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Approxirnation by Linear Combin'at'ions x
of Fundamental Solution of Elliptic Systems
of Partial Differential Operators

U. Hamann

Abstract. Let L(D) = (L,-J»(D));‘jﬂ'm'ﬁ be an ellipt:ic system of partial difi'erentia] operators of
order 2m, E a fundamental solution of L and E; the column vectors of E. Let T be the smooth
boundary of a bounded domain @ C R™ and b(z, D) = (bx;(z, D)),.ax ,m a normal system of
B . N

boundary operators on I'. We define byu = 21 Lonjui(u = (uy,.. ,uN)T) Furthermore let
(y%)$° C R™\Q be a sequence of points and Dy(T) (h = 1,...,m) suitable function spaces over

T' (e.g. C*-spaces or Sobolev spaces). It is investigated, under which conditions on the sequence
(yx)$° the set

span{ (b D°E(z ~ wh)lsers -+, bn D" Ej(2 — Yi)leer) : K€ IV; [al 20; 5= 1,...,N}
is dense in [[7, Da(T). ‘
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0. int'rodu’ctioh

Let L(D) = (Li;j(D))ij=1,..~n be a Petrovskij-elliptic system of differential operators of
order 2m with constant coeﬂicxents and E = (Ej)ij=1..N & fundamental solution of L.

By E; = (Epjo.., EN;)T (7 = 1,...,N) we denote the column vectors of E. Let T be
the C°°-smooth boundary of a bounded domain  C R™ with a connected complement
R™\Q. Furthermore let b(z, D) = (by;(z, D))r..: ,,,,, - be such a normal system of boundary
operators on-I" that L and b define an elhptlc boundary value problem with respect to Q.

The operators b, (k = 1,...,m) are defined by byu = }: L njus (u = (uy, .., un)T). If
(yx)®° € R*\Q is a given sequence of pomts, let us consnder finite linear comblnatlons of
vector functions of the form o
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D°E;(z —yx) with1<k<oo,j=1,...,N, and 0 < |a| < oo.
Let

{ N
w(2) =323 3 criaD Ej(z ~ yi)

k=1j=1|a|<r

be such a linear combination. A vector function

f=(fiy-. s fm)T with f€C™T) (x>0, h=1,...,m)

is given on I'. The problem consists in approximating the function f by the m-tupel
(brittgry - oy bntay +)T in the space [T, C**(I'). We will see that such an approximation is
possible under certain conditions. These conditions essentially refer to the position of the
points yi. For mstance the following assertion holds:

We suppose that the sequence of points (y;)° C R™\Q is dense on a smooth (n - l)
dimensional surface K C R*\Q. Then for each f = (f1,...,fm)T (fn € C**(T), h
l,...,m) and for all € > 0 there ezists a natural number | and coefficients cxjo (1 S
k<l, |aj<t—1,. j=1,...,N) with

m

S llbsws — fallory < €

h=1
for
uz) := ZZ Z Ckja D E; (x_yk)

k=1;j=1|a|<t—1

if and only if the adjoint boundary value problem
L'v=0 in Q, Fv=0 on T

has only the solution v = Q. Here t is the mazimal order of the L;;. We note that the
surface K can be arbitrarily small, '

This assertion is contained in Theorem 1 of the present paper. Other situations of
the sequence of points (yg)i° will be investigated in the Theorems 2 - 6. We will see
that the construction of the vector function u; depends on the position of the points
Y. Furthermore it will be shown that the functlons f;. can be elements of more general
function spaces.

There exists a close relation between the present investigations and the a.pprox1matlon
theorems of Beckert {1], and the developments of Beyer (2], Gopfert [5], Hamann [6], and
Wildenhain [15]. In these papers functions, given on a surface I', are approximated by
solutions of boundary value problems of scalar elliptic differential operators with respect to
a domain which involves I'. This problem have been studied for Petrovskij-elliptic systems
by Rojtberg and Sheftel [13]. They consider the case that b, are Dirichlet boundary
operators, and they need the supposition that the homogeneous Dirichlet problem for the
adjoint system has at most one solution.
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Firstly Schulze and Wildenhain [14] got some results about the approximation of
functions on I' by linear combinations of fundamental solutions. The Lamé equations
were investigated by Beyer {3}, Kupradze [10], Freeden and Reuter [4], and Hamann [8]
with respect to the approximation problem considered in the present paper. In [4] and [10)
the theoretical results were applied to numerical constructions. Here the approximation
was considered in the norm of (L;(I')), and Beyer could prove in (3] that also each vector
function from (W}(I'))® with arbitrary integer s > 0 can be approximated in the norm of
(W3(T'))%. In [8] it was shown that the approximation in the case of the Lamé equations
is possible in more general function spaces. In the present paper we generalize the results
of (8] to systems which are elliptic in the sense of Petrovskij and to arbitrary normal
boundary operators. Similar results were obtained by 1. and Y.A. Rojtberg {11].

1. Definitions and notations

1.1 Let )
L(D) = (Li(D))ij=t,..v,  Lis(D)= ¥ D"
la|<t;;
(a = (01, Qn) Dy = ’% D® = D‘l’l Ce D;“n)

be a matrix of partial differential operators with constant coefficients. The operator L is
said to be elliptic in the sense of Douglis-Nirenbery, if there exist integers s;,...,sny and
ti,...,tn such that

L.'j(D) =0fors;+t; <0 and ¢; <s;+ tijfors;+¢; >0
while the characteristic polynomial

1) = det(LY(E))ijmrv £
for real { = (&1,...,6n) # 0. Here

0 ey — EIal:uH' a:;j §° for si+t;20"
L"(-{)_{ 0 for 8.’+t,’<0

and =€ .. Ea..

If§ the operator is elliptic in the sense of Douglis- Nlrenberg, then without loss of gener-
ality we may suppose that the numbers s; and ¢; are such that max{s;: 1 <1< N} =0.
This follows from the fact that s;+¢t; = (s; — k)+(t,<+k). Then min{t; : 1<j< N} >0
and t; is the maximal order of differentiation of the function u; in L(D)u. By changing
the enumeration of the functions and equations in L(D)u we may always arrange that

t_t1>t2 >tN>Oa.nd0—81>87> >3~

An operator elliptic in the sense of Douglis-Nirenberg is said t.o be elliptic in the sense
of Petrovskijif s; = s3=--- =3y =0. Let ord L := ord (D) = £, s; + t; be the order
of L.

1.2 The operator

L‘(D)i ( (D))t.) =1,..N &= (L ( ))'J =1,..N L.‘,(D) = Z (—l)""af,j D~

lal<ti;
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is- the formally adjoxnt of L(D) in the sense of distribution theory. It is defined by

(L) = >:2/<L.,u,v.dx—zz/u,u ) de = (a7 L3)

=1 J—IR.. ) 1=1 l—lR,.

for all u,v '(C”(R”))N "It is clear that if the operator L is elliptic in the sense of
Doughs-Nlrenberg, then L* is elliptic in the sense of Douglis-Nirenberg, too. For the for-
mally adjoint system we have t}; = t;; < sj+ti = {+t;, where s} = t;—tand t] = s; +1.

1.3 Now we want to define the condition of Shapiro-Lopatinskij and the ellipticity of
a boundary value problem. Let T’ be the C*-smooth boundary of a bounded domain
§? C R*. We suppose that the order of L is 2m. Let

bz, D) = (bui(z, D)smseom, bas(z, D) = 3 BE@D, B € C=(T)

lal<ma;
be a system of boundary operators on I'. We define

ry = max{(ms; — ¢;): 1 < j7< N},

Elal—'h"" ba (I) D* for ry + t) 2 0
(z D) { b for r,,+t»<0,

and §(z, D) = (b};(=, D)n: - For a fixed point zo € I' we consider the initial value

,,,,,

problem

mzli)g(t) —0 for t>0 )

o,§ v(O) heC™. (2)

Here we have replaced D = (Dl,---,Dn) by (€ bre1s 22) (€ = (61,7 £nmr). Fur-
thermore v = (vy,...,vn)7 is a vector function on R} = {t & R': t > 0}. Let M* be
the set of all solutions v of problem (1),(2) with limy_ 4 v(t) = 0.

One says that the Shapiro-Lopatinskij condition is satisfied in the point zo € T, if the
problem (1),(2) has a unique solution v € M* for every vector £’ € R*~! with ' # Q and
for every h = (hy,...,hn)T € C™.

Furthermore the boundary value problem defined by L and b is said to be elliptic in
), if the following two properties are fulfilled:

1. L is elliptic in the sense of Douglis-Nirenberg.

2. In every boundary point zo € I' the condition of Shapiro-Lopatinskij is satisfied.

1.4 Now we want to define normal boundary conditions and the Green formula. Let
t,.. tN be integers witht =1t 28, > -ty 20. Weset T = (,...,t§) and
IT| = £, t;. We denote by N, (s = 1,...,t) the number of those values of j for which
t; >3 Itis easy to see that T, N, = )::J:lt,-: |T| and N > Ny > --- > N;. We put
a.lso N, =N _,1(s=1,...,t) and note that j < N, if and only if t —¢; < s — 1.
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Definition 1. A Dirichlet matriz on I ‘of order T = (t,,.. ,tN) is a matrix with |T|
rows, which may be reduced by permutmon of rows to the form

B! :
_B_=§($,D)= ) §’=( (z D))k:l ..... N} (8=1,...,t)
B! el
where . ( .
s _ El“ls'_l‘(“‘ ) B;’o Z)Da for ] = 1, ey N‘I
| B"f'(“’D)“{ 0 for j=N,,,...,N
while

det(BY(z,1,))kct,..; # 0

at every point z € I'. Here B{#(z,D) = Llal=s-1-(e-t;) B () D* and 1, is the unit nor-
mal to I at z. .

Definition 2. The matrix b(z,D) = (by(z, D))n:l ..... - will said to be T-normal if it
may be supplemented by new rows to a Dirichlet ma.trlx on I' of order T. We shall call it
locally T-normal if for each point zo € T there exists a neighbourhood U(z) in T in which
the matrix §(z, D) may be supplemented by new rows to a Dmchlet ma.tnx of order T:

For the multi-index Q@ =(q1,.-.,qn) (q;‘ integers) we define WQ(Q) W (Q)x".--x
Wi~ (§2) (Wi(R) Sobolev spaces) and C9(f1) = C*(Q2) x - x C(8) for g > 0. For
anlntegerkoweputko+Q—(ko+q1, . ko + qn). o e

The following both lemmas were proved by Rojtberg and Sheftel [12].

Lemma 1. Suppose that the operator L(D) of order 2m is elliptic in the sense of Petro-

vskij (ord Lij(D) <t; (j=1,...,N; sy =---=3sny =0, [T|=2m)). Suppose that

the matriz b(z, D) = (by;(z, D))'.-; ..... - of boundary conditiors is T-normal. Then there

ezlsts a T-normal matriz ¢(z, D) wh:ch completes b(z, D) to a Dirichlet matriz of order
= (t1,...,tn) on T. If (2, D) is fized, then there ezist matrices

jmi,... N

b*(z, D) = (b}(=, D))""".'[,'z and c*(z,D) = (c};(z, D)) rm1,...m

of boundary operators with coefficients from C(T') and with the following properties:

(1) & and c" are locally T'-normal with T' = (t t,...,t).

(ii) There ezist negative integers TAy T TR Th (h = 1,...,m) such that ordby; <
rh + t;, ordc;., Sritt;, ordby; <ri+t, ordch; < rg +t while in each of these
inequalities there is for each h at Ieast one j for which the equality sign holds. If now
rh+t; <0, then b;.,(z D) =0, ifr{+t; <O, then c;.,(z D) = 0, and so forth. In
addttzon r,,—r,.=—r,,—r,,=t+1forh—l ,

(i%i) For allu € CT(Q),v € CT'(N) (T’ = (¢, t t)) the Grecn formula .

3 / (z; L,,u,) wdz+3 (z; b,.,u,) (z c,,,u.)

i=1g \j=1 A=1p \j=1 i=1
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- f: u; (\Zj L;,.v.-) dz+3 / (gc,,,uj) (Z b,,,v,)

i=1 =1 h=1p
or shorter ~ o
(Lw)",v) + D (bau, cio) = ("), L'v) + 3 (cau, bip)
h=1 A=1

holds. Here b u = Z:f’:l baju;, the meaning of civ, cpu, brv is analogous.

If the system L is elliptic in the sense of Petrovskij, if b is'a T-normal system, and
if the boundary value problem defined by L and b is elliptic, then the boundary value
problem defined by L* and b° is elliptic as well (see [12: Theorem 2]). But we note that
the formally adjoint system L® is in general elliptic only in the sense of Douglis-Nirenberg.

Let

N® = {y eEC*@)¥: L'v=0 inQ, bv=0 on 1‘}

be the finite-dimensional kernel of the operator {L*,5"}.

Lemma 2. Suppose that the system L is elliptic in the sense of Petrovskij, the boundary
conditions b are T-normal, and that L and b define an elliptic boundary value problem.’
Then the problem Lu = f in Q, bu = 0 on T with f € (C®(Q))V has a solution if
and only if (fT v) := YN, fo fividz =0 for all v = (vy,...,un)T € N*. The solution u
bclongs to (C(Q)V.

1.5 Let £ = (E;;)i j=1,. .~ be a fundamental solution of L, i.e.,

N A .
~J 6 for k=3 . . . : '
‘§=1 Ly Ey; = { 0 for k#j (k,j =1,...,N; §the Dirac measure).

We denote by E; = (Eyj,...,En;)T (j =1,..., N) the columas of the fundamental solu-
tion £. The matrix funct.lon E* defined by E*(z) = (E(—z))T is a fundamental solution
of L*.

1.8 If X is a normed space we denote by X' its dual space and by (f, ) the pairing
between an element f of X and F'of X'.

For normed spaces X, Y let L(X,Y) be the set of all continuous and linear operators
from X into Y. For B € L(X,Y) let B' € L(Y’, X') be the dual operator defined by the
equation (Bf, F) = (f, B'F) for each f € X and for each F € X'. Furthermore we denote
by (f, F) also the pairing between an element f of C°(R") and a distribution F of D'( R™).

1.7 Let X,,...,Xn be normed spaces and Xj,..., X their dual spaces. For g =
(915---,98)T, 95 € Xj(j = 1,...,N), and f = (f1,-.., /8T, f; € X;(G = 1,...,N)
we define

N
A9 =3 (fivgi)-

j=1
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For a matrix & = (y;;) imit s Pij € X (E=1,...,q;5=1,...,N) let
mto) )

N (15, 9;)
(2’2) _ Z_; (‘Ph;gz)
(‘qu’gi)

For g; € D'(R*) (j = 1,...,N) and ¢;; € CP(R*) (i=1,...,¢;j = 1,..., N) we define
the convolution V

. (15 * 9;)(y) . (p15(y — 2),95())
(@ * 2)(y — z—:l (2; *SQJ)(y) = (B(y - z),g_(z)) — ; (‘Pl)(y ).9}(3)).
(e * 9)(¥) ’ (paily - ~ 2),95(2))

If the g; (j = 1,. N) are distributions with compact supports and ¢;; € D’(R") ‘
(i=1,. ,q,]—l ., N) we define

P15 * g5
Bg= ﬁ’: i * 9j
i= :
Pei * 95
If & = E is the fundamental solution of L we get
LE+g =g
This follows from the equation ‘
Enx gy Lij(Es » 1) bxq 9
L En.‘ o |_ ﬁ’: sz(E,:1 *q1) - 0 _ 0
EN1.* a1 = LN,'(E;, *q1) 0 0

and similar considerations for gs,. .., gn-

1.8 The spaces of functions on I' (the smooth boundary of a domain Q C R") we are
going to approximate are Banach spaces with special properties. Now we formulate some
conditions for a Banach space D(T').

(al) There exists an integer so > 0 so that C*(T') is continuously imbedded in D(I).

(a2) It holds C=(T’) = D(T") (closure in D(T)).

(a3) If o € C=(T), then | fy b0 da] < Cllellogry (¢ € C=(T); C = C(yo) a constant).
Let Dy(T),..., Dm(I’) be Banach spaces with properties (al), (a2) and (a3). Because

of property (a3) there exists for every ¥ € C*(T') and for every A (1 < A < m) a uniquely

(because of the property (a2)) determined functional Fj g, € (Dx(T")) with

(o Frw) = [pthado
r
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for all ¢ € C(T). v
If now v € (C“(ﬁ))" is an arblt.rary, but fixed vector function, so we can define by

(T,c'v) = Z /tp,. cudo forall o€ (C()Y

h=1 r

(v = zﬁv:, €ijVis  Ch; from Green’s formula) an element from ([T5-, Da(T)), which we
denote also by c"v: Therefore we have c*v € ([Tnx, Da(D))' for all v € (C®(Q)V.

2. Results

Firstly we want to summarize the suppositions.

1. Let T be the C*-smooth boundary of a bounded doma.m Q cCR w1th a connected
complement R™\2. .

2. Let L(D) = (Lij(D))ij=1,.N be a Petrovsku-elhptlc operator of order 2m th,h
ordLi; £t; (3,5 =1,...,N; t:=1t >t > .-+ > ty) and with constant coefficients.
Furthermore let &z, D) = (by;(z, D));. Lo be a T-normal system (T = (t4,...,tyn)) of

boundary operators on I' with ord b;., 5 s +t (R=(r1,---yTm), 7th < —1) and with
C-coefficients. We assume that the boundary problem deﬁned by L and § is elliptic.
Let t = t; be the maximal order of the L;;.

3. We denote by £ = (E;;); j=1,..~ the fundamental solution of L. The columns of £
are denoted by E;.

4. The Ba.nach spaces DI(F), Dp(T) have the properties (al) and (a2). If N* #
{0}, we additionally require the property (a3).

Some examples for such spaces are the spaces C‘(F)'for arbitrary integers s > 0,
Sobolev-Slobodeckij spaces W, (T) for arbitrary real numbers 0 < 3 < 00, 1 < p < o0,
and the dual spaces (W(I'))’ of W(T) for 0-< s < 00, 1 < p < co. The Holder spaces
C**(I') (0 <s<oo integer, 0 < a < 1) do not satisfy the condition (a2).’

Theorem 1. Let K C R*\Q be a C'-smooth (n — 1)-dimensional compact surface. We

suppose that the sequence (y:) C R™\Q is dénse on K. Then for a vector functwn
(f;.)"' € ITi=; Da(T') there ezist numbers c() 1<l<oo1<k<tlj=
SN lef<t-1) such that A .

Jim 371 fs — bawillpary = 0
A=1

holds for
| w(z) = DD ci‘za DE (-
e o k=1m |a|<t -1 :
if and only if the condition
(fTicy) =0 (3)
is satisfied for all y € N*. o
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Remarks. 1. The requirement of C'-smoothness of the compact set K can be
weakened (cf. Lemma 13 and (7: Satz 1]). The essential property of K is ouly the
(n - 1) -dimensionality. 2. The points yx can lie on K, but this is not necessary. 3. If
R™\Q consists of more than one connected component, then the assertion of Theorem
1 is also valid, if in each connected component lies such a compact set K. Then the
sequence (y:){° must be dense in the union of these K. 4. Since N* is finite-dimensional
the supposition (3) contains only a finite number of conditions, in the case N* = {0} even
no condition. 5. If the functions f are integrable, then (fT,c"v) = T, fr fa cludo.
6. The condition (3) is also the solvability condition of the boundary value problem
Lu=0 in Q, byu=f on T,ifthe f, aresufficiently often differentiable. 7. Indeed,
the boundary operators b* and ¢* depend on the special choice of the system ¢ in Lemma
1, but the.condition (3) is independent of the choice of the system c (see 6: p. 300])

Theorem 2. Let T = (f,,...,in) be a multi-indez with 0 < {; < t and }:;V___, tj = m.
Further let QU be the boundary of a bounded open set U C U C R™\Q, for which the
Dirichlet problem

L'v=0 in U, D=0 on dU for |a|<i;j—1 (j=1,...,m)

has in (C(U))N only the trivial solution. (Ifi; =0, then D®v; = 0 on 8U for la) < ;-1
is no condition on v;.) If the sequence (yx)° C R*\Q is dense on U, then the assertion
of Theorem 1 holds with

I N

(ﬂ—zz:z:ﬂamEu—m

k=1j=1|a|<E;-1
As distinct from Theorem 1 here we need less derivatives of E;.

Theorem 3. Let yo = (yo, l,yo 2.+, Yon) € R"\ﬁ be any po:ﬁt Furthermore for ¢ =
I, ..,n let (I(l) )R, CRYz ;6 Yo,i for each l, be a real sequence with yo; as accumulation

pomt such that (z\,.. z("')) € R™\Q holds for each l,, .yIn € IN. The sequence
(yx)° € R*\QY runs through every point of - -

M= {(zgl'),...,xs,"‘)) : I,,....,I,. € W}
Then the assertion of Theorem I holds with
A I N 0
z) =3 cij Ei(z — ).
k=1 j=1

Theorem 4. If the sequence of points (yi){° C R"\ﬁ is dense in an open set U C R"\ﬁ:
then the assertion of Theorem 1 holds with

m@;zzﬂﬁzwn

k=1 j5=1
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The next theorem deals with the approximation by multipole potentials.

Theorem 5. Let y; € R*\Q be any point. Then the assertion of Theorem 1 holds with

u(z)= Y Zc"’ D°E;(z - ).

lal<t =1

In the next theorem the sequence (yi)$° lies dense on the boundary of a bounded
domain §; D 0. Then we need as supposition the unique solva.blhty ofa Dmchlet problem
with respect to the exterior domain R"\{;.

Theorem 6. Let Q>o0bea bounded domain with o0, = 90,;. We suppose that L* has
such a fundamental solution E* that the Dirichlet problem

L'v=0 in R\, D®vjlan, =0 for |a|<i;-1(=1,...,m)

has in the set of functions {u = E*+g : g € (D'(R"))¥, suppg C F} only the trivial
solution. Here T = (t1y...,in) is a multi-indez with 0 < {; < t and Z <1t; =m. If the
sequence of pomts (y:)$°.C R*\Q is dense on 09, then the assertion of Theomm 1 holds

with
J(z)—zz: > ) DPE(z — ).

k=1j=1 |a|<i;-1

Here E is the fundamental solution of L with E(z) = (E*(—z))T.

3. Preparation for the proof
3.1 For an open set o C R™ and 0 < 3 < oo we define
Co"(ﬂo) = Cg()  (closure in the norm of C*(£))

. The elements of ((:‘- (%)) are distributions of order s on 4. Obviously, for f €Ce ()
and |a| < s we have D? f|sq, = 0. Denoting by D, the derivative on the smooth boundary
I' = 39 in the direction of the exterior normal vector with respect to the domain Q, we
can prove the following lemma (see [6]).

Lemma 3. It holds
Go(RP\T) = {f €Cr(BY): Difle=0 for j=0,. 3} .
3.2 For the proof of the theorems we need the following lemmas.

Lemma 4. Suppose that B(z, D) is a Dirichlet matriz on T of order T = (ty,...,tN),
t=12.-- 2ty >0 (see Definition 1), and ko > 0 an integer. Then o

() B € L(Cr+7(RY), T1 (CorH=+ (D))
(i) B is a mapping from C&*T(R™) onto [jl(C"”"‘+l (D))Ne.
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Here Co‘*o+T(R") =Chott (") x...x Chottn (R™). Furthermore N is the number of
those values of j for which t — {; < s — 1. The assertion (ii) means that for each tuple
@ = (¢h--s8')s @ = (..., 00)T € (CRHHY ()M (s = .,t), there exists
always a vector function u € Cy +T(R") with Bu = ¢, i.e. B'u= 2 ,- ,,Q'g = ¢!

The following lemma is a consequence of Lemma 4.

Lemma 5. Let Q(z, D) = (Qns(2, D)) rt.s (Qni(2, D) = Tajgrasy; @5’ (2) D*, Q07 €
C>=(T)) be T-normal. Here R = (ry,.. r,,), rh < —=1. Then

(i) Q € L(C*+T(R,),C*~R(I))

(i) Q is a mapping from CE&*T(R™) onto C*~R(T), where ko > 0 is an integer.

Now let L|r be an elliptic operator in the sense of Petrovskij as a boundary operator
and DEL|r = (Df,L;j|r).~,,~=1'___ N, where D, is the exterior normal derivative on I'. Further-
more let b= (b;,...,5.)T = (bhj)h:: .~ be a T-normal system of boundary operators on
I'. Then there holds ”

Lemma 6. The system {by,...,bn,L|r, DuLlr,...,D5L|r} is a T-normal system of ma-
trices of boundary operatorson T with T =T +k+1=(ty +k+1,.. Hintk +1).

To prove this lemma we have to use the ellipticity of L in a suitable way.

3.3 If g C R" is an open set, we denote by W2({) (s > 0 integer,.1 < p < o0)
the classical Sobolev spaces. Let w3 () be the closure of C3°(§) in Wy (). It
holds W?(R") =W3(R"). Further let W;*(%) = (W} (Q)) (s 2 0, g = ;&). For
—00 < 8 < o0 and 1 < p < oo we define

o R*) = {f € D'(R") : fla, € W}() for all bounded sets Qo € R"}. .

The following assertion follows from well-known regularity theorems for elliptié operators.

Lemma 7. Let L(D). = (L.',-(D)),;Jﬂ,m,y be elliptic’in the sense of Douglis-Nirenbery
with T = (tl,...,tN) and S = (31,...,8N). Furthermore let E = (Eij)ij=1,...,N be a
fundamental solution of L. If f € W""‘S(R") (-0 < ko < o0) is an element with a

compact support, then E + f € ,B;T(R").’

3.4 A vector function f is analytic on an open set Q C R", if for each point yo € Qo
there exists a neighbourhood such that f(z) can be represented as power series

f(z) = .5? do(z - yo)°

in this neighbourhood. If D [(yo) 0 for each o at any point yo € §do, we obtain f =0
in the connected component of £ which contains yo. Further the following lemma holds.
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Lemma 8. Let f be an analytic vector function in a domain @ C R" and yo
= (Yo,1,- - -, Yon) € Qo any point. Further fori=1,...,n let (zﬁ");’;, Cc Ry, # Yo, for
all 1, be -a real sequence with yo; as accumalation point, such that (z{""), ... ,zth)y € Q
forallly,... 1o € N. If f(z{,...,24") = 0 for ly,...,ln € IV, then f =0 in Q.

3.5 Now we investigate the unique solvability of the Cauchy problem. To do this we are
firstly concerned with a statement about removability of singularities.
For a bounded set A C R™, ¢ > 0 and for real numbers d with 0 < d < n let

Hy(A,e) := inf{z . AC U B2, r; < e}
k= .

k=1
(B :={z € R*: |z — 2| < €}). The limit
' lim Ha(A, €) = Hy(A)

is the d- dlmensmnal Hausdorﬂ' measure of A. The d-dimensional Lebesgue measure co-
incides on compact subsets of a d-dimensional smooth submanifold of R* with caH4(A)
where cq4 is a constant depending only on d.

The following lemma was proved by Harvey and Polking [9: Lemma 3.2].

Lemma 9. Suppose K C R" is compact. Given k < n ande > 0, there is a 1, € C&(R™)
withy.=11ina neighbourhood of K and suppy. C K. = {z € R" d(z K) < e} such
that, for |a| < k, -
/ ID* ()| dz < Ca 1 Hou(K) +¢),
¥l
where C, is independent of €.

Lemma 10. Let o C R" be an open set and A a relatively closed subset of o. Fur-
thermore let P(z,D) = T |4<k 6a(z)D* be any scalar linear differential operator with
coefficients a, € C*(Qo). Suppose k < n and H,_x(K) < oo for each compact subset
K C A. Then .

lig | £() P*(2, D))z de = 0
for each f € C(S) and for each (p.G C& () with supp o N A #0.

Proof. The proof will be given in three steps.
Step 1. We write P*(z, D) = Tj5i<k a5 (2)D°. Then we have

P*(z,D)(p¥e)(z) = 3 ai(2)D"(p¥e)(2)

laj<k ‘

= ay(z @ D*By(z Dpt,b¢ z)
T o) X (5) 0ot Do

= DPy(z a:(z) ) DoPy(z
S rua( oo (ﬂ) o ))

= Y DPu(z)¢P(2)
ik
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where ©?(z) = T pca 1<k a5(2) ( )D""’tp(z) ‘Let.p € C'°°(Qo) be.any functlon Then
we define S = suppyp and K = SN A. We get

|/ 1) P, D) )=)dz| < Wfllows) [ 1P (2, D))oz
< Wlew T [10°6(@) ¥ (@) de
181<k :
< Wlew 3 (1l [ ID”t/)e(z)ldz)
B|<k .
< Cliflos 3 [ 1Dl de
181<k
< Cliflles) 22 Cpe*~ lﬁl(H” k(K)+€)
1BI<k
< Cliflles) (Ha-x(K) +€)

The constant C is independent of €.
Step 2. Now let & € C*(£) be any function. Then we have

/ °<I)P‘(¢¢=>(z)dz| | Pe) vz d
||¢P°||c(5)/|¢¢(r)ldi

< e PRlic(s) C €* (Ha-s(K) + €).
Therefore we get lim,_o [ ®(z) P*(%.)(z) dz = 0 for each & € C=({).
Step 3. Let 6 be any positive real number. For a given function f € C(fp) there
exists a function ® € C(R") with || f — ®|lc(s) < 6 (S=supp ¢, v € C()). We get
[ 1@ P*ppo)(z) dz
< |[U(=) - #@)P(ev)(@) ds| +| [ 8(2) P (vl (2) do

< 1 - Bllees) C (Han(K) +6) + | [o@)P (pve)(2)da|.

IA

It follows
lim '/ F(@)P () da:l < 6C Ha-u(K).
This holds for each § > 0. Therefore we get lim.o [ f(z)P*(p¥)(z)dz =01

Lemma 11. If f € C*-1(Qp) and H,—y(K) < oo for each compact subset K C A, then
lim [ f(2)P*(pike)(=z) dz = 0.

Proof. For suitable partial differential operators Qa(x D) w1th ord Qa < 1 we have
P(z,D) = ¥aj<k-1 Qa(z, D)D*. Then ‘

[1@P @@= T [ D7 1(2) Qile, D)) @) da

fal<k=1
Here D* f € C(£). Lemma 10 yields the assertion B
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Lemima 12. Let Q5 C R™ be an open set and A a relatively closed subset of Q. Suppose
H._(K) < oo for each compact subset K C A. Further let

B(z,D) = (Py(z, D))ij=1,.vn Pj= 3 al(z)D°, af € C*()

lal<si+t;

be a system of partial differential operators. Here s; and t; are integers with t, > 13 >
Z tN 2 1and 0 = 3 2 32 Z Z SN. Ify_ € CT_I(QQ) = Ch—l(no) X C"-I(Qo) X
oo x C'=1(Q) satisfies Pu = Q in Qo\A, then u satisfies Pu = ( even in the whole set
Qo. (Then the set A is said to be a removable singularity.)

Proof. We have to show
(7, Pu) =0 (Pue (D'(Q)") for each ¢ = (1, ., on)T € (CZ(S))".

Let ¢ be such a vector function. If suppyp N A = @, then the assertion is clear. Suppose
suppp N A =: K # 0. Then with the 1, of Lemma 9, we have

(@7, Pu) = ((¢¥e)T, Pu) + ((¢(1 — ¥.))7, Pu).

Since ¢, = 1 in a neighbourhood of K we have supp (e(1 = %)) N A = 0. Therefore
{(p(1 - ¥e))T, Pu) = 0 and

N N
=1 =1

N N

= Z Z(I)i;(‘f’iwz)’uj)

=1 j5=1

N N
= 33 [ui(e) Pyleibe)(z) da.

i=1 j=1

(T, Pu) = ((p¥.)T, Pu)

Here u; € C%~1(f) and P;; is a differential operator with ord P;; < t;. Lemma 11 implies
limeo(FP;(p¥e), u;) = 0. This proves the assertion i

Lemma 12 is a generalization of [9 Theorem 4.3/(b)] for systems.

Lemma 13. Let Qo C R™ be a domain and K C Qo a compact set with the following

properties: . .
1. There is an open ball B, which can be divided by K into two non-empty disjoint

regions. o

2. Hn_](K n B) < 00.

" Further let P(z,D) = (P.‘j(z,D)).'J=1'm,N, Pij(z,D) = Z|°|S,‘.+". a?(x)D"', be elliptic in

the sense of Douglis-Nirenberg. Suppose that the coefficients a¥ are analytic functions.

Then the Cauchy problem

Pu=0 in o, D%ujlk =0 for|a|<t;—1 (j=1,...,N) (4)

has only the solution u =Q tn Q.
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Proof. Let u be any solution of the Cauchy problem (4). In particular Pu =0 in B and
D*ujlkn =0for |a| < t;— 1,5 =1,...,N. The both open sets we get, if one divides B
by K, are denoted by w, and w;. We define a new vector function v on B by

_Ju in w '
L7190 in B\wi=w,U(KNB)

Obviously, Pv = Q in wy Uwy = B\K. D°jlkng = 0 for || < t; —1 (j =1,...,N)
implies v € CT-'(B). Considering H,_1(K N B) < co Lemma 12 yields that K N B is a
removable singularity. Hence, we have Pv = 0 in B. Since v = Q on the open set w, and
since v is analytic on B we get v = 0 on B. Therefore u = ( on the open set w,. Since u
is analytic on the domain Q finally we have u =0 on Qo I

3.6 The proofs of the approximation theorems are based on the.following consequence of
the Hahn-Banach theorem.

Lemma 14. Let X be a normed space and let Xo, X, be linear subsets of X with Xo C X;.
If every F € X' with (fo, F) = 0 for all fo € X, also satisfies the equation (f1, F) = 0 for
all fl € X], then —X—o 2 Xl.

4. Proof of the theorems

We will represent the proof of Theorem 1 in detail. To prove the other theorems we have
to modify this proof only slightly.

4.1 Proof of Theorem 1. The proof will be given in 14 steps.
Step 1. First we show that the approximability of an element f € [T7e, Da(T) implies

(FCJ—OMdMGN Let (u)$,

w(z)=22 S o DUEj(z — w),

k=1j=1 |a|<t-1
be a sequence with

Jim 37 11 fs = bawllpaery = 0. (5)
h=1

We have yjq € (C=(R))" and Ly, =0in Q for all l. Since L'v =0 in Q and b’y =0 on
I' for v € N* we get from Green’s formula

m'’

0=3 (baw,crv) = ((bw)",c"v)
vt
for all | and a.ll v € N*. From this, relatlon (5) and inclusion ¢*v € ([T, Da(I'))’ one
gets ( LT cv) =0.

Step 2. In the following we are concerned with the reverse inclusion. Let F =
(F1y...,Fn)T € [T, (Da(T)) be any continuous and linear functional with

“ i(ﬁa(”’ﬁj(z - ), Fa(2)) = ((D°E;(z ~ ws)))", E(z)) = ~ (6)

h=1
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forke IN,|a|<t-1,and j =1,...,N. This yields - :
{(&D°E(z —y)))7, E(z)) =0 (™

for @] < t—1and k € IN. We will show that for this F the equation (f”, F) = 0 holds for
those f € [1i-; Dx(T) which satisfy the condition (fT c’v) =0 for all v € N*. By means
of Lemma 14 one can get then the approximability of these f by ﬁmte linear combinations
of {D*Ej(z —yi)) (k€ N, |a| <t -1, j=1,. N).' : o

Step 3. Let k¢ > —1 be so large that C*- "‘(I‘) C Dy(T) for h = 1 .,m and that
these imbeddings are continuous. This lmpll&s

E(DA(F))' C ’!:I(C“""(F))' = (C*7R(T)y

and the continuity of this imbedding. Here R = (r1,.-.y7m), and the ry are such néga.t.ive
integers that ordbs; < ry +¢t; for § = 1,...,N. We can consider F as an element of
(C*- R(F)) Lemma 4 implies the 1nclus1on

be L(Gh+T(RY), c’?o-R(r)).' '

Hence, the dual operator & belongs to L((C*~R(I)Y, (co'ko+T (R*)Y) and §F to
((t"‘o-#-T(R"))'. Furthermore we get (7,4 F) = ((bp)T, F) =0 for each ¢ € (CP(R*\I))".
This implies supp ' F C T

‘Step 4. We define'dp := inf{|z —y|: z € I, y € K} and d; := sup{|z — y| T z€
I, y € K}. We suppose that the subsequence (y;)$° of (yx)$° consists of those points yi,
for which the inequalities

1, .- ' - p
Edo<inf{|z—yk|: z€Tl} and sup{lz —yx|: z €T} <24,
hold. Obviously, each point of K is again an accumulation point of this subsequence. Let
10 € Cg°(R") be an odd function with
1 ;. 1
no(z) =1 for Zdo <|z|<4d, and mno(z)=0 for |z| <A§do.

We have noE;; € C°(R®) (1, =1,...,N) and noE(z — y;) = E(z — y}) for each k € IV
and for each z from a nelghbourhood of I'. This implies

B(D*(TE))(= - 4})) = = (D°E)(z - y3)
for each z € T, k € IV and for each a. From (7) we obtain

((B(D*(moE)(= — y))), E(z)) = {(D°(mE)(z — vi)T, (¥ E)(=)) =0 (8)
for k € IN and for each a with lal <t —1.

Step. 5. Since YF e (Cko+T(R"))’ has a compact support the convolution E"« * (b'F)

exists. The 1mbedd1ng Wit I+T(R™) C C+T (R™) is continuous for p > n. Consequently,
we have

(Cosm (R C W) (o = 22q) and K€ Wyt~ ()
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Because L is elliptic in the sense of Petrovskij, i.e. T-= (t1,...,tn) and S = (0,...,0);
L” is elliptic in the sense of Douglis-Nirenberg with T* = (¢,t,...,t) and S* = (tj —t,t;~

. tn—t) = T—t.Since —kog—1—T = —kg+t—S5* we can write ¥ F € W,,',“""'S.(R").
Applying Lemma 7 we get

E*«(VE) € Wl '™ T (R™) = (W isl ' (RM)V.

From L*(E® * (§F)) = b'F and suppb’F C [ we get L*(E* + (Y'F)) = 0 in R*\T and

consequently E* x (§'F) € (C=(R"\I'))". Since L" is an elliptic differential operator w1t.h

constant coefficients E* * (' F) is even analytic in R"\T. - . :
Step 6. We have

B+ (EE) = (1 - m)E") » (VE) + (10E") » (HE).
Since o ‘ .
(mE”) * (Y'F) € (C°°(R"))N and  E**(§F) € (C®(R\I)Y
we get ((1 —n0)E") * (V' F) € (C(R"\I))N. We have
supp ((1 —no)E") * (¥'F) C supp (Q'E) + supp (1 — no)E") -

C T + supp (1 —no)
C{z-{-z z€erl, |z|<:door |z[>4d1}

Hence for each y satifying ldo < mf{|:z: —y|: z €T} <sup{fz— y| : z € T} < 2d, one
gets the assertion (((1 — no)E‘) * (6'F))(y) = 0 and therefore

D(((1 — no)E*)* (Y F))(yi) =0 for each aand k € IN.

Hence we have D*(E" *"(b'F))(yk) = D?((noE”) * (b'F))(yk) for each o and k € N.
Step 7. Considering noE;; € C§°(R™), E'(:z:) (E(—a:)) no(z) = r]o(—z) and (8)
we ha.ve, for ja| <t -1,

D(E* + (Y E))yi) = D°((7IoE') * (Y E))(yi)
= ((D%(mo£")) + (YE))(vi)
= (D%(no£" )y — 2), (Y E)(2))
=(- 1)'°'((D°(qu)(z - ) (¥E)(z)) =
Consequently, D“(E‘ * (b'F))(y,,) 0 for all k and for each o with |a| < t — 1.

Because E* * (b F) is infinitely differentiable in a nelghbourhood of K and because the
sequence (y,)7° is dense in K it follows

D*(E" « (BE)Ix =0

for each o with |a| <t — 1. Furthermore L*(E® * (§'F)) = 0 holds in the connected set
R™\Ql. Lemma 13 .yields that the Cauchy problem : ' : S

L'v=0 in R*\Q, - D°|xk =0 for o] <t -1
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has only the solution v = 0. (L" is elliptic in the sense of Douglis-Nirenberg with ¢; =
.-ty =t and s} = t; — t.) Consequently, we get E* * (§'F) = 0 on R*\Q. Thus, we have

B+ (FF) € (Wl (R and supp (B + (8F)) € .

4 loc
One can easily conclude E* + ({'F) € ((((:"‘0+1 (R*))NY. From this and from supp (E* *
(¢F)) C 1 we obtain o

D (fLE«(¥E)=0 | (9)

for all f € (Cko+1(R™))N with f|gmg € (Ch+1(R"\)N and fla = 0.

Step 8. In the following f L N* means that Y, f, fividz = Ofor ally = (v, ...,vn)T
€ N*. Now let p € (Cg°(R™\I'))" be any vector function with ¢ := ¢lgLN*. Then
@, € (C&())N and ¢, = Plrma € (C2(R™\Q))V. We consider the boundary value
problem . . 4 : :

Lg':fl in Q, Qy_:_O_‘ on T.

Because of the requirement , L N* this problem has a solution u; € (C2(Q))N (s. Lemma
2). In particular we have .

bu, =0. | (10)

We extend u, to a vector function & € C&*'*T(R") and define ¢, = L
€ (C&*' (R™))N. 1t is b, € C*+'-R(T), Equation (10) yields

| b =0 | (11)

Furthermore Ql is an extension of @, For this reason Dj Ql =Qholdsforj =0,...,ko+1
(D the exterior normal derivative on I'). From Lemma 3 one gets ¢, € (6"=o+1 (R“\F))N,
which lmpha f,]m\n € (C“o+l (RM\Q)N. ‘ T

We split up p = (¢ — @,) + @, Obviously, (p — ¢,) € (6‘*0+1(R"))N, (¢ —@)rm\a €
(Co"‘o+1 (BN and (p~$,)le = ¢, —¢, = 0. From (9) we follow ((p—9,)T, E'+(¥'F)) =
0. Considering (11) we get

(", E" * (YE))

(@F E*+ (VF)) = (L&), E" * (VY F))
(&, L*(E" » (EE))) = (@, (¥ E)) = ((bi)T, E) = 0.

Thus we have {ﬁT,E‘ *(VF) =0 for those " € (C&(R™\I"))N which have the property
fln.LN From this one can conclude (cf. [6: p.296]) (fT,E" * (YF)) = 0 for all f €
(Cro+1 (RM\D)) with fla LN".

Step 9. We define the operator ﬁko«n by the equa.tlon

Dro#?

—-ko+lg_ {ﬂll') nﬂll‘a"'v glr}

for g € (Co"‘oﬂ(R"))N (D, the exterior normal derivative). Using the fact

(Gt (RMD) = {g € (Ca+t (R : Ripyrg = 0}
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(Lemma 3) we have S .
(fTE +«(¥E)) =0 (12)
for all f € (Cho+1(R™)V with Ryyy1f =0 and flaLN". 4

Step 10. Now we want to mv&stlgate the behaviour of the distribution E* * ('F) on
an a.rbltra.ry vector function from (C"o+l (R™))N. We define the operator A'= {Ry 41, P}
for f € (C“oﬂ(R"))N by

r ko+1 . - o
f:= {&o“[, "};(Lln,yf*’)g‘*’} € (11(67_"”“}(1‘))") x N* =: X

Here {o(V),...,v"")} is a basis in -N* and‘(f|a,v™) = TN, [, fivi ) dz for all elements
v® = (v, o{)T. Then (12) means E* * (YE) € (Ker A)*,

(Ker A)* := {H € (Crov1 (RO))"Y + (7, H) = 0¥ € (Grort (R, AL = 0} .

X is a Banach space with respect to the norm

v ko+1 r® ’
l{g, u}llx = Z% llg;llcro+1-5(r) 15"21 Idi|
.= . : =

(2:= {g,}e € B (C=HM)Y, vi= Y due N‘) '
j=0 . k=1 . /..
Obviously, we have A € L((C"oH(R"))N X)
Now we show Im A = X. Let ¢ = {g Jett e f‘;ﬁ‘(C““"(I‘))N be any element and.

v= Z,, —; di v™® any vector function from N*. We look for a vector function g € (Ckoﬂ
(R*)N with Ry 419 = g and Pg = v. Lemma 5/(ii) implies the existence of a vector

function § € (Ce*'(R™))N with Ry ;1§ = g- Let {$1}]° € (C(2))V be a biorthogonal
system to {o®}7, i.e.,

G) 0y — () ol¥ 1 for k=35 ;' -,
(W), u®)) = Z/w dz—{o for k#j (kyj=1,...,r).

t=1 Q
We set . ' .t

Lo g=gt Z(d —(gln, "’))Q")

j=1
Smce 5.1:0“1/’(’) = 0 we have By 419 = Ekoﬂg g Furthermore, (£|n,_k) = d,, lmph&
Pg = u. Therefore we ‘have shown Im A = X
Step 11. Since Im A is closed the Closed R.a.nge Theorem implies Im A’ = (Ker A)"
Since ImA = X we get, using a corollary of the Open Mapping Theorem and the
Closed Range Theorem (see [16: p.147]), (A')~! € L(Im A’, X"). .Consequently (A')"! €
L((Ker A)t, X’). Because of E” » (§'F) € (Ker A)! the equation

AN =E" +(¥E)
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has a unique solution
ko+1 o ‘ !
A={A,A} e | [T (CRM @)Y ] = (N7
.. L =0 o :

Therefore we have

(TE *(¥E) = ([T,AN)
. (

= ((ApT.A) .

= ((Bunr DT A + (PS, A)
ko+1 . .

= Y (DT A) + (Z(Lln,y"")y‘“’,Az)
3=0 . . k=1

and then .
. . ko+1 ; N : .
(LTE + WE) = 3 (DA, )+3 [ 4 f.v.dx (13)
J=0 . ""ln P .

for all elements f € (Cko+1 (B*))N with A= {A Yt € n’=°+‘((c*o+1-:( )¥) and all
v=Y5 (u®, A)® e N°. - '
Step 12. Nowlet u € C"°“+T(R") be any vector functlon Then Lu € (C&*'(R™))N.
We set f := Lu into (13). Then one gets .
o T kol ’
(L) £+ (UE) = X (DiLulr)T, +Z / (Lu).v. dz.

3=0 o a=1

f
From Green’s formula. (Lemma. 1) we obtain (L v=0,b0v=0")

. .N

3> /(LE). vidz = = Z(_,,u c,,v) —'((Qg)T,g‘y)v.
=1 0 . .
Since
(Lw)" E* + (YF)) = (47, L"(E" * (¥ F))) = W, ¥F) = (bw)", F)
we have ot o .
—) Zo L“lr LEAS) ) - <(QE)T1§.2) (14)

for all u € CE*"*T(R™) with a certain vector function v from N*.

Step 13. Now we show ); =0 for 7 =0,...,k + 1. From Lemma 6 we get the‘
normality of {b,,.. ,_m,Llr,D AT D"°“L|r} Let ‘jo be any integer with: 0 < jo <
ko+1and g € (C"°“"°(l")) any vector function. Lemma 5/(ii) 1mp11es the ex1stence
of a vector functxon ue C"°“+T(R") with

' §!=Q, i D’Lu|r=0 for];éjo,0<]<ko+1

and
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If we apply (14) to this function u, we get (g7, ;) = 0, which implies A;, =.0. Since this
holds for all jo = 0,...,ko + 1, we obtain - N L AL

((QE)TLE) = _((QE)T’ 9_.2) K REURI AL (15)

for all u € CE*7(R"). .
Step 14. Let f € [T5, Da(T) be any element w:th

UTev=0 - (16)

for all v € N*. The condition (a2) for the spaces Di(T') (h = 1 ,m) lmpheﬂ the
existence of a sequence (p,)i° C [Tit, C*(I') with limi.e ||f — E"H:‘  Dar) = 0. Us-
ing Lemma 5/(ii) we can conclude that for every ! there exists a vector function u €
Co**T(R") with bu® = g, From (15);it follows {(¢,)T, F) = ((ﬂ)T ¢y *v) for all I
and therefore lmu_.m((fl) _) = - lmu_.oo((fl)T ¢"v). Since F.and c’v are elements of

(ITr=1 Da(T'))" and because of (16) we get finally the desired equation (fT E) =0l -

4.2 Proof of the Theorems 2-6. The proofs of the six theorems differ essentially only
in the way how to get E* * (Y'F) = Q in R*\Q. This result we obtained in the proof of
Theorem 1 in Step 7. Furthermore there are modifications with respect to the requirement
(6) on F. Therefore we only want to describe firstly how to replace the reqmrement (6)
and secondly how to get E* * (b'F) =0in R"\ﬁ in Step 7 of the proof

Proof of Theorem 2. 1. F is a functional with
C (WD"Ej(= - )T E@) = 0
forke N, |a| <f;—1, j=1,...,N.-2. In Step 7 of the proof we get
D(E + BE)lw =0 |
for la] < £; — 1', J = 1,...,N.(E*+ (VF)); is the j- th component of- E' * (b'F) ) F;xrther-
more we have L*(E" * (b’F)) = 0 in U. Since we have required the unique solvability of

the Dirichlet problem we get E” * (YF)=0in U C R"\ﬁ Because E* * (V' F) is analytic
in the connected open set R"\Q one obtains E* * (b'E) Qin RM\Q. T

Proof of Theorem 3."1. Fisa functional with‘ N . -

|  (@EG-wE=0

forkEWan&j:l,..'.,‘N.’ 2. Onegets S ‘
(ExER)=0 "

for all k. Lemma 8 implies E” » ({'F) =0 in R"\ﬁ .

Proof of Theorem 4. 1 Fi is a functxona.l w:th -

((b( (z = yk)))’ E(z))
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fork€ INand j =1,...,N..2. One gets (E* * 5 F) = 0 on the open set U C R"\Q The
analytizity of E* * (b'F) 1mplnes E*x(YF)=0in R*\Q.

Proof of Theorem 5. 1. Fis'a functional with
(B(D°Ey(z — 1)))", E(2)) = 0
for a.ll a. 2. One gets D*(E” * (' F))(y1) = 0 for all @ and then E* * (§F) = 0 in R™\{L.

Proof of Theorem 6. 1. F is a functional w1t.h

((2(D°E;(z — yk)))T )y =0

for k € W, |a| <i-1,j=1,...N. 2. One gets D*(E" » (b’F)),Iml = 0 for
|a| <{-=1,7=1,...,N. The supposmons of Theorem 6 yleld E*« (YF)=0in R"\m
and by this also in R"\ﬁ
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