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Approximation by Linear Combinations 
of Fundamental Solution of Elliptic Systems 

of Partial Differential Operators 
U. Hamann 

Abstract. Let j(D) = (L 1 (D))1,j=1 N be an elliptic system of partial differential operators of 
order 2m, a fundamental solution of j and E, the column vectors of E. Let r be the smooth 
boundary of a bounded domain !l C RTh and fr(x,D) = (b43(x,D))hI...... a normal system of 
boundary operators on F. We define bhu = '_ 1bhuç(u = (uI,...,uN)T). Furthermore let 
( yt)?° C R'\T be a sequence of points and Dh(F) (h = 1,...,m) suitable function spaces over 
F (e.g. C'-spaces or Sobolev spaces). It is investigated, under which conditions on the sequence 
(yt)?° the set 

span{(b i D°E(x - yk)IrEr,...,,,D°E(x - Yk)Irer) : k E 1i; la	0; j = 

is dense in fl1 Dh(F). 
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AMS subject classification: 35A40, 35J55. 

O. Introduction 

Let 4(D) = (L13(D)),=1 N be a Petrovskij-elliptic system of differential operators of 
order 2m with constant coefficients and E = (E)1,=1 N a fundamental solution of L. 
By Ej = (E1J ...... E,)T.(j = l,...,N) we denote the column vectors of E. Let r be 
the C°°-smooth boundary of a bounded domain f C R n with, a connected complement 
R'\. Furthermore let k(x, D) ( bh,(x, D)) i ......be such a normal system of boundary 
operators on . 1' that L and b define an elliptic boundary value problem with respect to Q. 
The operators bh (h = 1,.. . , m) are defined by bh1j = E bh, u, ( = (U 1, .. . , UN )T). If 
(yk)?0 C Rn \fl is a given sequence of points, let us consider finite linear combinations of 
vector functions of the form  
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- yk) with 1 k < oo, j = 1,. .. , N, and 0 frI <00. 

Let
IN 

= E E CkJ,, D°(X - Yk) 
k=1 j1 IaI<r 

be such a linear combination. A vector function 

I (fi,...,fm)T with fhEC"(f)(sh>0, h=l,...,m) 

is given on r. The problem consists in approximating the function J by the m-tupel 
bmy in the space flL1 C ah(I'). We will see that such an approximation is 

possible under certain conditions. These conditions essentially refer to the position of the 
points !Ik For instance, the following assertion holds: 

We suppose that the sequence of points (yk)r C Rn \11 is dense on a smooth (n - 1)-
dimensional surface K C R"\?. Then for each 

J = (I' ,... ,f,,)' (f E cah(r), h = 
1,... ,m) and for all e > 0 there exists a natural number I and coefficients Ck,,,a (1 < 
k<l, IaI_<i-1,.j=1,...,N)with

- 

for
iN 

(x) :=

	

	 ckj,0DFii(x - yk) 
k1 j1 IaIt-1 

if and only if the adjoint boundary value problem 

Li=Q in fl,	 on I' 

has only the solution ! = Q. Here t is the maximal order of the Li,. We note that the 
surface K can be arbitrarily small. 

This assertion is contained in Theorem 1 of the present paper. Other situations of 
the sequence of points (yk) will be investigated in the Theorems 2 - 6. We will see 
that the construction of the vector function yj depends on the position of the points 
yk . Furthermore it will be shown that the functions fh can be elements of more general 
function spaces. 

There exists a close relation between the present investigations and the approximation 
theorems of Beckert [1], and the developments of Beyer [2], Göpfert [5], Hamann [6], and 
Wildenhain [15]. In these papers functions, given on a surface F, are approximated by 
solutions of boundary value problems of scalar elliptic differential operators with respect to 
a domain which involves F. This problem have been studied for Petrovskijelliptic systems 
by Rojtberg and Sheftel [13]. They consider the case that k, are Dirichlet boundary 
operators, and they need the supposition that the homogeneous Dirichlet problem for the 
adjoint system has at most one solution.
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Firstly Schulze and Wildenhain [14] got some results about the approximation of 
functions on r by linear combinations of fundamental solutions. The Lamé equations 
were investigated by Beyer [3], Kupradze [10], Freeden and Reuter [4], and Hamann [8] 
with respect to the approximation problem considered in the present paper. In [4] and [10] 
the theoretical results were applied to numerical constructions. Here the approximation 
was considered in the norm of (L2 (I'))3 , and Beyer could prove in [3] that also each vector 
function from (W'(r))3 with arbitrary integer s 0 can be approximated in the norm of 
(W'(['))3 . In [8] it was shown that the approximation in the case of the Lamé equations 
is possible in more general function spaces. In the present paper we generalize the results 
of [8] to systems which are elliptic in the sense of Petrovskij and to arbitrary normal 
boundary operators. Similar results were obtained by I. and Y.A. Rojtberg [11). 

1. Definitions and notations 
1.1 Let

= (L13(D))1,=1 N, L,,(D) =
IoI^t., 

(a = (a i ,.. . ,a,,), Dk =1 D = D' ... D") 
be a matrix of partial differential operators with constant coefficients. The operator j is 
said to be elliptic in the sense of Douglis-Nirenberg, if there exist integers s i ,. . . , s,. ' and 
t 1 ,... ,tN such that 

L 1(D)0 for s 1 +t1 <O and t1<s,+t,fors,+t,^0 

while the characteristic polynomial 

	

1(')	 ...... 54 0 

for real = (s,. . . ,) 36 0. Here 

	

LO	f E 1 c I a+ti a' Ca for a, + t, ^! 0 

	

ij 1	0	for s,+t,<0 

If the operator is elliptic in the sense of Douglis-Nirenberg, then without loss of gener-
ality we may suppose that the numbers a, and t, are such that máx{s,: 1 i < N} = 0. 
This follows from the fact that a, + t = (a, - k)+ (t, + k). Then min{t, : 1 < j( N} 0 
and tj is the maximal order of differentiation of the function u2 in j(D). By changing 
the enumeration of the functions and equations in .L(D)u we may always arrange that 
t:=tl^t2^...^tN^!O and 0=sl^!s2^...>SN. 

An operator elliptic in the sense of Douglis-Nirenberg is said to be elliptic in the sense 
of Petrovskij if s = S 2= 0. Let ordL := ordl(D) = a, +t, be the order 
of L. 

1.2 The operator 

(L;(D))=1..,N = (L*(D)),_.1 N'	=	(_1)aDa



52	U. Hamann 

is the formally adjoint of j(D) in the sense of distribution theory. It is defined by 

:= f (L,3 u,)ve dx	J u,(L 1v1 ) dx = (uT, L'v) 
i=1	 j1 1R" 

for all !,!L E C o (R % )) N . It is clear that if the operator L is elliptic in the sense of 
Douglis-Nirenberg, then i' is elliptic in the sense of Douglis-Nirenberg, too. For the for-
mally adjoint system we have t, = 1 < s+t, = s! +V, where s = t 1 t and i	sj +t. 

1.3 Now we want to define the condition of Shapiro- Lopatinskijand the ellipticity of 
a boundary value problem. Let F be the C°°-smooth boundary of a bounded domain 
S1 C R'. We suppose that the order of L is 2m. Let 

k(x, D) = (bh,(x, D)) i......, b,,2 (x, D) =	b3(x)Da, b' E C°°(r') 
..........N

IaI^mh, 

be a system of boundary operators on F. We define 

rh := max{(mh, - I,): 1 j- < NJ, 

bohi 	D)	
{ 

EIaI=rh+t, b'(x)D" for rp +. t ^! 0 
0	for rh+t<0, 

and °(x, D) = (b(x,D)hi..... For a fixed point x0 E F we consider the initial value 
problem

	

for 1>0	 (1) 

	

=LiE C tm .	 (2) 

Here we have replaced D = (D1 ,... ,D) by (ei, • • ,_i,) (' = (1,",n-1)). Fur-
thermore v = (vl,...,vN)T is a vector function on R1 = It C R 1 : I >_ 0). Let M+ be 
the set of all solutions ! of problem (1),(2) with lim +ooIL( t ) = 

One says that the Shapiro-Lopatinskij condition is satisfied in the point x0 € F, if the 
problem (1),(2) has a unique solution E M for every vector ' E R" 1 with'96 Q and 
for every h= (hi,...,h)T € C". 

Furthermore the boundary value problem defined byL and b is said to be elliptic in 
?, if the following two properties are fulfilled: 

1. J is elliptic in the sense of Douglis-Nirenberg. 
2. In every boundary, point xo € F the condition of Shapiro- Lopatinskijis satisfied. 

1.4 Now we want to define normal boundary conditions and the Green formula. Let 
t I ,.. .,tN be integers with t := t j	£2 ^! " 1N ^! 0. We set T = (t i ,. . .,tN) and 
ITI = 1,. We denote by N, (s = 1,. . . ,t) the number of those values of j for which 
I	s. It is easy to see that	N, = E1 i, = ITI and N > N1 ^ ... ^ Ng. We put 
also N,' = N,_, 1 (s = 1,.. .,t) and note that j N if and only ill- I	s — i.
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Definition 1. A Dirichiet matrix on F 'of order T = (t 1 ,.. . , tN) is a matrix with TI 
rows, which may be reduced by permutaion of rows to the form 

= (x, D) 
= I	I ,	= (Bkj 	D))k..,.... N	(s = 1,..., 1) 

Bt ji.... . N 

where
B'. (x D) = I E1015a-1_(t_tj) B'(x)D° for j = 1,.. . , N,' 

1	 n	 for j-- j' 

while
det(Bk'j* (x, 7Lj)kj= I,... ,N.I 5' 0 

at every point r E F. Here B(x, D) = >IaI-,-1(t.) B'(z)D and	is the unit nor- 
mal to F at x.	

kj

Definition 2. The matrix (x, D) = (bhj(Z,D))h:I..... rn will said to be T-normal if it 
may be supplemented by new rows to a Dirichlet m'atix on I' of order T. We shall call it 
locally T-normal if for each point zo € F there exists a neighbourhood U(zo) in F in which 
the matrix k(x, D) may be supplemented by new rows to a Dirichlet matrix of order T: 

For the multi-index Q = (q, . . . ,qi) (qk integers) we define W,(1)'= W,'(1l)x...x 
W N (1l) (Wqk 	Sobolev spaces) and CQ() = C1() x	x CN() for q, ^! 0. For 
an integer k0 we put ko+Q =(ko+qI,...,ko+qN).	 . 

The following both lemmas were proved by Rojtberg and Sheftel [12]. 

Lemma 1. Suppose that the operator L(D) of order 2m is elliptic in the sense of Petro-
vskij (Ord L,,(D) < i, (j = 1,.. .,N; s i = = 3N = 0, TI = 2m)). Suppose that 
the matrix (x, D) = (bh,(x, D))h_I. ... .m of boundary conditiors is T-normal. Then there 
exists a T-normal matrix (x, D) which completes (x, D) to a Dirichlei matrix of order 
T = (t 1 ,.. . ,tN) on F. If c(x,D) is fixed, then there exist matrices 

(x,D) =	..	and ç."(x,D) = (c,(x,D))..i.... . ......... ..................N 

of boundary operators with coefficients from C°°(F) and with the following properties: 
(i) k and c. are locally T'-normal with T' = (t,t,.. .,i). 

(ii) There exist negative integers r, r, r, r	(h = 1,. . . , m) such that ,ord bhf 
rh + t, ord	r + t, ord b 1 r + t, ord	+ t, while in each of these
inequalities there is for each h at least one j for which the equality sign holds. If now 
r1, + I < 0, then bh,(x,D)	0, if r + t1 < 0, then Chi (x,D)	0, and 80 forth. In 
addition, —rh — r = —r—r =t+1 for  = 1,...,m.  

(iii) For all U € CT (?T)'7 € CT'(?) (T' = (t, i.... ,,t))' the Green formula 

>.1 (>	 N 

	

LtJui) vi dx +	J (' b#3u2) ( civi)
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J u, ( L 1 v1) dx +	J ( ChU3) ( b 1 vi) dc 
j= j=1	1=1	 hI.  

or shorter
((Lu)Tv) +	(&,) = ( (uT) Lv) +	(kZy) 

holds. Here bAm = Ft4j b, 3 u,, the meaning ofi, u, v is analogous. 

If the system k is elliptic in the sense of Petrovskij, if b is a T-normal system, and 
if the boundary value problem defined by L and k is elliptic, then the boundary value 
problem defined by j and is elliptic as well (see [12: Theorem 2]). But we note that 
the formally adjoint system j is in general elliptic only in the sense of Douglis-Nirenberg. 

Let

	

N := Im E (C())N : Vv =	in Il, bv = Q on r} 

be the finite-dimensional kernel of the operator {k, k} 

Lemma 2. Suppose that the system J is elliptic in the sense of Petrovskij, the boundary 
conditions 6 are T-normal, and that L and b define an elliptic boundary value problem. 
Then the problem j u = f in f, h = on F with J E (C())' has a solution if 
and only if QT , v) := >: f- fv1 dx = 0 for all v = (v1 , . . . , VN) E N. The solution u 
belongs to (C°°()''. 

1.5 Let E = (E 1 ) ,1 N be a fundamental solution of L, i.e., 

Lk1E,1 = {
	

(k,j = 1,...,N; b the Dirac measure). 

We denote by Ej = (E1,,. . . , E,j) (j = 1,.. . , N) the coluimis of the fundamental solu-
tion E. The matrix function defined by (x) = (K(_x))T is a fundamental solution 
of 

1.6 If X is a normed space we denote by X' its dual space and by (1 F) the pairing 
between an element] of X and F of X'. 

For normed spaces X, Y let L(X, Y) be the set of all continuous and linear operators 
from X into Y. For B E L(X, Y) let B' E L(Y', X') be the dual operator defined by the 
equation (Bf, F) = (f, B'F) for each f E X and for each F E X'. Furthermore we denote 
by (1 F) also the pairing between an element f of C0— ( R") and a distribution F of IY(R"). 

1.7 Let X1 ,. . . , XN be normed spaces and Xi,. . . ,X their dual spaces. For	= 
(91,...,g)T, gi € X(j = 1,...,N), and J	(fl,...,fN)T, f, E X,(j = 1,...,N)
we define

N 

j=1
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For a matrix	 =(j):i,.:.q,ViiEX(i=1,...,q;j=1,...,N)let 

(çoi,gj) 

('pqj,gj) 

For gi E D'(R') (j = 1,... ,N) and v ii E C°(R") (i = 1,... ,q; j = 1,... ,N) we define 
the convolution

	

* g . )(y)	 - 

(y)	
N	(so2j*9j)(Y)	 N

	
(ft (y—x),g,(x)) 

(*)=	 =((y—z), MW) = 
j=1	 j=1	 S 

	

(.pqj * g) (y)	 ('pqj(y - x),g1(z)) 

If the g, (j = 1,.. , N) are distributions with compact supports and Wij € D'(R') 
(i = 1,... ,q; j = 1,... ,N) we define

%Olj*9j 
N

(p2j 9, 

j=1
Wqj*9j 

If ' = E is the fundamental solution of j we get	 S 

L(E*) =.	 S.

This follows from the equation 

E11 * g	 L13(E31 * gj )	*5*gj 

L E
21 *g1	N	L22 (E, 1 *91 )	 0	=	0 

EN1 *gl	 LN,(E,l*gl)	0	0 

and similar considerations for 92,••• 

1.8 The spaces of functions on r (the smooth boundary of a domain ft C R') we are 
going to approximate are Banach spaces with special properties. Now we formulate some 
conditions for a Banach space D(r). 
(al) There exists an integer so *:^! 0 so that C 0 (r) is continuously imbedded in D(r). 
(a2) It holds C(1') = D(F) (closure in D(r)). 
(a3) If Po E C°°(1'), then I fr s°o dal :5 C IIsoIID(r) (ço E C-(F); C = C('0) a constant). 

Let D1 (F),. . . , D. (r) be Banach spaces with properties (al), (a2) and (a3). Because 
of property (a3) there exists for every ifio € C°°(r) and for every h (1 h < m) a uniquely 
(because of the property (a2)) determined functional Fh, E (Dh(r))' with 

(so, Fa,) = Jsobodo,
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for all W E C°°(1'). 
If now v E (Coo(T))N is an arbitrary, but fixed vector function, so we can define by 

( T c. ) =	fcp,, çdc for all	' E (C00(I))N 
h=I 

(i = c,v,, c, from Green's formula) an element from (fl.1 Dh( r))', which we 
denote also by	Therefore we have c v E (fl	Dh(['))' for all i E (C()N. 

2. Results 

Firstly we want to summarize the suppositions. 

1. Let I' be the C0o smooth boundary of a bounded domain f C if' with a connected 
complement R'\!. 

2. Let A(D) = (L13 (D)) ,1 N be a Petrovskij-elliptic operator of order 2m with 
ordL1, !^, t (i,j = 1,...,N; ii ^! t 2 ^! ^! tj) and with constant coefficients. 
Furthermore let b(x,D) = (bh(x,D))h=i.... rn be a T- normalsystem (T = (t 1 ,. . .,tN)) of 
boundary operators on F with ordb h, + t, (R = (rj ,.. . ,7'm), rh 1) and with 
Cm-coefficients. We assume that the boundary problem defined by j, and 6 is elliptic. 
Let t = ti be the maximal order of the L,. 

3. We denote by = (E,), ,, 1 N the, fundamental solution of L. The columns of , 
are denoted by Ej. 

4. The Bana.ch spaces D 1 (F),... , D,,,([') have the properties (al) and (a2). If N 
we additionally require the property (a3). 

Some examples for such spaces are the spaces C s (r) for arbitrary integers s	0, 
Sobolev-Slobodeckij spaces W,(I') for arbitrary real numbers 0 s < 00, 1 p < 00, 
and the dual spaces (W(r)y of W;(F) for O< s < 00, 1 < p < oo. The Holder spaces 
C"°(r) (0 5 .s < oo integer, 0 < a < 1) do not satisfythe condition (a2). 

Theorem 1. Let K C Rn \fi be a C 1 -smooth (n - 1)-dimensional compact surface. We 
suppose that the sequence ( yk)r C Rn \fi is dense on K. Then for a vector function 
J = (f)ml E fl1 Dh(F) there exist numbers	(1 < 1 < 00; 1	k < 1; . j =kj 
1,...,N; k' t —1) such that	 .	. . 

In 

,IIfhAIDr)O 

holds for  

c,.D°(x—yk) 
k=i j=1 IaI<t—I  

if and only if jhe condition	.	.	.	. 
Ti 9*20 = 0
	

(3) 

is satisfied for all v E N.
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Remarks. 1. The requirement of C'-smoothness of the compact set K can be 
weakened (cf. Lemma 13 and [7: Satz 1]). The essential property of K is only the 
(n -1)-dimensionality. 2. The points yk can lie on K, but this is not necessary. 3. If 
R"\fZ consists of more than one connected component, then the assertion of Theorem 
1 is also valid, if in each connected component lies such a compact set K. Then the 
sequence (yk)° must be dense in the union of these K. 4. Since N is finite-dimensional 
the supposition (3) contains only a finite number of conditions, in the case N = {} even 
no condition. 5. If the functions fh are integrable, then (tT , c i) = Ei fr fh ida. 
6. The condition (3) is also the solvability condition of the boundary value problem 

= in Il, b y = f on 1', if the fh are sufficiently often differentiable. 7. Indeed, 
the boundary operators b and c depend on the special choice of the system c in Lemma 
1, but the.condition (3) is independent of the choice of the system c (see 16: p 300]). 

Theorem 2. Let T = (El,..., EN) be a multi-index with 0 ij t and = m. 
Further let 9U be the boundary of a bounded open set U C U C R"\, for which the 
Dirichiet problem 

L*v=ç in U,	DaV,=0 on OU for la l < ,- 1 (j=1,...,m) 

has in (Coo(U))N only the trivial solution. (If ii = 0, then D°v1 = 0 on ÔU for Jal 11-1 
is no condition on v,.) If the sequence (yk)r C R.n \fi is dense on OU, then the assertion 
of Theorem 1 holds with

WW=

	

	cj D°E1 (x - yk).
k=1 j=1 IaI<i,-i 

As distinct from Theorem 1 here we need less derivatives of E,. 

Theorem 3. Let Yo = (yo,i, Yo,2,... , yo,) € Rn \?T be any point. Furthermore for i = 
1, ... ,n let (x') 1 C R, yo,j for each I, be a real sequence with yo ,j as accumulation 
point, such that;. ,x" ) ) € R" \T holds for each l i ,... , ln € LW. The sequence 
(yk)r' C R'T runs through every point of 

{(x"),...,x")) :	€ iw}. 

Then the assertion of Theorem 1 holds with 

=	cj'(x - yk). 
k=1 j=1 

Theorem 4. If the sequence of points (yk)r C R"\T is dense in an open set U C R\T, 
then the assertion of Theorem 1 holds with	 S S 

ig(x) =	cj1,,j(X - Ilk). 
k=1 j=1
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The next theorem deals with the approximation by multipole potentials. 

Theorem 5. Let Yi E Rn \?Y be any point. Then the assertion of Theorem I holds with 
IV 

(x)=	EcDj(x—yi). 
IaI^1i1 

In the next theorem the sequence (yk)00 lies dense on the boundary of a bounded 
domain f1 i D FL Then we need as supposition the unique solvability of a Dirichiet problem 
with respect to the exterior domain R"\1. 

Theorem 6. Let fl i D 11 be a bounded domain with Of = ail,. We suppose that j has 
such a fundamental solution E* that the Dirichiet problem 

=	in R"\1,	D°v,1301 = 0 for Jal <1, - 1 (j = 1,. .. , m) 

has in the set of functions l iz =	*	E (Dl(R7I ))N , supp Y ç I') only the trivial 
solution. Here T = (ii ,. ..,LN) is a multi-index with O< 1, 15 t and EN, i = m. If the 
sequence of points (yk)r. c R\ is dense on O11, then the assertion of Theorem 1 holds 
with

=	C ki D 1 (x - yk). 
k=1 j=1 IaI<l-1 

Here E is the fundamental solution of L with E(x) = ((_x))T. 

3. Preparation for the proof 
3.1 For an open set flo C R" and 0 <s< no we define 

= C°(1l0 )	(closure in the norm of CZ)) 

The elements of (Co - (11))'are distributions of order s on 110 Obviously, for I Es!' (no) 
and jal :5 s we have DfIa = 0. Denoting by D the derivative on the smooth boundary 
F = Ol in the direction of the exterior normal vector with respect to the domain Cl, we 
can prove the following lemma (see [6]). 

Lemma 3. It holds 

'(1-\r) = {i EC-(R-): D ,flr =0 for j = 0,... 

3.2 For the proof of the theorems we need the following lemmas. 

Lemma 4. Suppose that (x, D) is a Dirichlet matrix on I' of order T = (t 1 ,.. . , iN), 
I = i ^!	^! tN ^! 0 (see Definition 1), and k0 ^! 0 an integer. Then 

(i)II. E ri 

(ii) is a mapping from C01+T(R?%) onto 1(c4.t_1+1(F))1.
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Here Ôko+T(R.") =C. ko+'i (ii") x ... x Ôko+ tN (R"). Furthermore N is the number of 
those values of j for which t - < s - 1. The assertion (ii) means that for each tuple 

= ( 1 ,... , t) , a	('.	 )T E (cko+i_a+1(r))N (s = 1,..., t), there exists 
always a vector function u E C0k0+T(RT ) with Bu 	, i.e. B_' _U f',. ..	= 

The following lemma is a consequence of Lemma 4. 

Lemma 5. Let Q(x,D) = (Qhj(X,D))h:I::.q(Qh,(x,D) =	Qhj 	E 
C°°([')) be T-normal. Here R = (rt ,.. . , rj, r, < —1. Then 

(i) Q E L(+T(R),Cko_R(F)) 
(ii) is a mapping from Co+T(R) onto C'(f), where k0 ^! 0 is an integer. 

Now let klr be an elliptic operator in the sense of Petrovskij as a boundary operator 
and D kIr = (DLjj Ir)j i ...N, where Dn is the exterior normal derivative on r. Further-
more let b = (h,... ,j)T = (bh)h=i.... rn be a T-normal system of boundary operators on 
I'. Then there holds 

Lemma 6. The system {,...,k,kIr,DnLIr,.. . ,D&r} is aT-normal system of ma- 
trices of boundary operators on  with T=T+k+1=(tl+k+1,...,tN+k+1). 

To prove this lemma we have to use the ellipticity of j in a suitable way. 

3.3 If no c R" is an open set, we denote by W(110) (s > 0 integer,. 1 < p < oo) 
the classical Sobolev spaces. Let	(no) be the closure of CO-(no) in W;(cz0). It 
holds W(I) ='(R'). Further let W,'(f10 ) = (4 (ho))' (s > 0, p' =	For
—oo<s<ooand 1 < p < oo we define 

W', (R') = {f E D'(R"): f In. E W(no) for all bounded sets ho E ir}.

The following assertion follows from well-known regularity theorems for elliptic operators. 

Lemma 7. Let k(D) = (L,1(D))1.... N be ellipticin the sense of Douglis-Nirenberg 
with T = (t 1 ,. ..,tN) and S = (Si,...,SN). Furthermore let B =	be a 
fundamental solution of J. 'IL e W,°-5(R") (—oo < k0 < oo) is an element with a 
compact support, then E * € Wj(T(R?); 

3.4 A vector function J i8 analytic on an open set no c R", if for each point Yo € no 
there exists a neighbourhood such that t(x) can be represented as power series 

L(x)=	x—yo)° 
IoI=O 

in this neighbourhood. If D°(yo) = for each a at any point Yo E h0 , we obtain L = 
in the connected component of no which contains yo. Further the following lemma holds.
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Lemma 8. Let f be an analytic vector function in a domain no ç R" and yo 
= (Yo,i, . . . , yo,n) E no any point. Further for i = 1,.. . ,n let (x) 1 C R', x'	y0,j for 
all 1, be a real sequence with yo,i as accumalation point, such that ( 1 ,• . . , xe" ) ) E o 
for all li ,.. . , l, E IV. If f(x",...,x')) = 12 for l i ,.. .,l E IN, then J = Q in 10 

3.5 Now we investigate the unique solvability of the Cauchy problem. To do this we are 
firstly concerned with a statement about removability of singularities. 

For a bounded set A c 11", € > 0 and for real numbers d with 0 <d < n let 

Hd (A,€) :=inf{r : Ac UB, r	
e} 

(B' := {x € R" : Ix - xkI < e }) . The limit 

limHa(A,€) =: Ha(A) 

is the d-dimensional Hausdorff measure of A. The d-dimensional Lebesgue measure co-
incides on compact subsets of a d-dimensional smooth submanifold of I?" with cdHa(A) 
where Cd is a constant depending only on d. 

The following lemma was proved by Harvey and Polking [9: Lemma 3.2]. 

Lemma 9. Suppose K C Rn is compact. Given k <n and > 0, there is a l' E C°(R'1) 
with 0e 1 in a neighbourhood of K and supp 0, c K. = {x E R': d(x, K) <c} such 
that, for Jal	k,

JD°,b(X) I dx C Ek_IaI(H k(K) + C), 
Rn 

where C0 is independent of e. 

Lemma 10. Let noc fr be an open set and A a relatively closed subset of 11o• Fur-
thermore let P(x, D) = EIaI:5k a0 (x)D° be any scalar linear differential operator with 
coefficients ac, E C°°(120). Suppose Ic < n and H. k (K) < no for each compact subset 
K C A. Then

limjf(x)P*(x,D)(p,,be)(x)dx = 0 

for each I E C(110) and for each 'p E C°(lo) with supp 'p fl A 54 0 

Proof. The proof will be given in three steps. 
Step 1. We write P(x,D) = EI0 I<k a(x)D°. Then we have 

P(x,D)('p)(x) =
IaJ<k 

=	a(x)	(;)Da_3(X) Db(x) 
1 0 1:5 k	#<C' 

=	DP(x) (
	

a(x) (a)D0_P(x)) 

IPI k	/5<cx,IaI<k 
=	D(x)'p'(x) 

LøI<k
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where	(x)	E,<,l0l<ka,(z) (°)D°-13p(x). Let. w E C°(1l0) be -any function. Then
we define S=supp,and K =SflA. We get 

J f(x) P- (x, D)((pTt')(x) dx < IIfUc(S) J 1P(x, D)()(x)Idx 

:5 Hf IC(S) >12 JI(x)II(x)Idx 
131<k 

Ill IC(S) >1 (IIOc(Rn) J &t/e(x) dx) 
Ifllk 

< C flfflc 1 JI1tbek1x
II3Ik 

< C flfflC(S) >1 Cpe' 01 (H_k (K) + E) 
1131<k 

<C III IIC(S) (Hn_k(K) + e). 
The constant C is independent of e. 

Step 2. Now let 4) E C°°(Ilo) be any function. Then we have 

If-D(,)P-(wO.)(x)dxI = IjP0(x)(wV,,)(x)dxj 

:5	, P4cs J (x) dx 

IIP4)IIc(s) Cek (Hn_ k (K) +e). 
Therefore we get lim.o f 4)(x) Po/')(x) dx = 0 for each 4) E C°°(c10). 

Step 3. Let S be any positive real number. For a given function f E C( 0) there 
exists a function 4) € C°(R') with Ill - 4)I1c(s) <5 (S=supp W, € C°(Ilo)). We get 

Jf(x)P(ot,b)(x)dx 

< 11(f (x) - 4)(x))P(cobe)(x)dx + 

:5 Ill -011C(S) C (H_k(K) + E) 
+	

4)(x)P(')(x) dx. 

It follows
1imJf(x)P(w,be)dx <SCHn_k(K). 

This holds for each S > 0. Therefore we get lim e ....0 f f(x)P(')(x) dx = 0 I 

Lemma 11. If  € C'(10 ) and H_ 1 (K) <oo for each compact subset K C A, then

1imJf(x)P(b)(x)dx = 0. 

Proof. For suitable partial differential operators Q0 (x, D) with ord Qa	1 we have
P(x,D) = EIl<k_lQa( x , 1) )1. Then 

J f(x)P)(x) dx = >1 J Daf(x) Q(x, D)(')(x) dx. 
Ial<k-1 

Here D"f € C(c10). Lemma 10 yields the assertion I
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Lemma 12. Let Q0 g R' be an open set and A a relatively closed subset of Il. Suppose 
H_ 1 (K) < oo for each compact subset K c A. Further let 

E(z,D) =	 N, P,	a(x)D°, a E C°°(110) 
IaI:5s.+t, 

be a system of partial differential operators. Here s, and t, are integers with t 1 ^! t2 > 
> t ^! 1 and 0 = 3i ^! S2 ^ ... ^! 3 N . If tz E CT_1 (110 ) = CtI(1lo) x C 1 (1lo) x 
x C tN- I (1Z) satisfies P  = Q in fZo\A, then u satisfies f u = even in the whole set 
(Then the set A is said to be a removable singularity.) 

Proof. We have to show 

= 0 (,	e (Dl(1Z))N) for each = (v',. . . ,'PN) E (C(l0))". 

Let be such a vector function. If supp fl A = 0, then the assertion is clear. Suppose 
suppfl A =: K j4 0. Then with the t/ of Lemma 9, we have 

( T Pu) = ((tT,be) T ,PU) + (((1 - T,be))T,PU). 

Since	1 in a neighbourhood of K we have supp ((1 -	) fl A = 0. Therefore
- b))T,PU) = 0 and

NN 
( T Pu) = (()T,PU) = >>(be,Ps.,uj) 

i1	1 
NN 

=
i=I 1=1 

=
1=1 j=1 

Here u, E C'3(fl) and P1, is a differential operator with ord P1, t,. Lemma 11 implies 
lim.—o(Pij 	= 0. This proves the assertion I 

Lemma 12 is a generalization of [9 Theorem 4.31(b)] for systems. 

Lemma 13. Let DO C R' be a domain and K C 110 a compact set with the following 
properties: 

1. There is an open ball B, which can be divided , by K into two non-empty disjoint 
regions. 

2. H_1(KflB).<oo. 
Further let £(x, D) = (P,(x, D)) 1, , 1 N, P13 (x, D) = a7(x)D0, be elliptic in 
the sense of Douglis-Nirenberg. Suppose that the coefficients a' a' are analytic functions. 
Then the Cauchy problem 

Pu =Q in 1l,	D°u3I = 0 for I C11	t, - 1 (j = 1,. . . , N)	(4) 

has only the solution	in f0.
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Proof. Let u be any solution of the Cauchy problem (4). In particular P u = in B and 
Do uj l KnB = 0 for Jal <ti — i, j = 1,.. .,N. The both open sets we get, if one divides B 
by K, are denoted by w 1 and w2 . We define a new vector function v on B by 

fu in c)i 
! l Q in B\w=w2U(KflB) 

Obviously,	in w1 Uw2 = B\K. DO UJ I KnB = 0 for lal :5 i—i (j = 1,...,N)
implies v E CT— 1(B). Considering H,,-, (K fl B) <oo Lemma 12 yields that K fl B is a 
removable singularity. Hence, we have P v = 0 in B. Since v	on the open set W2 and 
since V is analytic on B we get	on B. Therefore i&	on the open set w 1 . Since it
is analytic on the domain flo finally we have u 0 on flo I 

3.8 The proofs of the approximation theorems are based on the following consequence of 
the Hahn-Banach theorem. 

Lemma 14. Let X be a normed space and let X0 , X1 be linear subsets of X with X0 C X1. 
If every F E X' with (fo, F) = 0 for all ía E X0 also satisfies the equation (Ii, F) = 0 for 
all Ii E X1 , then Xo D Xi. 

4. Proof of the theorems 
We will represent the proof of Theorem i in detail. To prove the other theorems we have 
to modify this proof only slightly. 

4.1 Proof of Theorem 1. The proof will be given in 14 steps. 
Step 1. First we show that the approximability of an element J E fl Dh( 1') implies 

QT, cy) = 0 for all € N. Let ()r

c,QD0j(x_yk), 
k1 j l 1c1-1 

be a sequence with

1irnllfh-k,it,llnh(r)	0.	 (5) 

We have Yj In E (C00 (1))'' and Ly = Q in 1 for all 1. Since Jv = in fl and bv = on 
I' for R € N we get from Green's formula 

0 == ( ( by,)T,cv) 

for all I and all k E N. From this, relation (5) and inclusion c i,j E (fl	Dh(fl)' one
gets (JT,Q) = 0. 

Step 2. In the following we are concerned with the reverse inclusion. Let F= 
(F1 ,... ,Fm)T E fl 1 (Dh(r))' be any continuous and linear functional with 

- Ilk)), Fh(z)) = (((D 1 (x - Yk)))T,L(X)) = 0	(6)
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fork E iN, jal :5 i — i, and j = 1,...,N. This yields 

-	 =	 (7) 

for jal < t - 1 and k E IN. We will show that for this F the equation T, = 0 holds for 
those f E fl.1 Dh( I' ) which satisfy the condition (fT,*) = 0 for all ! E N. By means 
of Lemma 14 one can get then the approximability of these f by finite linear combinations 
of k(D c (x - ilk)) (k E IN, lal	t - 1, j = 1...... 

Step 3. Let k0 ^ Li be so large that Ck0_Th(F) C D,(I') for h = 1,...,m and that 
these imbeddings are continuous. This implies 

in

cfl(ch(r))1 = (C(F))' 

and the continuity of this imbedding. Here R = (r1 ,... ,rm), and the r, are such negative 
integers that ord b4 rh + t, for j = 1,. . . , N. We can consider E as an element of 
(Cko_R(r))l. Lemma 4 implies the inclusion 

k e L('ko+T(R), cko_R(r)). 

Hence, the dual operator Y belongs to L((Ck0_R(F))l,(ko+T (R"))') and k'k to 
(ko+T(R,,))'. Furthermore we get (, b'F) = ((b)T,F) =0 for each 5P e (C(RT\F))N. 
This implies supp YF c I'. 

Step 4. We define d0 := inf{lx - i x € r, y E K} and d1 := sup{lx - l x E 
r, y € K}. We suppose that the subsequence (y)r of (yk)?° consists of those points ilk, 
for which the inequalities 

do< inf { lz—ykl : x€F}	and	sup{ix — ykl : x€['}<2di 

hold. Obviously, each point of K is again an accumulation point of this subsequence. Let 
o € C°(R") be an odd function with 

1 for	do < lxi <4d1 and 70(x) = 0 for IxI <d0. 

We have 110E, E C°(R") (i,j = 1,..., N) and t 0. (x - y) = (x - 4) for each k E iN 
and for each x from a neighbourhood of I'. This implies 

- y )) = ((D°)(x - y)) 
for each x € 1', k € 1W and for each a. From (7) we obtain 

	

((b(Dt(,,oE)(x - y)))T,F(x)) = ((D(jo)(x - y ) )T , ('E)(x)) =	(8)

for kEJN and for each awith la l< t - i. 

	

Step 5. Since Y € (ko+T(R"))' has a compact support the convolution	* (b'F) 
exists. The imbedding W41+T(Rt) C Co ko+ (R") is continuous for p> n. Consequently, 
we have 

(7ko+T(R))'C W0_l_T(RT) (p' =	and b'FE W70_l._T(R?% 
p-i
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Because k is elliptic inthe sense of Petrovskij, i.e. T = (tI,...,tN) and S = (O,...,O),' 
L is elliptic in the sense of Douglis-Nirenberg with T = (t, t,. . , t) and S = (t —t;t 2 - 
t,. . . = T—t. Since —k0 -1—T = -k0+i-S we can writeb'F € W70_l_t_s (RTh). 
Applying Lemma 7 we get 

	

* (k'E) € W	_t+T(jr) = 1W_ko_l(R))N 
1.	p'joc 

From j( * ( .'F)) = YE and supp^'f g F we get j( * ('f)) = 0 in R't \[' and 
consequently	* (YE) € (C0(Rh1\F))l'. Since L is an elliptic differential operator with 
constant coefficients E. * ('E) is even analytic in R"\F.	- 

Step 6. We have 

E. * ('F) = ((1 - '7o) • ) *(b'F) + (oi) *(b'F). 

Since
(o•) * (k'E) € (C°(R))"	and	1. *(b'F) € (C00(Rn\F))N 

we get ((1 -70W) * WE) € (Coo (Rn \r))N . We have 

supp ((1 - '7o)i•) * (YE) c supp WE) + supp ((1 - 71o)) 
c F+supp(1 —'10) 
c {x+ z: x € F, Izi or Izi	4d1}. 

Hence for each y satifying d0 < inf{Ix - : x € F} < sup{x - : x E r j < 2di one 
gets the assertion (((1 - 71o)) * ('E))(y )	and therefore 

- i70 )E).* (b'F))(y) = 0 for each a and k € IV. 

Hence we have Da (E * (b'F))(y) = D°(('1oE) * (b'F))(y) for each a and k € III. 
Step 7. Considering i70 E1 € C°(R'),	(x) = ((_z))T, '1o(x) = 7o( —x ), and (8) 

we have, for lal<t-1,	 -. 

*

	

	 * (b'F))(y) 

((D°( 0 )) * (b'F))(y) 

	

=	 - x), (YE) (z)) 

-	
=	 1)b0I((D0(,7o)(x - y))T,(k'E)(r)) = . 

Consequently, D°(	* ('E))(y) = for all k and for each a with I aI< t - 1. 
Because E * (1/F) is infinitely differentiable in a neighbourhood of K and because the 

sequence (y° is dense in K it follows 

D°(*('))IK 

for each a with II < t - 1. Furthermore L(E * (i/F)) = 0 holds in the connected set 
R'\. Lemma 13 yields that the Cauchy problem 

J=Q in	 D°IK=.a for Ia I <t - l
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has only the solution v = 0. (j is elliptic in the sense of Douglis-Nirenberg with V, = 
•	= t and s! =ti - i.) Consequently, we get	* (k')	on	Thus, we have 

* (YE) E ( W '(R'))' ' and supp (K7* ('E)) ç i. 

One can easily conclude E *  ('E) E ((Co ko+1 (R))N ) l . From this and from supp(	*
(b'F)) C 11 we obtain

(LT, 	* (b'F))	0	 (9) 

for all f E (ko+1 (R-))N with LIR"\1 E (Ôko+1 (J.?n\))N and fin = 

Step 8. In the following J±N means that	f1 f,vdx 0 for all .1L.=.(v1,. 
E N. Now let E (C°(R'\I'))'' be any vector function with	 Then 

E (C())' and	 E (C(R\))'. We consider the boundary value 
problem

in Q,	bu=Q on F. 

Because of the requirement jo l IN* this problem has a solution E (C())N (s. Lemma 
2). In particular we have

(10) 
We extend u 1 to a vector function ü1 E C04T(Rt) and define	Ji
E (C0+l(Rt))N. It is bfi, E C4+1_R(I7). Equation (10) yields

(11) 

Furthermore	is an extension of p , . For this reason	=Q holds for j = 0,.. . , ko +1 
(D,, the exterior normal derivative on ). From Lemma 3 one gets	E (ôko+1 (R\L'))N,

which implies IR"\i E ( vko+1 (R\i))N. 

We split up=(- 1 ) + 1 . Obviously, (—) E 
(+i(RT\) and (5p — 	=Q. From (9) we follow ((_1)T,*(FE)) =
0. Considering (11) we get 

( T,E * (b'F)) = ( ' ,E * (b'F)) = ((Lü 1 )T ,E * 
= (ü ' ,L(E * (b'F))) = (u ' ( 1/F)) = ((bü i )T ,F) = 0. 

Thus we have ( T , E8 * (k'E)) = 0 for those E (C(R"\F)' which have the property 
eIn IN. From this one can conclude (cf. [6: p.296]) (tT , E- * (YE)) = 0 for all f € 
(ko+i ( Rn \r) )N with 1 In1N.	 0 

Step 9. We define the operator	by the equation 

&o+1= {ir,Dnjr,...,D0+lir} 

for y E (&-+ 1 (R))' (Dn the exterior normal derivative). Using the fact 

('ko+1 (R'\I'))'' = { E (4+1 (R))N:	=
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(Lemma 3) we have
(f T X * ('E)) = 0	 (12) 

for all f € ( C4 + 1 (R-))" with = and LinLN. 
Step 10. Now we want to iiivestigate the behaviour of the distribution * ( 'E) on 

an arbitrary vector function from (ko+i (R)) N . We define the operator A= {R+1 P} 
for J E (k0+i (11n ))' by 

(	 •%	/k0+i 
Af :	 (Linv-).!J € ( fl (c''(r) ) " ) x N =: X 

k=1	 \,=o 

Here {( 1 ) ,. . . , v() } is a basis in N and i ( fin, v(k)) = EN fn 
j ' v dx for all elements 

V(k) = (v,. 	v) ' . Then (12) means	* (.'E) E (Ker A)', 

(KerA)' := {K€ ((kO+I(Rt))N)1: QT, H) =OVJ€ (7ko+1(Rfl))N,AJ}. 

X is a Banach space with respect to the norm 
k0 +1	 ,•	 - 

iI{,}Iix =	11Yj 	+	1dk1
k=1 

/	 k0+1	 I' 
(:= {g.}°' € H (C10+_3(r))1, v= > dk y) E N 

j=O	 k=1 

Obviously, we have A € 
Now we show Im A = X. Let = {.}°' € H '(C1_3(r))N be any element and 

= >I	d, i any vector function from N. We look for a vector function y E (Cko+1 
( Rn ) ) N with	= and P = v. Lemma 51(u) implies the existence of a vector
function E (c°'(R"))" with = . Let {,(3)};' c (C())N be a biorthogonal 
system to {v(k)}, i.e., 

(j,(i)v(k)) =	J')v)dx = {
 	%-	. . 

 (k,j = 
t1 n 

We set

	

£:=+>J(d	
0 

Since	= we have	=	= . Furthermore, (In,) = dk implies 
Py	 . Therefore we have shown ImA = X. 

Step 11. Since ImA is closed the Closed Range Theorem implies ImA' = (KerA)'. 
Since Im A = X we get, using a corollary of the Open Mapping Theorem and the 
Closed Range Theorem (see [16: p.147]), (A')' E L(Im A', X'). .seq	(A')' € 
L((Ker A)', X'). Because of	* (YE) € ( Ker A)' the equation 

A'A = * (VF)



68	U. Hamann 

has a unique solution

(k0+1
A = {A1,A2 } E  H (C1_J(F))N) x (N)'. 

/ 
Therefore we have	 S 

QT, * (YE)) = QT, A'A) 
= ((Af)T,A) 

= ((4+1DT ,A1) + (Pf,Lk2) 
k0+1 
> ((Dfr),) + ((1In,')i,A2) 

	

j=O	 k=1 

and then

	

• (IT E• * (YE)) =	( (D'fIr)T ,A3 ) + > Jf vdx	 (13) 
j=O	 i=1 

for all elements f E (ko+1 (R1))N with A 1	{A,}°' E fll((Ck+1_3(r))N)l and all 
v=1(v(k),j)v(k)N.	 S 

Step 12. Now let u € C0k0+T(Rt) be any vector function. Then i U € (Cok+l(Rt))N. 
We set J j u into (13). Then one gets 

((Lu)T,E * (YE)) =	( (D'Ir)T,Aj)+ EJ(i&)vdx. 
j0	 : 

From Green's formula (Lemma 1) we obtain (Lv = 0, bv = 0!)	 S 

= - ( 4 ti) = — MM) 
h=1 •	 .h1 

Since
((Lu)TE * (YT)) = ( uT,L(E * ('E))) = (uT b'E) = ((bu)T,E) 

we have
k0+1 

((bu)T E) =	((DJjjIr)T ,Aj ) - ((bu)T ,ci)	 (14)
i=o 

for all u E C04+T(R1) with a certain vector function V from N. 
Step 13. Now we show A, = 0 for j = 0,...,k0 + I. From Lemma 6 we get the 

normality of {,. .. ,,LIr,DnLIr,. ., D°j-}. Let jo be any integer with 0 j 
k0 + 1 and € (Ck01o(r))' any vector fudion. Lemma 5/(ii) implies the existence 
of a vector function u E CO+l+T(RTt) with 

DLuj'0 

and
IyoLuIr_



Approximation by Fundamental Solution	69 

If we.apply (14) to this function u, we get ( T ,Ajo ) = 0,' which implies A, 0 =. ' Sincë this 
holds for all jo	0,...,k0+1, weobtain 

((bu)T E) =	 cv)	 (15) 

for all E Cok0+1+T(RT). 
Step 14. Let f E fl', D,,(I') be any element with 

C. _V) = 0	 (16) 

for all v E N. The condition (a2) for the spaces Dh(F) (h = 1,...,m) implies the 
existence of a sequence ()r c fl C°°(I'.) with lim.00 l - 11 '1 Dh(r) = 0. Us- 
ing Lemma 51(u) we can conclude that for every I there exists a vector function 1' E C04 +I+T(Rn) with bu (' ) = , . From (15)it follows (( )T EJ = for all I 
and therefore lin T,E) = - lj (()T c. ) Since Land çy are elements of 
(H-1 D(r))' and because of (16) we get finally the desired equation (fT ,E) = 0. 

4.2 Proof of the Theorems 2-6. The proofs of the six theorems differ essentially only 
in the way how to get * () in R"\. This result we obtained in the' 'proof of 
Theorem 1 in Step 7. Furthermore there are modifications with respect to the requirement 
(6) on F. Therefore we only want to describe firstly how to replace the requirement (6) 
and secondly how to get	*(b'F)	in. Rn \?Y in Stp 7 of the proof. 

Proof of Theorem 2. 1. F is a functional with 

- yk)))T,E(x)) = 0  

for kEiN,IcsI:5i,-1,j=1,...,N..2.In Step 7of the proof weget 

* (kT)),lau = 0 

for Jal 1, - 1, j	I,, . , N..(	* (hE))j is the'j-th component of 	* ('L) . ) 'Further-
more we have	* (YE)) = l in U. Since we have required the unique solvability of 
the Dirichlet problem wç get E * (ilL)	in U C	Because	(ilL) is analytic
in the connected open set Rn \il one obtains E. (ilL) Q in R"\IL 

Proof of Theorem 3." 1: F is a functional with'  

T yt)))T,.L(x)) = 0  

for k € iN and j = 1,.:. ,'N. 2.'' One gets  

(E*(b'))(y)= 

for all k. Lemma 8 implies E* (k'L') Q in R"\.  

Proof of Theorem 4. 1. F is a functional with
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fork E LW and j = 1... ,N..2. One gets ( * k'E) q on the open- set U C R"\. The 
analytizity of E* (b'F) implies E * (b'F) Q in R"\?. 

Proof of Theorem 5. 1. F is 'a functional with 

((k( D°E,(x - yi)))T,E(z)) = 0 

for all a. 2. One gets D"(	* (k'E))(yi) = for all a and then	* ( 1/F)	in 

Proof of Theorem 6. 1. F is a functional with 

- yk)))T,E(X)) = 0 

for k E IN, jal	tj - 1, j = 1,...,N. 2. One gets Da(E* (E))1801 = 0 for 
al	1, j = 1,... , N. The suppositions of Theorem 6 yield E* (b'F) 0 in R'\1
and by this also in R"\?. 
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