f) € V! (D) if || < k. An analoguous representation
holds for ¢ =0 (cf Lemma §). :

The assertion follows immediately from Lemma 4 and the properties of the operator
K. In the proof one can use the fact that L — 48,85 contains only terms of the form

a(z1,22,y)0;, 8,00  where i+j<1,i+j+]f|<2
and

a(zy,z2,y)0! ;. 01, where 1+ j =2, a(0,0,y)=0.

b) The cases a* = m, a* = 27. Assume that the angle « lies in a sufficiently small
neighbourhood U(a*) of the critical value a* = 7 or a® = 27. In these cases we can use
a more simple form of the singular functions S,(z, a) because ka* /7 is integer for every
integer k. Instead of S.(z,a) for the tuple x = (0,1,...,n) we will write S.(z,a), i.e.

. z"./"—z n
Sn(z,a) = (a—a*) "z "Z( 1)’ i -°)/°=(—) . (2.4)

a-—a
j=0
Again we consider at first the auxilliary problem
0:.0:v=fo = {z““'/°_"5 (2, a)} for 0 < argz < a + yY(r,a)
v=0 for $ = argz =0 and ¢ = a + ¢(r,a)

where ¥ is a C*-function on Ry x U(a*) such that $(0,a) = 0. We will construct a
function v (see Lemma 9) which satisfies the equations

0:0:v = fo ' for 0 < argz < a + ¢Y(r,a)

v=0 for argz =0

v=0 (rtx/a°+n+#+v+2—q+k—¢) forargz —a+ ¢(’_, a)

with an arbitrary given positive infeger k. For this we need the following lemmas.
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Lemma 6. Let v =2#1"/25, (2, a) (t, n integer). Then the restriction of v on thc
line ¢ = a+ Y(r,a) has the form -

v|¢—a+\b(r,o) = pptin/a Zoa,(r ,a)r* I S; (r a)
= ‘
where a; € C“(_ﬁ.f X U_g_a‘)) for j = 0,1,...,n and a,(r,a) = (=1)tena +ive 4
an(r,0)¥(r,a),an € C*°(Ry4 x U(a®)). : , : :
Lemma 7. The restriction of the function

p—1

zh S,,(z,a)} zlm {zﬂ 1-vi(trtva®)/ag at1(z, a)}

v=0

o= Im {z"'/" Zhafa _
- a®
on the line ¢ = a + ¢Y(r,a) has the form

. o — (_1)\t+1+nat/x sin pa pttr/a
v|¢=°+¢("v°) - ( 1) {a —_ a‘r

. +n(—1)(“_l)° /,r smlla z p—v+(txtva® )/"}Sn(r a)

ca—at v=0
n—1p—1
+ Z Z a,,(a)r" vin—j+(txtva® )/as (7‘ 0)
=0 ¥v=0
n+lp— i
+30 3 bin(r a)r"-”"-’“*“**"“ /%S5(r, )
: =0 v=0 R

with coeﬁczenta ajy € C°°(U(a*)) and b, € C°°(R+ x U(a*)).
Proof. We have . v

o’ fa

-_' t ity/a t ina* (1+¢/a) ™ il
”|¢=a+w(r.a) =(-1) .Im{e' mofaytnle [e"m. fe a—a* + cu(a)r*

X [e"a‘(lw/a) Si(r,a) + c,(a)r] "}

where . _
. c,,(a) = (a - QO)—I (ema (1+¢/a) _ e:pa(l-f-\b/a)).

Using the fact that ¢(r,a)/r € C°°(B+ x U(a®)). we obtain the assertion of the
lemma @8

Corollary 1. Let g = c(a)r#***"/2S,(z,a) where t, u are non-negative integers,
4 21 and c is a C®-function on U(a*) satisfying the condition c(a‘) #0. Then there
ezists a function
u=1
v=3"ce)m {z" v=l4(trtvo’ )/as +1(z, a)} (c, €C®(U(a"))  (2.5)

v=0 -
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such that the restriction of v on the line ¢ = a + ¥(r, a) satisfies the equation

n—1u—1
U goayy = 9= 3 O a(a)rhrinTitlintat)ieg (1 o)
J=0 p=0
n4lu—1

+ Z Z bju(r, a)rt~ V+n+l-1+(!n+vo Veg. i(r, @)

=0 v=0

(2.6)

with coefficients aj, € C=2(U(a®)) and b, € C®(R4 x U(a*)).

Proof. The corollary can be easily shown by induction on u. For g = 1 the
corresponding result follows immediately from Lemma 7. Assume that the assertion is
true for u—1 (g > 2). Let

d(a) = co(a)(—=1)*1#nme"/m(q — a’)/ (sin(pa) + n(=1)#-Dea’/x siﬁ a)

(. d(a*) = (—1)+H+009" (@) (n + ) ) and

v = d(Q)ZIm{ p=v=14(trtva® )/as -H(z 0)}

v=0
Then Lemma 7 implies

vl|¢=u+¢, —g= d(a)n(—l)‘*’l"}‘("‘i’l";l)o’/yr

. p-1
sina _ .
z r# v+(tx+va )/asn(r, a)

—_
a a “‘ne1

|
-

n

1p

+ aju(a)rp-u+n-j+(ur+ua‘)/asj(r,a)

™

.

+ 1
-

]
L o

t <

n
+30 3 byt rtrtisssneelag ¢ g)

=0 v=

o

By our assumption there exists a function v, of the form (2.5) such that

— d(a)n(=1)*t1+(nta—e/n 0T sina Z (trtva®)/atu-vg (1 o)

U2|¢=a+¢ a—a* —

is an expression of the form (2.6). Then the difference v = v; — v, satisfies the condition
of Corollary 1 8

) Lemma 8. Let L
g =c(a)r**t*/o S (r a)
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with non-negative integers t,u,v, p > 1, and ¢ € C®(U(a*)). Then there ezists o

function
n+lp+n—j

v = Z z ij'(f‘, a)Im {zp—v+n—j+(ta"+uo°)/asj(z’a)}

) =0 v=0
(cj» € C(U(a®))) such that

n+lptn—j .
V) ymary = 9= D O Gl a)rt iriitente g q)

y=0 v=0
where the coefficients aj, are functions from C°‘f(ﬁ+ x U(a*)).
Proof. We prove the lemma by induction in n. Let at first n.= 0, ie. g =
c(a)r#+tm/e If ¢(a*) = 0, then the assertion is true for v = (—1)"—fn(%)31m z""""/"
and if c(a®) # 0, we set

na*la _ Lp
v= (- 1)'“—“ c(a)Im{ tnjaZ "2 ‘z }
sin po a-a

sin pa

___( 1)t+1¢1 c(a)ZIm{Z” v=14(tx4va® )/051(2 a)}

We now assume that the assertion is proved for n — 1 a.nd show its validity for n. Again
we have to consider two different cases ¢(a*) = 0 and ¢(a*) # 0. Consnder at first the
case c(a*) = 0. If we set

v = (_1)t+na°/1r c(a ) {Z“+M/°Sn(z,a)} ,
sin pa
- then we get » . .
V0gmatpira =9 =91+ 02
where

n—1

E d; (a)r"+""+"’/°5 i(r,a) and gz = d(r, a)r“““"/"Sn(r, a)

Jj=0 . .
with some smooth coefficients d; and d (see Lemma 6). By our assumption there exists
a function

n p4n-—j
v = Z Z ij(a)Im {zl‘—"-f-n—j'f'(tﬂ’-f-ua.)/asj(z’ a)} )
j=0 v=0
such that
n ptn—j
v2|¢=a+¢, - = E Z a,y(r a) rb- v+ntl—j+(tr4va® )/as (7‘ a)
. =0 w»=0

with coefficients aj, € C®°(R+ x U(a*)). Then v = v; — v, satisfies the condition of
the lemma. In the case c(a*) # 0 the a.ssertlon can be analogously proved by means of
Corollary 1 n
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Corollary 2. Let
g =cla)y***™oS (r,a)  (t,p,v € No, p 21, c€ C(U(a"))).

Then for every integer k > 1 there erists a function

k n+iptndi-j-1

v= Z Z Z ciju(a)Im {z“_""’"""-i:if(h‘fw")/°Sj(z,a)}

i=1 =0 v=0
with coefficients ¢;j, € C°(U(a*)) such that

n+kptntk—j—1 ' - N . . o
v|¢=o+\0(r.o) 9= Z Z aju(r,a) remvinoitkt(intee )/asj(rv a)
J

where the coefficients a;, are smooth functions on Ry x U(a*).
" We now can show an analogon to Lemma 4.

Lemma 9. Let fo = 87{z#+*"/°3"5,(z,a)} where t,u,v,n.€ No, htv2 q -1
Then for every given integer k > 1 there ezists a function. )

v= ZA (@)zrti-atn=igvtlg (s, a)

Jj=0 ]
+ ZBj(a)Re {z“_j+‘"/"‘5j(z,a)} ' (2.7)
j=0

k—1nt1m+i—)

5 Cutartm s, 0)

=0 j=0 s=0

where m = n +p + v+ 2 _ q and the coefficients Aj, B;,Cj, 5elong to th; space
C°°(U(oz )) such that .

86—v—f for0<¢ argz<a+¢(r a)
v=0 for¢=0 ’ '

ar‘xd_

n+k—1mt+k—1—;

LSS ) e aS (1 0) for 6 = ().

Jj=0 =0

Here the.coefficients a;, are functions from C®(Ry x U(a*)). In the case ¢ > 1 the
first term in (2.7) can be replaced by 377419971 {#H1%/2 S, (2,0) ). :
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Proof. By Lemma 4/Remark 1 there exists a function

n ) ) o
. »,vl _ Z Aj(a)zp+l—q+n-)+t1r/afu+l S,‘(Z, 0)

1—0
—)+tx/a
+ Z B;( S; (z a)
+ Z Cij(a)Im { m-jttr/ag (2, a)}
j=0
satisfying the equations 3,0;v1 = f and v, | g=0 =11 | 4=a = 0. Hence, the r&strlctlon of

v) on the line d) = a + ¥(r,a) has the form

n .
= E aj(r,a) rm¥t=itir/ag (r 4)

..J=0

V1| 4= ot gr,)

with coefficients a; € C®(R4+ x U(a*)). Corollary 2 implies the existence of a function

k—1n+im+i—j

=YY Y cle)lm st ()

=1 j=0 s=0
such that

nt+k—1m+k-1-j
vt e = O D a,.(r ) ""“ s-ittinteat)/ag, i(r,a) .

. =0 =0

Hence, v = v; + vy satisfies the conditions of the lemma B

Now we consider again problem (1.2) in the dihedron
D= {z = (xl,zg,y) € BN y e RN -2 y0< ¢ arg(z) +zx2) <w(r, y)}

where w(r y) =aly) + ¢(r y) and a(y) = w(O, y) lies in a sufficiently small neighbour-
hood U(a*) of the critical angle a® = 7 or a* = 2. We denote the sides ¢ = 0 and

= w(r,y) of D by I'_ and Ty, respectively. By means of the last lemma and the prop-
erties of the extension operator K one obtains the following proposition analogously to
Proposition 2.

Proposition 3. Let | and k be arbitrary positive integers and let f be a function
of the form

f = aly)&2)50 { #+/*W2 Sz, a(v)) )
where

n<l-1l,g<pu+v+l,l-2+e<nt+p+v—gq+tr/a(-)<l-1+¢
a€C®(M), €=Ke, ce HH-‘k—lrn'—'p—u+q+|‘7|+¢-‘“’/°(')(M) '
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(¢,t,n,p,v are non-negative integers, € > 0, sufficiently small). Let furthérmore &' be
an arbitrary positive real number less than . Assume that a(y). lies in-a sufficiently
small neighbourhood U(a®) of a* (which depends onl,k ande—¢') for ally € M. Then
there ezists a function

v= a(y)"(z)a‘Y ( E d; (y)zIH-I—q+n-)+tr/o(y)—v+ls (2 0)

Jj=0
| +Eb (y)Re[ "‘_H’"’/"(”)S’ i(z, a)] - e
’ }=0
: 1 ndim+ti—jy :
I c.,,<y)rm[ mbic st tia Vo, (= a)])

=0 1—0 =0

where m = n + p +v + 2—g a.nd the coeﬁic:ents aj, b,,c,,, are smooth functwm on M
such that

Lu—f=T+T inD, ”lr_ =0, ”'r,. l+k 1/2(1, )

4

Here T; € VI*¥(D) and T} is’a finite sum of ezpressions

—g!

b(z) (aﬂ*) a“'+“' or {z“ —et(tntaat )/"_"S i(z, a)}
and conjugate terms where

p<u +v -s+1, p+v' +j—pttrfa>l-1+e, j<n+tk-1 .-
s<u+V+1, n4ptv+l-g<p+v+j<ntptv+k—g

and |8+ |y'| < 2.
3 Asymptotlcs of the solutlon in a nelghbourhood of an edge

Let G be a bounded domaxn in RN whnch comcxdes w1th the dihedron- (l 1) ina nelgh
bourhood V of the point yo € M. We consider the Dirichlet problem

Lu= Z aijp(z)aila,’;’afu =f in. TR .
' i+5+|81<2 D A - (31)
u=0 o o . _onvaG. L
for the elliptic differential opefatof L with real-valued coefficients a; ,',_9’ € C>(G). Agaih
without loss of generality we may assume that the condition (1.3) is satisfied for évery
point (0,0,y) € VN M. Suppose that the angle a(y) in the point yo is equal to a critical
value a*, i.e. there exists a number k € {1,2,...,1+ 1} such that ka®/~ is integer.
In the case a* # 7, a® # 27 we assume that ‘the function w in the definition of the
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dihedron D does not depend on the variable r. Moreover, let ¢/ < ¢ be sufficiently
small positive numbers (such that the assertlon of Proposmon lis va.hd) satlsfyxng the
condition

tr/a* ¢[ﬂ+e,#+e]

for every non-negative integer p and ¢, g < | + 1. We further denote by U(a*) a
sufficiently small neighbourhood of a* which depends on 1, ¢ and ¢'. In pa.rtlcular, we
assume that a* is the only critical angle in U(a*) and that tr/a & [u+€',p+ €] for
every o € U(a") and every non-negative integer u, t, 4 < I+ 1. Then we define the
neighbourhood V4 C V as . ..

Vo={z=(ney) €V :aly) €U} -

The following lemma has been shown in eﬁ'ect e.g., in [9}, [10] for a* # 7, a* # 2n. By

means of Theorem 1 this lemma can be proved in a similar way for arbltrary o
Lemma 10 Letu e V'“(G) be a solution of problem (3. 1) with .support in VgﬂG’

Suppose that the right-hand side of (3. 1) satisfies the condition Dﬂf € Vitr-lAl |(D)

¢+k -8
for |B| < k. Then
k
Diue VIV L D) c V(D) for1BI< k41
and u admits the decomposition A _ .
u=Y &(ry) Im 2'7/°W) 1 4, (3.2)

tel,

where I; = {t : t'integer,l + ¢ < trfa* < I+ 1 + ¢}, Dpu € V'tiillﬁlm(D) for
1Bl < k, & = Kcy ; ¢ € Witk+1te'—t=/al)(pry

Proof. Inthe case! = 0 the assertion Dfu € Vk:: N KI 8)(D) follows from Theorem

1 and the decomposition (3.2) holds a.nalogously to Theorem 4.1, [10: Remark 4.1] and
[9: Lemma 3.6]. We now assume that Lemma 10 is proved for ! —1 and show the validity
of this.lemma for a.given | > 1. For simplicity we restrict ourselves to the case N = 3.
Lemma 1 implies u € V'titil(D) Let D, = 9, + a:f:;” 0, be the operator (1.5).
Then the function v = D,u satisfies the equations < ’
Lv=F in D v=0 ondD )
where F = L(Dyu) = DlLu+L,u = 1f+L1u and L, is an operator of the form (1.6).
Obviously, v € Vitit_‘H('D) cV!,(D),Fe V_‘,ti,"(D) C V!;Y(D) and our assumption
implies d,v € V! (D). Using Lemma 1 one gets 9,v € V'¢+,,('D) By induction in k&

we can further show that 3} F € Vititf"(D) for j = 1,...,k and therefore (by our

assumptlon) 3’0 € V_I.t:ti;i ,(D) for.j =1,...,k +.1. Furthermore, we obtain .
i e e= Y &Ima e o (33)
- tel-y - B . S .
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where
Blvo € V_‘j’;t‘_‘;(v) for j =0,1,...,k, & =Keci, ¢, € Wkt =t=/a(pp)

Integrating (3.3) we get

v y A '
/(0(31,12,8) - vo(zl,zg,s)) ds = Z /E}(r,s) Im 2**/2(®) gg.
n ‘ . C t€haayg,

Here y; is a point on M N Vy such that u(z,,z2,y) = 0 for y < y;. Since the function

v

/(v(zl,zg,s) - 00(11,12,8)) ds

"

y - ’ . .
= u(::l,itg,y)_-f—/ [%’;‘;)cﬁ%u(zhzg,s) - vo(:cl,zg,s)] ds -
' i ' )

belongs to Ve, _, (D) weget c,=0a.e onM,i.e v=uypand djv e V't'f::_‘,’('D)
for j =0,1,...,k. It can be shown by induction in k that

j-1
L(3v) = 9jLv+ ) L.(8)v) € VII131 (D)
v=0

here L, are certain second order differential operators with smooth coefﬁcxents a.nd
P
therefore . o

FueVITIHD)  forj=0,1,...,k

This implies . S
a’uEV_'t_:ti;’J(D) for j=0,1,...,k+1.

Analogously to Theorem 4.1, [10: Remark 4.1} and [9: Lemma 3.6] one can show the
validity of the decomposmon (32) =

Proposition 4. Let a* # 7, a* # 27 and let u € WI(G) be a solution of problcm
(3.1) with f € WE¥ (D). Thcn u has the following repnacntatwn m vnG:

u=X%;+u
where
=0 ondDNY, and Dﬂu € V_'_t':;z 'Lﬂ”(D) for |B| <k

and I; is a finite sum of ezpressions of the form

A2)0302 {47135 (2,0}
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and conjugate terms. Here t,p,u,v are non-negative sntegers, p < u+v, p<lI, x =
(ko,kl, ykn) € Ki(a*), p+v+k —p+t1r/a <I+1+€ andc—K:c with

ce W'+k+1+l‘vl p—v—kn+pte -nr/a( )(M)

Furthermore, LE; — Pi(f) is the sum of a function fy € Vit,k(D) and a finite number
of expressions of the form

o(2)3(z)87 0% {z""'"'/"i"s,‘(z,a)}

and conjugate terms (k = (ko,k1,..., k) EKi(a®), p<p+v+1,p<i+2,1-14€' <
prv+k,—pttnfa* <l+k-1+¢'") with

e = K:C, ce Wl+k—l+|‘f|—p—v—k,.+p+t'—t1r/o(~)(M)‘

Proof. We prove the proposition by induction in I. Let €;,...,€;4), be a suitable
sequence of positive numbers such that ¢/ < g14) < &1 < --- < g; < €. We consider at
first the case I = 0. If 7/a* > 1+ ¢, then u € V2, (GNVy). Furthermore, Lemma 10
implies Dﬂu € V2, (GNVp) for |B| < k. If m/a® < 1+ ¢y, then

u=&(z) Im 2™°W 4y,
where

G=Ke, ceWrtta=rlon) Dy e VAP (D) for 1B < k

and ug = 0 on 8D NV,. Moreover
L (cllm "/°) = (L, cl]Im (o +&(L-40,8:)Im 2™° =T, + T

((L, é1] denotes the commutator of L and ¢;) where Tg € V_f,l('D) and T is a finite sum
of expressions of the form :

a(z) (8]&) 87 8¢ (ze+«/a'3u)

and conjugate terms where a € C'°°(Gﬂvo), wu,p € N, |y|+|¥|+p < 2, p< < ptrv+1 <
2. Hence the assertion is true for { =

We prove the assertion for a.rbxtra.ry 1. For thls purpose we assume the assertion to
be true for I — 1. This assumption implies

u=23_) +u-

where : o

a) Dfui_y € VIIY(D) for || <k +1.

b) £, is a finite sum of expressions of the form &(z)8) 8% {2#***/°2*S.(z,a)} and
conjugate terms (k = (ko,...,kn) € Ki—i(a®), p < p+v,p < I-1, p+v+k,—p+ir/a* <
l4+¢€,€=Kc, c € WHktithil-s-v—katpta—tr/a()(p)).



On the Behaviour of Solutions to a Dirichlet Problem 41

¢) LTy — Py (f) = Ay + Az. Here A; € VIE¥(D N V) and 4, is a finite sum of

-
expressions

;(x)az)a;af {z““"/"?'s,‘(z,a)}

and conjugate terms (x = (ko,...,kn) € Kim1(a®*), -2+ < p+v+kn—p+tnfa® <
l+k—1+e,¢=Kc, c€ Witk-1thrl=p—v=katpte—tz/a() (M),

From the properties of the operator X (see Lemma 5) it follows that A, = 4;'+ A;"
where DﬂAl" € V'e,(D) for |B| <k a.nd Ay is a finite sum of terms

a(0,0,y)E@J@f{z"'“"/“E"S,‘(z,a)} - C(34)

and conjugate terms (! — 2+ & < p+v+k, —p+tnfa® <l—1+4¢, p,c,kasinc)).
Furthermore,

PO(f)= Y . ,(xfw)zlzz

utr=Il-1

is also a term of the form (3.4) where x = (0), t = p = byl = 0 and ¢ = f,., €
- Witk=1-p—v+e(M) By Lemma 6 there exists a function w which is a finite sum of
terms &(z)373P {z#+*"/°2*S.(z,a)} and conjugate terms with p < p+v -1, k =
(koy-. . ka) e Kia*, l+er<p+tv+k,—pt+infa* <l+1+¢,

€= Ke, c€ Wl+k+1+|1|—p—v—k..+p+¢:—tr/a(M)

such that
‘ w=0 on DNV,
Lw— P(f)+ LEi-1 = Lw = PLO(f) = (Pio1(f) = LE1-1) = By + B,

where B, € V_'t,k('D) and ‘B, is a finite sum of éxpressions

a(2)28]82 {z““"/"f"s,‘(z,a)} (3.5)

and conjugate terms ( k=(ko,....,kn) EKi(a*),p<p+v+1, -1+ <u+v+k,—
p+irfa* <l+k—1+¢,T=Kc, c € WHHk-1+hvl-u-vtkatpte'=tx/a ) 1n particular,

D} (Lw = P(f) + LEi.1) € VI YL (D)  for |Bl < k.

Moreover; from the properties of the extension operator K it follows that -

l k
DPweV (D) for Bl < k+1.

Consequently,

I+k L . )
Df (w11 — wev :::“Iﬂlw(p) for |Bl < k +1

yy1—w=0 " ondDNY,
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and . : '
DJL(u-1 = w) = DJ(f — P(f)) - D] (Lw — P(f) - LTy_y)
e VIl (D).

Let I; denote theset Ij = {t € IN : I+ ¢ < tr/a* <1+ 1+¢}. Then Lemma 10 yields
‘ ui—w==%"+y

where &' = ¥, &(z)Im 2t/ Dﬂu € V'j’f:“'”'w(v) for |8| < k, & = Koy,

¢y € Witk+1+e' —tx/a(: )(M). Furthermore, for £; = £;_; + &' + v we get
LS - P(f) = (LE1-1 — Pi(f) + Lw) + LT = C; + C,

where C; € VI ¥(D) and Ciisa ﬁmte sum of expressions of the form (3. 5) This proves

-e!

the proposition 8

Now we can formulate the main theorem of this paper for a* # 7, a* # 27 as a
special case of Proposition 4.

Theorem 2. Let a®* # 7, a* # 27 and let u € Wl(G) be a solution of problem
(3.1) with f € W! (G). Then u admits the decomposition

u=I 4w

in GN Vo where u; € VX2H(G N V) and Y"1 38 a finite sum of ezpressions

—e!

Ay {#H W s zatu)) (39)

and conjugate terms. Here u,v are integers, u > 0, u+v > 20, k= (ko, k) € Ki(a®),
p+v+k, +t1r/a <l+1+4¢ and

E=Ke, ceWitims—v—knthlte'~tz/a()(pp)

If f € W2*2(@), then the coefficients T in (3.6) may be replaced by thesr traces which
are functions from W2+3—s—v-knte'=tx/a()(pf),

In the same way one can prove the analogous result for the critical angles o* =«
and a* = 27 by means of Proposition 3.-

Theorem 3. Let a® =7 or a® =27 and let u € W‘(G) be .a solution of problem
(3.1) with f € W' (G). Then u adm;ta the decomposition

u=3%;+y

in GN Yy where u; € _'“:?(G) and IRT aﬁmtc sum of ezpressions of the form

. @)y {z"""*/"?'S,.(z,a)}
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and_conjugate terms. Here n,t,u,v are integer numbers withn >.0,¢ 2 0, v 2 0,
p+v20, p+v+nttr/fa® <l+1—¢' and ©=Kc is the eztension of a function

) C € wl+l+|‘7|+¢ -—n—p— u-tt/a
Remark 2. If a* = 7 or a* = 27 and the function w in the definition of the
dxhedron D does not depend on the vanable y (i.e. w(r,y) = a(y)), then the sum T i in
Theorein 3 consists only of terms of the form

A2)OgIo T and  Az)apErIes

(cf Remark 1), i.e. the asymptotics of u does not differ from that for non- cntlcal a.ngles
(see, e.g., {3, 9, 10, 14]). . : :

4. Asymptotics near the vertex of a cube .

In this Section we will investigate the edge asymptotics of a solution u of the Dirichlet
_problem

L(z,D)u=f inG, u=0 ondG ) (4.1)

if the critical angle a* = 7/2 occurs in the vertex of a polyhedron. Suppose that the
domain G coincides with the infinite cube K = (0,00)? in a neighbourhood of the origin
and that the principal part Lo(O, D) of L with coefficients frozen in the origin is equal
to the Laplacian. We introduce the followmg weighted Sobolev spaces in K. For given
integer ! > 0 and real 8,7 we define Vﬂ (K) as the closure of C§°(K \S ) with respect
to the norm

1/2

2y . . -
llull = Z / "’( ’) r2el= Doy dz

la|<lje
Here p = |z, rj(z). denotes the distance of z to the zj-axis (j = 1,2,3) and r(z) =

min; r;(z) denotes the distance of z to the set S of the edge points of K. Furthermore,
Wj (K) (B > —3/2,7 > —1) will be defined as the closure of C*°(K) with respect to

the norm ,
\ 2y A
lull’= Z/ ”’( ")A |D°u|?dz

|o|<IK

1/2

Lét x1 € C*([0,00)), x € C>((0,7/2)) be smooth cut—off functions with support in
[0, 1] which are equal to one in [0,1/2]. Furthermore, let x be the cut—off function in K
which is defined by the equation

x(z) = x1(p) x2(9)

where p,¢,9 denote the spherical coordinates in R3 (p = |z|, ¢ = arg(z) + iz3),
cosd = z3/|z|). ‘
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We assume that the solution u of problem (4.1) belongs to the Sobolev space
W1(G) and that the right-hand side f of (4.1) satisfies the condition r~¢f € La(G),
r=¢9f/0z; € L:(G) (j = 1,2,3;¢ > 1/2) Then xu € Vgo(K) and xf € W1, _.(K).
Since u(z) = z;z2z;3 = p®sin ¢ cos sin’ 9 cos ¥ is a solution of the problem Au =0 in
K,u = 0'on 8K the function g(¢,9) = sin ¢ cos ¢sin? 9 cosd is a positive elgenfunctlon
to the eigenvalue A = 3 of the operator § + A2 + A (6 denotes the Laplace-Beltrami

operator on the unit sphere in IR%) with the boundary conditions q| o=0 = q| p=mj2 =

g| o=x/2 = 0. Using the fact that the only positive eigenfunction of —§ belongs to the
first eigenvalue one gets

v=xueV3 (K) and fi=L(xu)eW!, _ (K)

(see [12: Theorem A2]) where ¢’ is an arbitrary positive real number larger than 2—/a.
Here a is a function of the variable z3 which arises from the transformation

2} = (a0,2,0(0,0,23)D)"* 2, — La1,1,0(0,0,73)(a0,2,0(0,0,23)D) /% z5
zy = ap,2,0(0,0, -’53)_1_/212

z; =23
(D = a2 0(0 0, xs)ao 2 0(0 0, z;) - —a1 1 0(0 0, z3)). Applymg this transformatxon to

the equations -
Lv=f; inK, -v=0 -on 8K

one gets the Dirichlet prolblem'
L'v=f; inK', v=0 ondK'. (4.2)
where

K = {z' =(z'1,2'2,2'3):0 < z'3 < 0,0 < ¢"; arg(z'y +iz'7) < a(z':,)}

and t'he w’efﬁcients of L' = 2-+,+k<2 -,k(z )3', :3: are smooth and satisfy the

condition ’
bzoo(o 0 I';)Ebogo(o 0 x';)El . bl"l 0(0 0 2:'3) =0 (4 3)
Obviously, a(0) = n/2. Suppose that the function « satisfies the inequality sup(2 —

7/a) < inf(2 — 7/a) + e. We want to use the results of Section 3. Therefore, we
introduce the coordinates ' . : )

61 =z'l/z'3, fg =x'2/2:'3, t=logz'3 .

Then the domain K’ corresponds to the dihedron

D= {(fx,fz.t) ER:te R, 0< &’ = arg(é; +i2) < a(e‘)}
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in these new coordinates. If we set w = e~(¢+3/ 2)'0 then the function w is a solution
of the Dirichlet problem

L'w=e VD = F in D, w=0 ondD (4.4)

where L" = 2‘ +j+k<z Ciik(6r, €2, t)3;, ag, % is a second order differential operator with
smooth coefficients satisfying the condition (4.3), i.e.

Cg’o,o(o, O,t) E Co'g'o(o, 0, t) = 1, 61'1'0(0, 0, f) =0
Lemma 11. Let ¢ be a function in K' satisfying the condition
' 2 12 1/2
, r T, +z,
=0 - —_ = >1/2.
'/’(1) - for P' [zlf +zl§ +2:'§:|‘ A /

Then : ) .
YEVi(K')  ifandonlyif B3y e VD),

Lemma 11 implies that the solution w of problem (4.4) belongs to V3,.(D). Fur-
thermore, one can show that F = e~(=1/2tf, € W1 (D) if fi € W2, _,(K'). The
connection between the spaces Vj _(K') and V(D) in Lemma 11 can be used to define

weighted Sobolev spaces on the z3-axis. We define VJ(R,) (8,s € R, s > 0) as the
set of all functions ¢ on R4 for which the function

a1(t) = elP=o+1/2tg(et)

belongs to the Sobolev space W’(R) For integer s the norm in Vs (R+) is equxvalent

to the norm
/2
llgll = (Z/ 38=*)|pJ ,9(:3)|2dz3) o

Proposmon 5. Letu € W‘(G) be a aolutwn of problem (4.1) where rY¢f € Ly(G)
and r=*8f[0z; € L2(G) (j = 1,2,3) and € is a real number less than 1 satisfying ‘the
mequalsty sup(2 —n/a(z3)) < mf(2 - 7r/01(:1:3 )) + €. Then xu admits the &ecompostt:on

xu = dy(z')r' "9 gin (ﬁg&') |
' ‘ (a(z3) — 772)(cos(2a(z3)) — 1)
"~ sin(2a(z3)) - '(4-5)

x~r' sin2¢' — 2 —r/alzs) am/a(za) sin(r¢' /0(2:3))
a(zz) - /2

.+.¢f2(z'.)‘(r'2(1 — cos2¢') +

where u' € V3, _¢+6(K) dy is an extension of a function d, G,sze-af’/é(&),

d = d(z3), and d; is an eztension of the trace f,| € V§(IR4) into the.domain

T1=29=0
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K'. Herer' = (z'3 + 2'2)V/? and ¢’ = arg(z'y +iz'y) are the polar coordinates in the
(z'1,2'2)-plane and § is an arbitrary number between sup(2—rn/a) and inf(2—7/a)+e.

Proof. Applying Theorem 2 to problem (4.4) one gets
w= c’]({,t)rz/a(et) sin(n¢’ /a(e'))

1 2(1 — cos 28" 4 (&= T/2)(cos(2a(e')) — 1)
+ 3 (kR °)(£’t)( e 2¢') + sin(2a(et)) (4.6)

rf sin 2¢' — "/a(c sin(7¢'/a(e ) '
X a(e‘) — /2 .

Here w' € V_3e+5(’D), re = (Ef +£§) =r'fz3 , ¢ =arg(y +i€) = arg(z’l +1z'2),
éi(€,t) = Kc, is an extension of a function ¢; € W?+¢=6-7/2([R) and F, is the trace of
F on the edge of D. Multiplying (4.6) by e(¢+3/2)t = z5+3/2 one gets (4.5) where

3

E '
dl(:t’) ¢+3/2 x/a(:a)A(E t) _ z¢+3/2—l’/an~l (ﬂ, f;_: 10g.‘t3)

~ 1 2
& = 35 AKRNED

This 'prO\.res the proposition B8
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