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0. Introduction 
In their 'fundamental papers [1] - [4], Adamjan, Arov and Krein studied carefully the 
classical Nehari Problem (see [221) and its matricial generalization. Influenced by the 
methods and results used there Cotlar arid his collaborators initiated a systematic re-
search of various types of Generalized Nehari Problems (see, e.g., [5), [9]. [20], [15], [171). 
In particular, Cotlar and his group recognized that several important problems of clas-
sical analysis can be reformulated as special Generalized Nehari Problems. In this way, 
short proofs of various, well-known theorems could be constructed. In this connection we 
mention the Helson-Szegô Theorem on the angle between sübspaces, the Devinatz-Widom 
Theorem on invertibility of Toeplitz operators, and some theorems due to Koosis on the 
Hilbert transform (see [6]). The main goal of our paper is to show that the spectral 
factorization problem turns out to be intimately related to an appropriately constructed 
Generalized Nehari Problem for matrix-valued Carathéodory functions. Our method is 
essentially based on recent results on Weyl matrix balls associated with matrix-valued 
Carathéodory functions (see [18), [191). 

1. Notation and preliminaries 
Throughout this paper, let m, p and q be positive integers. We will use EV0 and cT to denote 
the set of all nonnegative integers and the set of all complex numbers, respectively. 
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Further, let JD := {z EfT: IzI < 1) and T {z EG: Izi = 11. The linear Lebesgue-
Bore! Borel measure on T will be designated by i. If X is a nonempty set, then we will 
write pxq for the set of all px q matrices each entry of which belongs to X. The symbol 
°pxq denotes the null matrix that belongs to 9X9 , whereas 'q stands for the q x q identity 
matrix. In cases where the size of the null matrix (respectively, the identity matrix) is 
clear, we will omit the indexes. If A and B are p x p Hermitian matrices, then A > B 
(respectively, A > B) means that A - B is nonnegative Hermitian (respectively, positive 
Hermitian). Further, let (respectively, T') be the set of all p x p nonnegative 
Hermitian (respectively, p x p positive Hermitian) matrices. A p x q matrix K is called 
contractive if I > KK. The set of all p x q contractive matrices will be denoted by K,xq. 
If A belongs to TPxP , then let ReA and QrmA be the real part of A and the imaginary 
part of A, respectively, i.e., we set ReA := 1 (A + A) and ZlIrnA := (A - A). If M 
stands for the complex linear space of all Borel measurable functions f: T - Q7px9, then 
2:={fEM:A({zET:f(z)O})=O}isa linear subspace ofM. IffEM, then 
we will use (f) to indicate that element of the quotient space M/Z which is generated 
by f. Obviously, (1) = (g) if and only if 1(z) = g(z) for .X-almost all z € T. 

2. Some facts on various classes of meromorphic 
matrix functions 

First we will summarize some basic facts on particular classes of holomorphic functions. A 
detailed treatment of this subject can be found, e.g., in [12]. Let J'I(JD) be the Nevanlinna 
class of all holomorphic functions g: 1D -' T which satisfy 

sup LJlog+Ig(rz)IA(dz) <+00 
rE[0,1) 21r 

where log x max(log x, 0) for each x E [0, cc). If g € H(li.), then a well-known 
theorem due to Fatou implies that there exist a Borelian subset B0 of the unit circle T 
with (B°) = 0 and a Borel measurable function g: T - ? such that 

limg(rz) = g(z) 

for all z E T \ B . In the following, we will continue to use the symbol g to denote the 
boundary function of a function g which belongs to N(). For each g € H(ID), the 
inequality

log g(z)..\	r.2o (dz) ^	21Jb0 Ig ( rz)I(dz)	 (1) 

is satisfied. By the Smirnov class X+ (D) we will mean the set of all g € .A1(ID) for which 
equality holds true in (1). The class .AI..(ID) proves to be a subalgebra of X(D). If g is an 
outer function in .A/(ID), then g necessarily belongs to 14(D). Observe that the Hardy 
classes H'(JD),i € (0, cc], are subsets of N+(ID). An important subclass of [H°°(ID)]'"9 
we will deal with is the Schur class S.7 (ID) of all holomorphic functions f: JD 
which satisfy I - f(z)f(z) 0 for all z E JD.
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We will essentially use the following maximum modulus principle for the Smirnov 
class. It follows immediately from the corresponding scalar version (see, e.g., [12, The-
orem 2.11]) and a simple property of contractive matrices (see, e.g., [13, Lemma 0.81 or 
[10, Lemma 1.1.11]). 

Lemma 1: If  E [)( (JD)]Px is such that Az) is contractive for \-almost all z E T, 
then f belongs to Spxq(ID). 

For the convenience of the reader, now we are going to recall some facts on outer func-
tions which belong to the matricial Smirnov class. A function 'I E [N+ (ID)] mxm is called 
outer (in [N+(1D)]mxm) if det is outer in A"(ID). An outer function 'I' € [H(iL)]mxm 
is called normalized if 1(0) is nonnegative Hermitian. The following useful properties of 
matrix-valued outer functions can be taken, e.g., from [7].	 - 

Remark 1: 4 E [JP+(Jf)]mxrn is outer if and only if 1 admits the representation 
= 1 j with some outer functions 0 1 € [H-(ID)]-x- and W € H—(ID). 

Remark 2: (a) If 1 is an outer function in [14(JD)]m*m, then det (z) 36 0 for all 
z € ID, and' is an outer function in [N+(ID)]mxm. 

(b) If 1' E [A/'+(D)]-x- satisfies det c1(z) 0 0 for all z € JD and if' belongs to 
[N+(JD)]mxm, then both 40 and	are outer functions in [N+(]D)]mxm. 

Remark 3: If both 4D and 'I' are outer functions in [g(li)]mxm then the product 
4W is also an outer function in [H+(ID)]mxm. 

Remark 4: 4 € [ H 2 (ID)] mXm is outer if and only if det$ is outer in H21m(1D). 

A function i € [ H 2 (ID)lmXm is called left maximal if 4 has the following property: 
For each E € [ H 2 (ID)] m with (	) = (	), the inequality E(0)E(0) 
holds true. A function 'I' € [ H 2 (ID)]mXm is said to be right maximal if '4' fulfills the 
analogous condition: If E € [ H2(ID)]mXm is a function such that () =	is satis-. 
fled, then	(0)(0)	'I(0)W(0). A left (respectively, right) maximal function is called

normalized if it has a nonnegative Hermitian value at z = 0. 

Let W : T - (T m beLebesgue integrable. A function E € [ H 2 (JD)] mXm is called a 
left (respectively, right) rninorant of (W) if 

	

W A-a.e. on T (respectively,	W -a.e. on T).	(2) 

A left (respectively, right) minorant E of (W) is said to be a largest left minor-ant (re-
spectively, a largest right minor-ant) of (W) if the following condition is satisfied: If 
is an arbitrary left (respectively, right) . minorant of (W), then (0)(0)	E(0)E(0) 
(respectively,	(0)(0)	E(0)E(0)).	.	. -.
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In the context of prediction theory of stationary sequences in Hubert space, a par-
ticular subclass of minorants plays a distinguished role (see, e.g., [26], [27]), namely the 
class of spectral factors. A function E € [H2 (1D)] mXm is called a left (respectively, right) 
spectral factor of (W) if = W X-a.e. on T (respectively, = W A-a.6. on T). If a 
Lebesgue integrable matrix-valued function W: T --+ (l? m is given, then the Left and 
Right Spectral Factorization Problem Associated with (W) consists of the description of 
the set LS ((W)) of all left spectral factors of (W) and the set RS ((W)) of all right spec-
tral factors of (W). If LS ((W)) (respectively, RS ((W))) is nonempty, then LS ((W)) 
(respectively, RS ((W))) contains a unique normalized left (respectively, right) maximal 
function (which provides all information for calculating the best linear prediction in the 
framework of stationary sequences in Hilbert space (see [26], [27])). 

The following theorem, which shows the existence of largest minorants, was proved by 
Masani [21], Rozanov [24] and Smuljan [25] in the context of prediction theory. 

Theorem 1: Let W: T +Q7 m be Lebesgue-integrable. Then: 
(a) There exists a unique largest normalized left minorant to of (W). This function 
is left maximal. 
(b) If  is a largest left minorant of (W), then 1 = '1 0U with some unitary matrix U. 

In particular, 0 is left maximal. 
(c) There exists a unique largest normalized right minorant To of (W). This function 

To is right maximal. 
(d) If 'I' is a largest right minorant of (W), then 'P = V'!.' 0 with some unitary matrix 

V. In particular, 'P is right maximal. 
(e) The set L ((W)) of all left minorants of (W) and the set R ((W)) of all right 

minorants of (W) admit the representations L((W)) .= {'I 0S : S € Sgxq(ID)} and 
R((W)) = {SW 0 . E S,., (D)). 

f) Suppose flog(detW)dA > -. Then to and 'Do are an outer left spectral factor 
Of (W) and an outer right spectral factor of (W), respectively. In particular, the sets 
LS ((W))' and RS ((W)) are nonempty. Moreover, the set of all largest left (respectively, 
largest right) minorants coincides with the set of all outer left (respectively, outer right) 
spectral factors of ((W)). 

3. On matrix-valued functions belonging to the 
classes of Carathéodory and Schur 

A function fI : JD - Ttmm is called m  m Carat hdodorij function if Cl is both holomorphic 
in JD and has nonnegative Hermitian real part efl(z) for every choice of z in D. We 
Will use Cm(ID) to denote the set of all m x m Carathéodory functions. One can show 
that Cm(ID) C [N+(ID)]m:m (see, e.g., [19, Corollary 2]). In particular, every m x m 
Carathéodory function has boundary values .X-almost everywhere on T. There are several 
interrelations between matrix-valued Carathéodory functions and the class Spxq(1D) of all
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p x q Schur functions. 

Let r E RV or r = oo. A sequence (Fk)..0 of in x m complex matrices is called in x m 
Carathe'odory sequence (respectively, nondegenerate in x m Carathéodory sequence) if, for 
every integer n with 0 < n r, the block Toeplitz matrix 

r0 kr;. r;	.... 

F 1 3zero ... 

Tn	 r2 f1 eFo ... 

1' l'n_i ...	eFo

is nonnegative Hermitian (respectively, positive Hermitian). If (r)	is a given seqñence

of m x m complex matrices, then the power series 

ul(z):=	pkzk , z E iD, 

defines an m x m Carathéodory function if and only if (F) 0 is an in x m Carathéodory 
sequence (see, e.g., [10, Theorems 2.2.1 and 2.2.2]). An m x m Carathéodory function C) 
is said to be nondegenerate if the sequence of the Taylor coefficients of J1 (in the Taylor 
series representation around the origin) is a nondegenerate m x m Carathéodôry sequence. 

Let n E llV0, and let (r) 0 be a sequence of mx in complex matrices. Then the 
set Cm[fo, Fi , . . . , 1',,] of all m x in Carathéodory functions Cl with first n + 1 Taylor 
coefficients i', i's,..., r (in the Taylor series representation of Cl around the origin) 
is nonempty if and only if (l'). is an m x m Carathéodory sequence (see, e.g., [14, 
Section 4]). If (r) 0 is a nondegenerate Carathéodory sequence, then Cm[ro, r1, . . . , rj 
can be described by certain linear fractional transformations (see, e.g., [16, Theorem 
28)). Furthermore, one can show that, for each z E ID, the set F(z) := (Cl(z) : Cl E 
Cm [I', r1,. .. , ']} admits a representation as a so-called matrix ball. To be more precise, 
there are functions M : if) V` ,,C* : ID - (l7 and R,. : ID -. (l1> m , which are 
explicitly constructed from i's, r1,. . . , r, such that 

F(z) = {x Eammx= M(z) + IzI'/2a(z)Ky2R(z), K E lKmxrn}:


(see [16, Theorem 29]). Thematrix-valued functions M ,,, ,C* and Rn are said to be

the Weyl-Carathe'odory center function, the canonical normalized left Weyl-Carathéodory 

semi-radius function and the canonical right Weyl-Carathéodorij semi-radius function, re-

_)n spectively, associated with



102	B. Fritzsche and B. Kirstein 

Now let ci be a nondegenerate m x m Carathéodory function, and let 

ci(z) = Erkz k, z e JD, 

be the Taylor series representation of Q. For each n E iN0, let and 1?.,, be 
the Weyl-Carathéodory center function, the canonical normalized left Weyl-Carathéodory 
semi-radius function and the canonical right Weyl-Carathéodory semi-radius function, 
respectively, associated with (r) 0. Then one can show (see [18, Theorem 5]) that 
there are (unique) functions	: JD .. ci%xrn and R. : ID —*	such that 

	

lim £(z) = L*(z)	and	Jim 1.,,(z) R.101(z) 
n-.Qo 

for all z E 10. Moreover, observe that 

urn M(z) = ci(z), z E D. 

We call £l and 7Z101 the canonical normalized left Weyl-Carathe'odory limit semi-radius 
function and the canonical right Weyl-Carathéodory limit semi-radius function, respec-
tively, associated with (the nondegenerate m x m Carathéodory function) fl. 

Theorem 2: Let Il be an rn x m Carathdodory function which satisfies 

log det [ ?eii] dA > —co. 

Then ci is nondegenerate. Let and l ClJ be the canonical normalized left Weyl-
Carat he'odory limit semi-radius function and the canonical right Weyl-Carathéodory limit 
semi-radius function, respectively, associated with fl. 

(a) If 4) is an arbitrary outer left spectral factor of (Rea), then 4) = £l. 
(b) If 0 is an arbitrary outer right spectral factor of (e), then ''W = Rj. 

Proof: Use Lemma 5, Theorem 7 in [19] and Theorem 1 I 

At the end of this section, we will recall the notion of nondegenerate p x q Schur 
functions. Assume that 1: JD —+	is holomorphic in D. Let 

	

f(i) =	A* zk , z E JD, 

be the Taylor series representation of f around the origin. Then one can show (see, e.g., 
[10, Theorem 3.1.1]) that f belongs to the Schur class Spxq(ID) if and only if, for each 
n E No, the block Toeplitz matrix

A0	0	0	... 0 
A 1	A0	...0 

S,:=	A2 A1	A0 ... 0 

An A_ 1 A_2 ...
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is contractive. If S is strictly contractive for each n E W0, then the p x q Schur function 
f is said to be nondegenerate. 

4. Spectral factorization as a generalized Nehari 
problem 

In this section, we will indicate that spectral factorization can be conceived as an appro-
priately constructed generalized Nehari problem. For this reason, we are going to start 
with a special case which sheds much light to the general situation. First we recall the 
following Generalized Nehari Problem (SNP) for matrix-valued Schur functions which was 
studied in [17]. (Observe that Bakonyi [8] and the authors [11] treated particular Nehari 
Problems of this type with pseudocontinuable original data.) 

(SNP): Let f: ID _*(l?T, g: ll) and h: ID _j5X be matrix-valued function 
which are holomorphic in D. Describe the set M(f,g,h) of all functions 
e: ID _fqXr such that

:=(1	
.)	

•(3) 

belongs to 

Obviously, if M(f,g, h) is nonempty, then f,g and h are matrix-valued Schur functions. 
We will turn our attention to the situation that the block e is quadratic and that some 
of the blocks 1,9 and h identically vanish. 

Theorem 3: The following statements hold true: 
(a) Let h  Sqx,(ID). Then	 is exactly the set L(h) of all left mino-

rants of (I—/i/f), i.e.,

M(Opxq,Opx,,h) = {S: SE S95(iD)} 

where o is an arbitrary fixed largest left minorant of (I - fr h). 
(la) Let f E S(1D). Then	 is exactly the act R(f) of all right


minorants of (I - L7) i.e.,

= {StI': S € S,.(ID)} 

where t& is an arbitrary fixed largest right minorant of (I - LL). 

Proof: First assume that e € M(OP x q , °pxa, h). Then e € Sqxq(ID) 
and (e, h) € Sqx(q+.)(ID). Hence, I - h(z)h(z) . e(z)e(z) for all z € D. This implies 

(4) 

\-a.e. on T. Thus, ebelongs to L(h).
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• Conversely, now suppose that e is an arbitrary element of L(h). Then e is a function 
which belongs to [H2(ID)]	. [g+(j)]x and satisfies (4) 5-a.e. on T. Therefore, 
I - ( e, h) (e, h)	0 .\-a.e. on T. Because of (e, h) E [4(fD)] , and Lemma 1, we 
then  that Te, h) E Sqx(g+,)(JD). Consequently, e E M(Opxq, °pxa, h). The application 
of parts (b)and(e) of Theorem 1 completes the proof of part (a). Part (b) can be shown 
analogously I 

The Generalized Nehari Problem for matrix-valued Schur functions can be considered 
as special case of the following Generalized Nehari Problem (CNP) for matrix-valued 
Carathéodory. functions: 

(CNP) : Let . a D . CJ !,fl : 11) ...j'PXQ and ô: ID T91q be matrix-valued functions 
which are holomorphic in. ID. Describe the set iV(cx,/3,ö) of all functions 

ID	lTqxp such that
fl (cx/3 

S 
belongs to Cp+q(ID). 

This problem was posed by V.E. Katsnelson [20] and studied by the authors in [15]. In 
the following, we will consider the particular case that 0 identically vanishes. However, 
first we will show how the Generalized Nehari Problem (SNP) for matrix-valued Schur 
functions formulated above can be expressed as Generalized Nehari Problem for matrix-
valued Carathéodory functions. 

Lemma 2: Let A E (fX Then the matrix 

(io 
2A I 

has nonnegative (respectively, positive) real part if and only if A is contractive (respec-
tively, strictly contractive). 

Proof: Obviously, ReG = Thus, eG0 if and only if I - AA 0 (see, 
e.g., [10, Lemma 1.1.12]) I 

Remark 5: Let V € JqXg be nonsingular, and let r E qxq Then Ker 0 if and 
only if e(VrV) 0.	• 

If e is a q x r matrix-valued function, then we set 

•	•	•	e0 :=(0'(T	
• •

	 ( 5) 

We will use the symbol Z ,9,, , , to denote the set of all such (p + q) x (r + s) matrix-valued 
functions e0 given by (5) where e is some q x r matrix-valued function.,
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Lemma 3: Let f ID - QYP,g : ID -' (l?Pxs and h : ID -' a' be matrix-valued 
functions, and let 

F:=	'2f.
	G:=(	

) 
and H:= 	

.).	
(6) 

I	 2g 0	 2h

(a) The set M(f,g,h) is nonempty if and only if the -gets H(F,G,H) and Zp,q ,,. have 
a nonempty intersection. 

(b) Suppose M(f,g,h) 96 0. A function e : ID -	belongs to M(f,g,h) if and 
only if the function e° given by (5) belongs to H(F, C, H). 

Proof. First suppose that M(f,g,h)	0. Let e € M(f,g,h), i.e., the function S

given by (3) belongs to S(p+g)x(r+,)(ID). Hence, Lemma 2 shows that 

/ i o\ 
F:=25 

i)	
(7) 

> satisfies er = 0, i.e., I' belongs to Cy,.fq+r+j(ID). Setting 

I 0 0 0 

' " V:= and	fl:=(1	
),	

(8) 

00 °'g S

we obtain V1'V = ft By virtue of Remark 5, we get ?ell 0, i.e., Il belongs 
to Cp+q+r+a(ID). Consequently, e0 E H(F, C, H). From (5) we see that e0 belongs 
obviously to Zp,g,r,,. Conversely, now suppose that .,V(F, C, H) fl Zp,q,r,. 0 0. Let 
E E H(F, C, H) fl Zp,q,r,a. Then there is a (unique) holomorphic function e: JD : qxr 
such that E = e0 , and S1 defined by (8) belongs to Cp+q+r+,(1D). If V is given by (8), 
then we obtain VIZV = I' where I' is defined by (3) and (7). Remark 5 yields Rer : 0. 
Because of f E Cpqr+,(ID), the matrix-valued functions f,g and h are holomorphic in 
JD. Hence, I' E Cp+q+,+,(ID). Applying Lemma 2 we obtain S E Spxq(JD), i.e., e belongs 
toH(f,g,h)i 

Now we will study a structured Generalized Nehari Problem for matrix-valued Cara-
théodory functions. For this reason, we need the following algebraic result. 

'I 
Lemma 4: Let A E	B € c ' q , K € QpXq, and let 

c.—( AA AKB 
BKA BB 

Suppose det A 0 0 and det B 36 0. Then 
(a) C >+ 0 if and only if K is contractive. 
(b) G> 0 if and only if K is strictly contractive. 
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Proof: Use [10: Lemma 1.1.121 and G = diag(A,B). ( K I') . [diag(A,B)] I 

The following theorem is the main result of this paper. Its proof is based on four 
cornerstones, namely, the maximum modulus principle for the Smirnov class, Theorem 
2, the algebraic Lemma 4, and a nonobvious inequality for matrix-valued Carathéodory 
functions which was recently found (see [18, Theorem 5]). 

Theorem 4: Let a € C(ID) and S € Cg (JD) be such that 

- Idet[ecx)d> —oo	 (9) 27 J 
T 

and
_Jdet[e]d> -00.	 (10) 

Further, let I' be an outer right spectral factor associated with ( !a + !Z), and let 4 be an 
outer left spectral factor associated with ( + f) . Then )i(cs,Opxq,5) = : S E 
Sqxp(ID)}. In particular, N(a,Opxq,5) is a nonempty subset of[Hi(JD)]xP. 

Proof: We know from Lemma 5 in [19] that both a and S are nondegenerate matrix-
valued Carathéodory functions. Suppose S € Sqxp(ID). Because of 4 € [H' (D)]qxq and 
'I' € [H2(JD)]PXP, the function Y := SW belongs to [Hi(JD))xP. In particular, 

'a o\ c1:=(	s)	 (11)


is holomorphic with

efl(z) - ( ?ea(z)	Y(z)	 (12) -	Y(z)	e5(z) ) 

for all z € ID. Using Theorem 2 (and the notations given there) we get 

W(z) lIl (z) = 1 12 ,j (z)	 (13) 
and

= £(z)	 (14) 
for all z E 1D. By virtue of Lemma 9 in [18], 1 := (I - 2a)(I + 2a)' and 
g := (I - 25)(I + 25)_i are nondegenerate matrix-valued Schur functions. From The-
orem 5 in [18] and Theorem 5.6.4 in [10] we then see that 

1[2 ](z)	([I + f(z)]')[I - f(z)f(z)][I + f(z)]'	 (15)

and

£l(z) 5 [1 + f(z)]'[I - f(z)f(z)]([I + f(z)])	 (16) 
hold true for all z € D. Parts (f) and (g) of Lemma 1.3.12 in [10] then imply that the 
right-hand sides of (15) and (16) coincide with 1e[2a(z)] and e[25(z)], respectively. In 
view of (13) and (14), it follows then 

W(z)W(z) < e[2a(z)] = a(z) + a(z)	 (17)
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and

	

'I(z)4(z) 15 e[25(z)] = 5(z) + 5(z)	 (18)


for each z € D. Hence, in view of (12), we thus obtain 

-
1 ( t(z)iI'(z)	Y(z)	

) Y( z)	4(z)(z) 

/  = diagt(z), (z)j.	
I	S (z) 

S(z)	
I ) diag[(z), (z)] ^ 0 

for all z € ID. Therefore, fl € C,+, (10). This implies YE N(a,Opxg,5). 

Conversely, now assume that Y is an arbitrary function which belongs to .AI(a, OP. q, 5), 
i.e., Cl defined by (11) is a (p + q) x (p + q) Carathéodory function. In particular, 
Cl belongs to the Smirnov class [A1+(1D)]()x(). Hence, Y € [N+(1D)". Since 

(respectively, 0) is an outer right (respectively, left) spectral factor associated with 
( + ) (respectively, ( + f)), we see from (12) that 

	

((L(e)	Y* (o \ 
¼.	no() •() ) ^0	 (19) 

holds true for A-almost all E T. Because 1 and W are outer functions in [H2(JD)]Px 

and [H2(JD)J9xP, respectively, •' and I' belong to [H2(1D)j and [H2(ID)]'"P, re-
spectively. Therefore, S := 4YW 1 is a member of [H2 (ID)]' with () = 
From inequality (19), Lemma 4, Remarks 2 and 4 it follows that 5(4) is contractive for 
)t-almost all C € T. Then Lemma 1 provides finally S € Sqxp(JD)I 

Observe that, for the particular Generalized Nehari Problem considered in Theorem 4, 
we were able to obtain an analytical description of N(a, °pxq, 5), whereas in the general 
case studied in [15] we got a purely algebraic description of this set (in terms of the Taylor 
coefficients of a, and 5). 

In the situation of Theorem 4, we will call a function X a canonical element of 
N(a, °pxq, 5) if there exists an isometric or coisometric q x p matrix U such that X = 
4U'1I. 

Corollary 1: Let a E C9 (ID) and 5 € Cq (ID) be such that (9) and (10) are satisfied. 
Then every canonical element of N(cs,Oqxq,5) is an outer function in [Hh(jD)]9x. (In 
particular, the set .iV(a,Oqxg,5) contains outer functions belonging to [Hl(JD)j)'.) 

Proof: Let U E	be unitary. Let 'I' be a right outer spectral factor associated 

with (a + &), and let 1 be a left outer spectral factor associated with ( + f) . Since 'I' 
and 4 belong to [H 2 (ID)]	it follows 4UW E [H'(ID)]. The application of Theorem

4 yields the rest of the assertion I
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Note that, in view of part (f) of Theorem 1, the following theorem characterizes the 
set of all outer spectral factors as canonical elements in A ((a, °qxq, 5). 

Theorem 5: The following statements hold true: 
(a) Let the function a € Cq (ID) be such that condition (9) is satisfied. Then 

A1(a, °qxq, 5) is exactly the set of all right minorants of(cr +cr') . The set of all largest right 
minorants of ( + ) coincides with the set of all canonical elements in .Af'(a, °qxq, 5). 

(6) Let 5 € Cq (JD) be such that (10) is fulfilled. Then A1(cr, °gxq, 5) is exactly the set 
of all left minorants of ( + 6). The set of all largest left minorants of ( + ) coincides 
with the set of all canonical elements in iV(a, °qxq, 5). 

Proof: Let 'I' be an arbitrary outer right spectral factor associated with 
(!a+ cs). By virtue of Theorem 4, we get then N(a, °qxq, 5) = {SW : S € Sqxq(lD)}. 
Thus, Theorems 1 and 4 yield the assertion stated in (a). Part (b) can be proved analo- 
gously to part (a)I 
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