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General Approximation-Solvability
of Nonlinear Equations
Involving A-regular Operators

Ram U. Verma

Abstract. Here we consider a general a.p.proximation-solvability scheme involving A-regular
operators — a generalization of A-proper operators — introduced and studied by Petryshyn [4]
and further studied by Milojevic’ [3], Petryshyn [6] and others. Among significant applications,
an A-regular version of the Petryshyn theorem is given.
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0. Introduction

We con31der an approxnnat.lon scheme Ty = {X,,,Y,,,E,,,R,,,Q,,} represented by the
d:agra.m .

Diagram 1

Here X and Y are infinite-dimensional normed spaces over K (the real or complex
field), and X, and Y, are finite-dimensional normed spaces over K for all n. For all n,
E,:Xp—-X,Q,:Y = Y and Ry : X — X, a.re connection operators. The operator
A: X — Y is defined by A,, = Q. AE,,, that i is, Dla.gra.m 1 is commutative. Petryshyn
[4 - 6], in a series of papers, studied the following problem:

Construct a solution z of the equation

Azr=b (zeXibey)   (1),
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as a strong limit of solutions z,, of the simpler finite-dimensional equations (the so-called
approzimate equations)

Anzn = Qnb (zn € Xn,n = 1,2,..) 2
with respect to the approximation scheme 7.

In order to solve this problem, Petryshyn developed the notion of A-properness of
an operator A : X — Y, which is not only closely connected with the approximation-
solvability of the equation Az = b, but it extends and unifies investigations concerning
Galerkin type methods for linear and nonlinear operator equations with other newer
results in the theory of strongly ¢-monotone and accretive operators, operators of the
type (S), ball-condensing and other mappings. The .A-properness is equally applicable
to the approximation-solvability of abstract semilinear equations of the form

Az-}-N:_z::f, “ . . (3)

where A is a Fredholm mapping of index zero and N a quesibounded nonlinear mapping
such that A + N is ' A-proper. Among the significant applications of these resultsis the
approximation-solvability of semilinear elliptic equations of the type

Az + F(z,u,Du,...,D*™u) = f o B C))

exhibiting double resonance with F' having a linear growth. It is known that many
boundary value problems for ordinary and partial differential equations can be formu-
lated as abstract operator equations of the type (3) if the operators are chosen in suitable
spaces. While the A-properness has the tremendous power of unifying several classes of
A-proper mappings, it is not strong enough to give any information about the existence
of solutions of the finite-dimensional approximate equations, and even if they exist and
are uniformly bounded, there exists just a subsequence converging to some solution.
This leads to expect that the numerical applications of A-proper mappings are feasi-
ble under extra arguments. For more selected details on the approximation-solvability
involving A-proper mappings, we refer to [3 - 8] and [10].

In this paper, we first consider the approximation-solvability of the equation Az = b
in the context of A-regularity - a generalization of the A-properness — in general normed
spaces. Second, we give the A-regular version of Petryshyn’s theorem [4]. Finally, we
apply the obtained results to approximation schemes in Banach spaces.

Note that the approximation schemes in the context of A-reg‘ula.r operators have
definite edge over the approximation schem&s for A-proper operators in the sense that
these require minimal hypotheses.

A word of caution: Here and in what follows, the symbols — and 3 ‘shall denote
strong convergence and weak convergence, respectively.

Definition 0.1 (Discrete convergence). A sequence {Zn}nen C X is said to con-

verge discretely to an element z € X, denoted z,, 4, z, if imp—woo |lzn — Raz]|x, = 0.
Similarly, a sequence {yn}nenv CY is said to converge ducretely to an element b € Y,

denoted y, - b, if limp_.o0 lyn — @nblly, = 0.
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Definition 0.2 (Discrete equalzty) An element z € X is said to equal dwcretely
another element u € X, denoted z—u if limp oo |Rez — Raul|x, =0.

Definition 0.3 (Discrete Unique Approzzmatwn-Solvabxlzty). The equation Az = b
has discretely unique approzimation-solvability if, for each b € Y, the following hold:
(i) For each n > ny, the approximate equation Apz, = Qnd (z, € X,) has a
unique solution.
(ii) The equation Az = b has a discretely unique solution.
(iii) The sequence {z,} converges discretely to the solution z of the equation Az = b
in the sense that lim, .o ||zn — Rnzl|x, = 0. (

" Deflnition 0.4 (A Regularsty) The operator A: X =Y is A-regular with respect

to the approximation scheme g if, for given any bounded sequence {zn} with Az, b
(that is, limp oo ||AnZn — @nbdlly, = 0), there exists a subsequence {z,} and an z € X
such that z, 4 7 and Az = b.

To this end, we are just about to consider the general approximation-solvability of
equation (1) involving A-regular operators relating to the approximation scheme 7.

1. General approximation-solvability

In this section we give an upgrade of the approximation-solvability based on the concept
of A-regularity — a generalization of A-properness.

Theorem 1.1. Let mp = {X,,,Y,.,E,.,R,,,Q,,} be an approz:matton scheme repre-
sented by Diagram 1 with the following assumptions: *
(A1) Admissible Approzimation Scheme o 18 an approzimation acheme, that w, the
“following hold: '
(1) X and Y are infinite-dimensional normed spaces over K.
(ii) Xn and Y, are finite-dimensional normed spaces over K with dim X,, = dimY,,.
(i) Qn:Y — Y, are not necessarily linear connection operators with ||Qnd|| < v(b)
for each b € Y, where v(b) > 0, and is independent of n. The other connection
- operators R, : X — X, and E, : X, — X are not necessarily linear with
E,(0) =0 for alln. All operator.s A,, = QnAE, are nonlmear and contmuous,
where the operator A: X — Y is also nonlinear.
(A2) Consistency. mq s consistend, that is, for all z € X, limp .o ||Q,.Az -
"Rﬂx"Yn = 0
(A3) Stability. mo is stable, that is, for all u,v € X,, there is an no such that
[|[Anu — Anvlly, 2 ;x(”u - v||x,) for alln > ng. Herepy :RY 2 Rt s 4 gaugc
function, that is, pu is continuous and stnctly monotone increasing with ;l(O)
and u(t) > 0o ast — oc0.’
Then the following conditions are equivalent:
(C1) Solvability. For each b €Y, the equation Az =b has a solution.
(C2) Discretely Unique Approzimation-Solvability. The equation Az = b has a dis-
cretely unique approzimation-solvability. '
(C3) A-Regularity. The operator A: X — Y is A-regular with respect to the approz-
smation scheme my.
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More precisely, Theorem 1.1 can be stated as: If my is an admissible approximation
scheme with consistency and stability, then the equation Az = b has a discretely unique
approximation-solvability if and only if the operator A is A-regular.

Corollary 1.2. Let mo. be an admissible approzimation scheme satisfying the sta-
bility condition. If A: X — Y is A-regular, then the following hold:
(a): For each b €Y, the equation Az = b (z € X) has a solution.
(b) For each b €Y and each n > ny, the approzimate equat:on AnZn = Qpd (z, €
X,) has a unique solution. .

(c) The sequence {zn} has a subsequence {z,} such tﬁat T LzinX.
(d) If, for each b € Y, the equation Az = b has ezactly one solutwn z, then the

whole sequence {z,} converges discretely to z, that is, z, 4z

Corollary 1.3. Let mo represent an admissible approzimation scheme, and let A :
X > Y be A-regular. If, for some b € Y and all n > ny, the approztmate equation
AnZn = Qnb (zn € X,) has a unique solution, and if we have the a- prtorz estimate
sup,, ||za]] < oo, then the following smplications hold:

(2) There ezists a subsequence {Tn} such that 2, 5 z and Az = b.

(b) If the equation Az = b (z € X) has ezactly one solution z, then z, 4.

Proof of Theorem 1.1. The method of the proof follows the sequence (C3) =
(C2)= (C1) = (C3).

Step (C3) = (C2). We first show that, for fixed b € Y and each n > ng, the
approximate equation Anzn = Qb (z» € X,) has a unique solution. To achieve this;
we show that the set' A, X, is both open and closed. The set A,X, is open. Indeed,
the operator A, : X,, — Y, is injective by the stability condition (A3). The set A, X,
1s.open by the invariance of the Domain Theorem [9: Theorem 16.C]. The set A, X, is
closed. To show this, assume Anzk — zas k — 00. Then {Apz}isa Cauchy sequence.
By the stability condltlon (A3), {zx} is also a Cauchy sequence, and hence zx — z as
k — oco. Since the operator A, : X, — Y, is continuous this implies Anz = z, that
is, z € A,,X Smce the non-empty set A X,. is both open and closed in Y;, we get
AnXn =Y,.

Second we show that, for fixed b €7, the equa.tlon Az =b (z € X) has at most one
discrete solution. To prove this, assume Az = Au for z,u € X. Then the consistency
and stablhty conditions imply that, as n — oo,

" #(lIRaz — Raul|) < | AnRaz — AnRuu|
< ||A Rpz — QnAz| + ||QnAu — A Rnu” — 0.

Hence, |Rnz - Raul| = 0 as n — oo, tha.t is, z2u. A

Third, we prove that, for each b € Y, the equation Az = b has exactly one solution
z € X. Let us choose z,, € X, with A,,:z:,, = @Qnb. From A,(9) = Q. AE, (0) Q,,A(O)
and Assumption (A1)/(iii), it follows that .

+ v(8) 2 ||@ndl = J|Anzall = [|Anzn — An (O)II = [14a (Ol 2 u(llznll) - V(A(O))»

that is, u(||za|l) < v(b) + v(A(0)) for all n. Thls implies that sup,, u(||za||) < oo, and
hence sup,, ||za|| < 0o. It easily follows from the hypothesis that A,z, < b as n — oco.
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To this end, the A-regularity of the operator A ensures the existence of a subsequence
{za} such that z, —d» z-and Az = b.

Finally, we show that z, —do z and Az = b. Let us choose, for fixed b € Y and
n 2 ng, Tp € X, with Ayz, = @Qab. Then we have sup, ||z,|| < oo. It is obvious
that’ ||Anzn — Qnb]| = 0 as n — co. The A- regularity of the operator A ensures the

existence of a subsequence {zn'} of {zn} such that T 2, 7 and Az = b. It follows

that each subsequence {z,+} of {z,} has another subsequence {z,,u} with v 5 z and
Az = b. The limit element z is the same for all subsequences since-the equationAz = b
has exactly one solution z. It follows that the entire sequence converges discretely to z,
that is z, 2, z. As a matter of fact, this follows from an analogous argument as in the
proof of the convergence principle [9 Proposition 10.13 (1))

Step (C2) = (C1). The proof of this implication is trivial.

Step (C1) = (C3). For given b € Y, we solve the equation Az = b (z € X). To
show that A : X — Y is A- regular, assume sup,, ||z,|| < oo and Anz, 2 b, that is,
|Anzn = Qnbdl] = 0 as n — oco. For the sake of brevity, we shall write n for n'. To this
end, by the stability and consistency conditions, we obtain, as n — oo,

p(llzn — Razl||) < l|Anzn — AnRnz| < ||Anzn — Q?‘b" + ||Q,,A:t — AnRaz|| — 0.

This implies that ||z, — Rnz|| — 0 as n — oo, that is, the operator A is A-regular @

Remark 1.4. Suppose that we replace the assumptions for the connection operators
E, and Q, in Theorem 1.1 by the following:

(A4) E,: X, — X and Q,, :Y =Y, are lmear and contmuoua with sup,, ||E I| < o0
and sup,, [(@nll < oo.

(A5) mg is compatible, that is, lim,, .o ||E R,z —z||x =
Then A- rcgulanty implies A-properness.

«

- Proof. Since A: X — Y is A-regular, this 1mphes that there exists a subsequence,

again denoted by {z,}, such that z, 4 zin X, that is, [£n = Raz|| —= 0 as n — oo.
Since sup,, || Ex|| < oo, we obtain ||Epzn— EqRpz|| — 0 as n — oco. By the compatibility
condition (A5), it follows that ||E,z, — z|| — 0 as n — oo, that is, 4 is A-proper.

Now, in the light of Remark 1.4, we give the A-regular version of Petryshyn s the-
orem [4].

Theorem 1.5. Let m; = {Xn,Yy, En, Ru,Qn} be a consistend and stable approzi-
mation scheme represented by Diagram 1 with the following assumptions:

(A) Admissible Inner Approzimation Scheme. m; is an admissible approzimation
scheme, that is, we have the following:
(i) X and Y. are infinite- dimensional normed apaces over K |
(i1) X, and Y, are finite-dimensional normed spaces over K with dim X, = dimY,.
(ii) E, and Q. are linear and continuous operators with sup, ||Eq|| < oo and
sup, ||@nll < co. All operators A, = QnAE, are nonlinear and continuous,
and R, are also nonlinear.
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(iv) Compatsbility Condstion (A5) is satisfied.

Then equation Az = b, for each b € Y, is solvable and uniquely approzimation-solvable
and the operator A: X —Y is A-regular with respect to =, .

Corollary 1.6. Let m; be an admissible inner approzimation scheme. If the oper-
ator A : X — Y is A-regular with respect to w1, and if C : X — Y is compact, then
A+C:X DY is also A-regular.

Proof. For brevity, we shall write n for n'. Let sup,, ||za] < oo, and let A,z, 2p,
that is, imy, o0 ||AnZn — @nbl| = 0 with A, = @,(A + C)E,,.. Since sup,, || Ex|| < oo,
the sequence {E,z,} is bounded. Given that the operator C is compact, there exists a
subsequence of {z,}, again denoted {z,}, such that

.CE,,:c,,.—-»z- inYasn;»oo. (5)

Since sup,, ]|@n|| < oo, this implies that ||QnC Enzn — @nz|| — 0.as n — oo. It follows
that limp o0 ||@mAErz, — @u(b — 2)]| = 0. Given that the operator A is A-regular,
there is a subsequence, again denoted by {z,}, such that lim,—~ ||zn — Rnz| = 0 and
Az = b — z. Since sup,, |En|| < 00, this implies that ||[E,z,, — ExRuz|| — 0 as n — oo.
- By the compatibility condition (A5), we get

IEnzn -zl >0  asn — co. , (6)
Since C is compact, by (5) and (6), we obtain Cz = z. Hence, Zn 4 z and (A+C):c =b,

that is, A + C is A-regular @

Here we consider an example, in which we compare the .A-propemess with A-
regularity.

Example 1.7 [2: Theorem 17.1]. Let X be a Banach space, T € L(X), X, a
closed subspace of X and P, : D(P,) C X — X, a (possibly) unbounded projection
onto X, such that R(T) C D(P ) and P,T € L(X). Consider

=Tr+y withye D(Pa) and 2 =Toz+yn with Tn € L(X»)
for yn, € X,. Suppose that (I -T)~! € L(X) and
ITn = PaTix = 0, it = PaT|l-= 0, llyn = Payll = 0, |IPay —yll = 0.

Then z = T,z +y, has a unique solution z,, for all large n, and z, — 29 = (I - T)y.

Note that if we try to place this result in an A-proper setting of Theorem 1.1 under
the approximation scheme represented by Diagram 1, it is difficult, while it is easier to
ha.ndle with an A—regula.r setting.
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2. A-Regularity in Banach spaces
Let 73 = {Xn, X, En, Rn, E;} be an approximation scheme represented by the diagram
x 4 x

R.ITE. . |E;

It

Xa X:

Diagram 2

Here X is a real reflexive separable infinite-dimensional Banach space. Let {Xn} be

a Galerkin scheme in X with X, = span{ein,...,€nm},n € IN. Let E, : X, = X

be the embedding operator with X,, C X. The connection operator.R, : X — Xy is

constructed in a manner that, for each z € X, there exists at least one element R,z

such that ||z — Raz|| = dist(z, X»). Let all operators A, = E;AE, be continuous.
Consider the operator equation

Az=b (z€X,beX") . NG
along with the approximate equations
Anzn = Eb (2, € Xnn=1,2,..) . o (8)

with respect to approximation scheme m,. For n = 1,2, ..., the approxiiate equations
above are equivalent to Galerkin equations ' ' '

[AZn,ejn] = [brejal  (En € Xnij=1,.0,m") )

where [, ] is the dual pairing between X* and X.

Theorem 2.1. Let m; = {Xn, X2, En, Ra, E3} be an approzimation scheme repre-
sented by Dtagram 2. If the operator A : X — X* is continuous and uniformly mono-
tone, then A is A-regular and, for each b € X*, the equation Az = b (z € X) is uniquely
approzsmation-solvable. If C : X — X' 1s compact then the operator A+C: X — X*
s A-regular.

. Proof. Under the assumptions, it follows easily that w, is an admissible approxi-
mation scheme with the consistency and stability ensured by the uniform monotonicity
of the operator A : X — X*. To this end, it suffices to show that A is A-regular. Let
sup,, ||za]] < 00 and Anz, 2 bin X* for £, € Xn. Since X is reflexive, there exists a
subsequence, again denoted by {z}, such that z, =z in X. Since {X,} is a Galerkin
scheme, dist(z,X,) — 0 for all z € X and, hence, it follows from the construction of
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the operator R, : X — X, that |z — Rnz]| = 0. This implies that — AR,z — b— Az
as n — 0o. Thus, z, — Raz 0. Now, by the stability condition, we have, as n — 00,

;tv(||z" - R,,:cll) <[Anzn — AnRpz, 25 — Raz)
= [Anzn — E b+ Ejb— AnRunz,2, — Raz)
= [AnzZn — E}b,zn — Ruz] + [Epb — AnRnz, 2, — Raz)
= [Anzn — Ejb,zn — Rpz] + [Ejb— EJAR,z,2, — Raz]
= [AnZn — E}b,zn — Rnz) + [0 — AnRnz,Enzn — E Ry
= [AnZn — E}b,zn — Rnz) + (b — AR,z,z, — Raz] — 0.

It follows that ||z, —~Rnz|| — 0, that is, z, <, z. Since A is continuous and |zn—Rpz| —

0, we get Az = b. Hence, A is A-regular, and Theorem 2.1 follows from an application
of Theorem 1.1 B

Remark 2.2. Under the assumptwn.s of Theorem 2.1, z, -1) I impies T, — I,
and, for T,u € X, we have that z= du tmplies z = u.
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