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Uniqueness Theorems
in Linear Theory of Microporous Solids

T.G. Gegelia and L. Jentsch

Abstract. This paper deals with uniqueness theorems for external boundary value problems
and a contact problem for a system of differential equations‘of the linear’ elasticity theory of
microporous solids. Here we have derived an asymptotic representation of the solution of this
system in a néighbourhood of infinity which has enabled us to prove new uniqueness theorems.
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1. Differential equations

The system of differential equations of the linear elastmty theory of microporous solids
is written in the following form (see (1,3,6,7)):

pOu + (A + p+n)grad divu — pgrad §
XA — 86 + ndivu

—of (1)
0 )

where u = (uy,u;,u3) is the displacement vector, 8 is the dilatation, A, 4 are the Lamé
modules of the solid part of the microporous material, g is the density, and 7,6, x are
further material constants, whose physical properties are discussed in (3,6, 7).

The fundamental equations (1),(2) we can write in the following matrix form:

B(0,)U(z)T + F(z)T =0," L o 3
where

U= (u.,uz,u3,0), F=(gfl) gfhgfiho)
U=vw (i=1,2,3) and Uy =8, F, = pf; (:=1,2,3) and F, =0
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B(0:) = || Bit(0z)l|axa

o? . d
B«'k(az) = 6ikl‘A + ‘7m (1,/6 = 1,2, 3) and B"‘(a') =

—T]?a; (1 = 1,2, 3)

Yy=A+pu+79, 6.~k 18 t.he Kronecker symbol. It is assumed that the material constants
A, 1,8,7, x satisfy the conditions (see [6,7])

2
;t,&,x,(k+—“+n)6—n'>0- : (4)
The derivation of asymptotic representations mainly rests on the behavxour of the funda-
mental solution of the considered system.
2. Fundamental solution

The fundamental solution of equa.tlons (3) can be written in the following form (see
(1,3,6,7); ¢,k =1,2,3):

I(z) = IITikllaxs ' S ()
Pa(e) = — L (S&_ @ &l w8 1-ew)
* T 4mp \|z| 2q O0z:0z: ¢} 0z0z: |z|
M) = L101-¢"
“ T 4rq 0z |z . .
_lsl |

1ng 0l—-em _ em

P = B BT O

o = Q+2+0)b-n', a=A+p+n)é-n’
m? = (/\+2p+ry)£. o
By virtue of the inequalities (4) we ha.ve
A+ 2p+77>—6-+§/4>0 m? >0,
. \ . 4 PN
= —pub+(A+ 2 b—n>-ps>0.
@ 8/N5+( +.3#+f/) n> gk

Let us establish the properties of the fundamental matrix I' = ||Tix|l4x4 in a neighbourhood
of infinity. In (5) it was used that

m= +‘/(A+2u+n):—1~ | (6)

By virtue of (5) and (6) we have the following estimates:
10°Ta(z)] < Cle|' (i,k=1,2,3)
|0°Ti(z)] < Claf™> (i=1,2,3) )
|0°Tak(z)] < Clz|* P (k=1,2,3)
|0°Tu(z)] < Clz[™
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for some positive number C. Here o = (a;, a2,a3) is an arbitrary multiindex, n is an

arbitrary non-negative integer. - :
The derivation of the asymptotic representation formula for the solution of the system

(3) in a neighbourhood of infinity [2] is based on the Green aud Somigliana formulas [1].

3. Integral theorems

Let  be a bounded domain in IR® with a piecewise smooth boundary 69 U= . (Uy, Us,
Us,Us) € CHQ)NCHQ), V = (W, Vo, V3, Vi) € CHOQ) N CHQ),v = (1, v2,v3) the unit
normal to 912 at the point y, external with respect to 2. Then we obtain

[ (V(2)Ba(@)0x(2) + 2W(U,V)(2)) dz = [ Viy)Ria(Bys )U(0) S, (8)
an

Q

where W (U, V) is a bilinear form: -

. _ 1 3. 9U; 8V;
von - o E R
3. (dU; aU; oV, aV;
+4 -,;Z=:1 (831 ) (32, + a—-’ﬂu)
1 1
_,7 4§a 27] 4§ a
1 aU, 3V4
*3 6U‘V‘ + ZXZ oz; 6:1:‘

R(dy,v) = ||Ek( v )||4x4 ’ S (9)
Ra(d,,0) = -wZ% (g g (G k=1,2,9
Ril(aw")' = —7]1/,, R‘l( y,V) 0 (1 —1 2 8) .

. 3
Oy, = ;
. R44( v V) X;::ll';a%

In the sequel (as in formula (8)) the summation sign ¥ will frequently be omitted and
the index repetition in the monomial will imply summation from 1 to 4.

Because of the symmetry W(U,V) = W(V,U), Green’s second identity follows from
equality (8):

[ (4@)Ba(@:)0x(2) - Ut Bu@L)V (z)) dz.

a
= / 1) R0, )Us(¥) = Uu(¥) Rii(By IVi(Y)) S (10)

Here summation is taken over the index i and k from 1 to 4.
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Let U € CY{2) N C?*N) and, for all z € Q, B(8;)U(z) = 0. Then the Somlghana
formula is valid (1], i.e. for all z € 2 we have (j = 1,2, 3, 4) ’

Uie) = [ (U6 R0 s = )~ Py~ VB, UY)) &S

an

4. Formulation of the problems

We consider the following boundary value problems and a general contact problem for
the system of differential equations of the elasticity theory of microporous solids. Let 2+
be a bounded domain in IR?,

Q- =R*\0*, S=00%= aa-.
Find in Q* a solution U of system (3) with one of the boundary conditions below:

e Problems (1,1)*: Forally e S let
Uty) = Jim UG =$), U-w) =, lim_U(z)= ()
o Problems (1,2)*: Forallye Slet .
UEW) = (@) (=1,2.3), x ()" () = ¥av).
o Problems (2,1)*: Forallye S let .
(Rae(0y, v)UR)*(y) = 0ily) (i=1,2,3), UE(y) = paly).
e Problems (2,2) : For all y € S let
(R(8y, 1)U ) = ely).

Here ¢ = (¥1,%2,%3,%4) and ¢ = (cpl,tpg,<p3,<p4) are given functions on S. It will
be assumed below that a microporous medium,: with the material constants At ut,

nt,8%,x*, occupies domain Q% and a microporous medium with the material constants
)\ »HB~,n7,6~ ,x~ occupies domain Q~. Now let us formulate the general contact prob-
lem.

e Problem (3): Find in O+ and in Q- a solution '_U‘of the System o
S B*(8,)U(z) =0 for all z € QF; B~ (8.)U(z) =0 for allz € 01~
with the transmission conditions for a.ll yeS

U*(y) v- (v) = ()
(R*(8,,v)U)*(y) — (R (8,,V)U) " (y) = (y)-

Here B*, R* are the operators B, R formed with the material consta.nts At ut ot 6,
x* and B~, R~ are the operators'B, R with the material constants A~ NS N Ve
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5. Uniqueness theorem

A vector U = (Uy,U,, U3, Uy), defined in QF, we call reguler in Q* if U € C}Q*) N
C'(f1%). A vector U, defined in Q-, we call regularin Q- if U € C*(2~) N C(-) and
if it admits in a neighbourhood of infinity the estimates

Let us formulate the uniqueness theorem of a solution of prbblems (1, 1)%, (1,2)%, (2, 1),

(2,2)*, (3) (see [1]).

Theorem 1. The problems (1,1)%, (1,2)*,(2, 1)‘: (2,2)7, (3) at best have one regular
solution. The difference-of two regular solutions of the problem (2,1)* or (2,2)* isin the
set span(A,, ... Ag), i.e. represented in the form

6
EckAk (ck = const)
where
Ak = (6k1, 662, 6k3,0) (k =1,2,3) and Agys = (E Eruzi, ngztzl, zekal zi, 0) ;
1=1 I=1- =1 .

Exjt — symbol Levi-Civita.

The uniqueness theorems for the external boundary value problems are valid only
under some restrictions of the class of solutions at infinity [1,4,5]. These restrictions
arose naturally from the Green formulas and consist in the requirement that both the

solution and its derivatives vanish at infinity (see (11)).
In this paper we will prove the following uniqueness theorem. -

Theorem 2. The ezternal boundary value problems (1,1)7, (1,2)~, (2,1)7, (2,2)"
and the general contact problem (3) at best have one solution in the class of functions U
satisfying the conditions

UeC¥a)ncCl(hr)
and in a nezghbourhood of infinity
Ui(z) = o(1) (t—l 2,3, 4) (12)

First we prove the following theorem of the asymptotic representation of a solution of
the homogeneous system B(B,)U(:z:) =0 of (3) denoted by (3)o.

Theorem 3. Let  be a domam from IR contammg infinity, U defined in Q and
U € C¥(f). Let in a neighbourhood of |z| =

Uz) = o (1) (i=1,2,3) . and = Us(z) = o(lzP), (13)
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where p is a non-negative integer. Then in a neighbourhood of |z| = +oo the following
asymptotic representation is valid:

U;(z) = U}o)(z) + > cg")z",

lal<p

where U® s a regular solution of equation (3)o in the domain Q, i.e. U € C*Q) and,
in a neighboorhood of [z} = 400,

C

©) C_ - ©)
18°U;7 ()| < PR (G=123), 10°UL ()] < e

where B = (B, P2, B3) is an arbitrary multiindez.

Theorem 3 can be used, in particular, for Proof of Theorem 2. Indeed, let U be the
difference of two solutions of the problem (p,g)~ or (3) satisfying the conditions (12).
Then (p = 0) the representation

Uj(z) = V(=) + C; (14)
holds. From (14) and (12) we have C; =0 for j = 1,2,3,4. Therefore U;(z) = U}o)(z) .
From Theorem 1 there follows U;(z) = 0. Thus Theorem 2 is proved 8

6. Prbof of Theorem 3

Let £ be a domain in IR® containing a neighbourhood of infinity, z € 2, and 7 > 1 chosen
such that

z€B (o, %) and R*\B (0, %) ca
We write the Somigliana formula for the domain: 2; = B(0,7) N ). We will have

Uie) = [ (Ua(y)&k(ay,u)rk,-(yéx)éF»(y-é)RH(ay,u)U.-(y))dys
: an

+ [ U(y)&kwy,v)n,(y—z)—n,(y—z)Rh(ay,u)U(w)

3B(0,7)
Let
Uz) = / (Ui(y) Ris(By, v)Ti; (y — 2) = Tii(y = 2) Rai(By, )Ui(9)) S
, an . '
T) = [ (Vi@)Ra(8»)Thity = 2) — Tis(y = 2)Ru(@,)Uily)) oS - (15)
aB(0,7)

'i‘hen - ; .
Uj(z) = UP(z) + Ti(2). (16)

It is not difficult to prove that U(®) is a solution of the equa.tlon (3)0 Let us esta.bhsh the
properties of the fundamental matrix

Tij(y—z)=Tix(z —y)..
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We have
C B@IUOE = [ BV R )Tl — ) S
af / Bij(0:)Tj(y — ) Rui( 0y, V)U-'(y)"lvs
= / aZ-‘(y)R;k(am v)Bi;(0:)Tse(z — y) dyS
BTtz - R M4 =0
oA

Now we will prove that U(® is a regular vector, i.e. in a neighbourhood of |z| = +o0
it admits the estimates (11). Moreover,

) c . ) ' , C -
1°U ()| < ] (=1,23) and [0°UO(z)l Sl—m
Indeed, this follows from (7). Let us establish the propertles of the 1ntegral Ti(z) in a
neighbourhood of infinity. If z # y, then T'4j(y—z) is an analytic function. We represent
Txj(y — z) in a neighbourhood of the point y by the Taylor formula:

Toly-n) = 3 “%a"n,(ywsk,( W) <
a|<p °
laly
Suzy) = 3 T ey - 62)
L la|=p+1

where p is an arbitrary non-negative integer, « is a multiindex and 0 < § < 1. First we
have to prove that

: el : _
Houte)= 3 200 EUTE gooryy(y ~ 012, (18)
|a| p+1 al
where f is an arbitrary multundex and 0 < 6, < 1. The differentiation of (17) gives
(=D)Flz* sy )
FTus(y —2) = 3 ——0"*T;(y) + 8)Sk;(2.y). (19)
lel<p ’ .

Indeed, using the Taylor formula we can represent. 35ij(y — z) in a neighbourhood of
the point y as

ANUBER pye = U prerey(y) + S, 0 (20)
lalgp - o
Sz = 3 %aﬂﬁrb(y-oﬂ), 0<6, <1. (21)

|lal=p+1
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Therefore -
3)Sks(z,y) = 55 (2,9). (22)
By virtue of (22), (21),"(20) and (19) we have (18).

We will estimate Tj(z) in a neighbourhood of |z| = +o0. But for all y € dB(0,7)
(Jlyl=7) and for z € B (0', %) (Iz] < 3), 0 < 8, <1, we have
_ Tyl

T
— > - =
|y - 012' = 8 . 8

Hence by virtue of (7) we obtain the estimates

[0+ Tai(y — 0:12)] < Cap(2) |y — yz|7'71o*7!
< Cap(z) |y|'2""|ﬁl ‘ for k,7=1,2,3
|0 Tra(y — 612)]- < Cayp(2) ly — Orz| 7>l :
< Coplx) ly[=2-7-#®l - for k=1,2,3
[0°*PTak(y — 612)] < Ca,p(z) |y|~3-P- 1Al for k=1,2,3
|0°*Tau(y — b1z)] < Copl) |y

where n is an arbitrary non-negative mteger Hence we obtain the estimates
12Ski(z,9)] S Cap(@)I*7 W for k,j=1,2,3

k=4and j =1,2,3

. o “3-p-tgl
0250z 0)| < Coslz)ll for {,c_l’z,:,amdj=4 (23)

195 Saa(z,¥)l. < Cop(z) ly| ™71

The estimates (23) and (9) imply the following ones:
I&k(awu)skj(x)y)l < C(z) |y|_3_p . fori,;=1,2,3
|Rie(0y, v)Sxj(z,y)l < Cla)lyl™® fori=4dorj=4
Let us now turn to the representation (15). We write

1\l zo ’
(U.-(y)&-k(ay, ) ( > U e + Sk,-(z,y))

la|<p

T;(=)

8B(0, 1‘)

Ia a
(2 _( li. 0°T;(y) + SkJ(I y)) Rii(0y, v)U; (y)) 4,5

|| <p
= ¥ )z + Li(py 7y 2), , (24)
lel<p c " . .

where

—1)lel :
o) = S [ (R

of aB(o0,r)
—0°Tk3(4) Rui(By, v)Ui()) dy S (25)

(U;(y)mk(ay,u)'skj(z,y)

Li(p,,z)

) 3B(0,7)

~S4i(z, ) BB WUY))dyS. (26)
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We have to show that in the representation (24) the coefficients C}"')(T) are independent
of 7. Indeed, let 7, > 7 and apply Green’s formula (10) to the vectors

U = (U],Uz,Us, U4) a.nd V = (3°P,j, 6°sz, 9OF3j, 6°F4,)
in the domain B(0,7,)\ B(0,7). When 2z € B(0,7;)\ B(0,7), we have

Byi(9,)Vi(2)
Bk,'(a,)U.‘(Z)

B,,;(B,)(?"F;,'(Z) ='a°Bki(az)r;i(Z) =0
0

and thus the volume integrals vanish in (10). Therefore we obtain

(9°Ti5(y) Ris(By, v)Un(y) — Ur(y) Rui(y, v)0°T(y)) d, S

aB(0,7)

= [ (0Ts) BBy )U(y) ~ Ub(6) Ris(8,0 )T (4)) i .
3B(0,n)
Here the normals to dB(0,7) and 8B(0,7,) are assumed to be external with respect to
B(0,7) and B(0,7), respectively. The above equality shows that (see (25)) Cg(r) =
C7(m1). Now (24) implies that Lj(p,,z) is independent of 7, too.
Now we will prove that if (13) is fulfilled, then
lim Li(p,7,z)=0. (27)

On account of (27), (24) and (16), we obtain
lal<p

Ui(z) = UO(@) + Ty(z) = UO(=) + 3 Cae. @)

Thus, if we prove (27), we will obtain (28). -
Let w € C®(IR%) be a real function possessing the properties

. 1 1
w(y) =1 for 3= ly] <2, w(y)=0 for |y| < ly| > 3.

51
Then the function wi(y) = w (¥) poss&ssés the properties:
. 1. . v
wi(y) =1 for 57 <yl <27 wi(y) =0 for |y| < % byl > 37.
Obviously, b, = supgs |0°w(y)| < +o0o and, therefore;

07wt (y)] = | 155(07w) ()] < bor~! (29)

Introduce the notation
55z,y) = W (y)Ski(z,v).
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Then S(') will have the properties:
S7@¥) =0, Ra(d,,)S(,y)=0  forall y€aB(0,7)
(7)(1:’ y) S"i(I, y)) ) . (30)

Ri(8,,v)S5)(z,y) = Rix(8,,v)Ski(z,y)  for all y € 3B(0, 7).
Hence by virtue of (26) and (30), we obtain

Li(p) 7, z)

(U.~<y>R;k(ay,u)S£;’<z,y) — S5(2,9)Rei(By, )Ui(y) ) d, S
3B(0,7)udB(0,5

(Ui(2)Bir(3.)S3 (2, 2) = S5z, 2) Bui(0:)Ui(2) ) d=
B(o,7)\B(0,7)

Ui(2) Bi(8,)S (2, 2)dz .
B(o.r\B(0.§

On account of"(23),' using the above estimate for 0°w!”) (see (13) and (29)) we obtain
U,-(z)B.-k(ﬁ,)Sg)(z,z) = 0(r73) for all z € B(0,7)\B(0,3). Thus Theorem 3 is proved i
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