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Extending Chains of Factorizations

and. 
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Abstract. We compute the minimal negative signature for a problem of extending chains of 
factorizations in spaces with indefinite inner product spaces. As an application, we obtain 
a formula for the minimal negative signature of Hermitian completions of tridiagonal partial 
block matrices. 
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1. Introduction 
A problem of extending factorizations of type XX in KreYn spaces was considered in 
[7] as a generalization of an abstract pattern of M. A. Nalmark and M. G: KreTn, in 
order to explore the intimate connection between the lifting of operators with control on 
the negative signature of defect, the lifting of commutants in KreTn spaces and various 
interpolation problems. 

The threshold of the above mentioned problems into the extending factorization 
problem is an abstract one-step completion of a partial block matrix operator. Moti-
vated by other problems, there exists a parallel interest in problems of computing the 
negative signature, inertia, and rank for completions of partial matrices, as illustrated 
in [4, 5, 8 - 12, 15, 17, 18]. The approach of these kind of problems has to face two main 
obstructions: the structure of the underlying graphs of the given partial matrices and 
the singularity of some submatrices combined with their interactions of certain kernels. 

Given a partial Hermitian matrix H, i.e. a matrix in which certain entries are 
specified and the others are free, we denote by Ch (H) the set of all Hermitian completions 
Al of H. The problem we are interested in is to determine the number 

mm (r'. — (H-ic(H) E E Ch(H)}.	 (1:1) 

Let us recall that c(H) denotes the negative signature if H is a fully specified matrix 
and, in case H is only a partial matrix, then it is defined as the maximum of the negative 
signatures of all its principal submatrices. 
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The problem whether there exist Hermitian completions E such that ic(H) = 
i(H) was considered earlier by R. Crone, C. R. Johnson, E. M. de Si, and H. 
Wolkowiecz [15] for the positive definite case (i.e. r. — (H) = 0), and by C. R. Johnnson 
and L. Rodman in [17] (for c(H) > 0 but with the additional requirement that some 
of the principal submatrices of H are non-singular), when the role of the chordal graphs 
was also emphesized. In connection with this kind of problems the case of band matri-
ces was intensively studied by H. Dym and I. Gohberg [10], R. E. Ellis, I. Gohberg and 
D. C. Lay [11], and I. Gohberg, M. A. Kaashoek and H. Woerdeman [13]. 

It was noticed just from the early beginning that in case the non-singularity assump-
tion is dropped, it is possible that there exists no H € Ch (H) such .that ic(H) = ic(H) 
(see, e.g., [16]) and the calculation of the number in (1.1) becomes quite difficult. Dif-
ferent approaches for calculating this number have been used by J. Dancis [8, 9], J. H. 
Maddocks [18], and the authors [5, 12]. 

The aim of this paper is to give a formula for computing the number in (1.1) for 
a tridiagonal block matrix, when no non-singularity is assumed. The technique we use 
is in the spirit of our approach in [7], that is, we formulate a problem of extending 
chains of factorizations of type X O X. The main result for the abstract case is presented 
in Theorem 2.3. The novelty of this result, when compared with the corresponding 
result in [7], is that the tridiagonal case cannot be reduced to an iteration of the one-
step completion, as in the positive definite case. The formula we obtain shows implicitly 
that this number reflects a global character of the chain of factorizations and emphasizes 
the interactions occuring between certain kernels. 

We apply this result to the tridiagonal block operatorial matrix completions in Sec-
tion 3. Then we specialize to the finite-dimensional case where the result (see Theorem 
4.1) is in terms of the negative signatures of certain reduced Schur complements and 
certain numbers which "measure" the spatial position of the blocks with respect to the 
kernels of their intersection blocks. This enables us to obtain necessary and sufficient 
conditions for the existence of completions preserving the negative signature. 

In this paper we use the same notation as in [7] and only occasionally recall some 
definitions, in order to avoid confusions. The small amount of facts from the theory of 
operators in KreTn spaces used here can be found in [2, 3], if not precisely indicated in 
the text. 

2. The problem of extending chains of factorizations 

Fix a positive integer N and let there be given an N-tuple of KreTn spaces ())	and 
an (N + 1 )-tuple of Kreln spaces	Also, there are given operators Xi E £(K,, 90

and 1' E £(K1, Q,+ 1 ) such that 

x!x, = YY = Z,E £(K 1 )	(1 € {l,.. . ,N})	 (2.1)

X1  i+1 Y = V1 E £(1C1,)C,1) (i € {1,. . . ,N - 1}). (2.2) 

For simplicity we denote X = (X)( 1 and )' = (Y,)( 1 and let X = ( j)_' be an 
(N + 1)-tuple of cardinal numbers. The problem of extending chains of factorizations 
has the following statement.
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Problem EF (X ,Y;ic ) : Given X = (X) 1 , Y = (Yi )N I and c= (?cj).t such 
that (2.1) and (2.2) hold, it is required to determine (if any) a quadruple (; X, Y; W) 
such that: 

(a) ç=(g ) 1 , where 7 are Krdn spaces with c — [] = ,c (i = 
(b) k = ( .t,)	and $' = (1)	are such that 

(1) X• E £(K1,Q1[+]g:) and 1' E £(K,,c1+1[+]g:+1) are extensions of X, and 
Y, respectively (z = I,—, . , N). 

(2)X!X=YY,=Z(i=1,...,N) 
(3).t!+1=V(i=1,..,N-1). 

(c) W = ( T,)	are unitary operators such that 
(1) W1 E £(911[+] 1 19[+19), and W1 = ±, ( i = 1,... ,N). 
in i j N	,r	T17 f'	- -' r it's 
('1 Vs=o "1	 - liL+J.l1. 

It is clear that letting N = 1 we obtain the extending factorization problem as 
considered in [7]. Our main problem will be, similar as in [7], to determine the minimal 
sc such that problem EF(X, )); sc) is solvable. Before focusing on this we recall some 
facts and definitions. 

We start with a first remark that we can assume, without restricting the generality, 
that all the Krein spaces K, (i = 1,2,... ,N) are positive definite (i.e. Hubert spaces). 
Indeed, if this is not the case, then we fix on each Krein space K, a fundamental 
symmetry Ji and consider the induced Hilbert spaces (K,,( . , .) j.). The corresponding 
problem EF(X, Y; ) has the same statement with the only difference that instead of 
Z, and V, we have J,Z1 and JV,, respectively. From now on we assume that Ki are 
Hubert spaces for all i = I,—, N. 

Let now K be a Krein space and Z E £(K) be selfadjoint, Z = Z. We introduced in 
[6] the induced Krein spaces ?(z and Kz which are unitary equivalent (see the beginning 
of Section 3 for the definition of the Krein space Kz). The Krein space flz is defined 
as follows: We fix a fundamental symmetry J on K, consider the polar decomposition 
of the selfadjoint operator (in a Hilbert space) JZ, let this be JZ = SjzIJZ I, and then 
define Nz as the space K e ker JZ, endowed with the new indefinite innner product 
defined by

[x, y) = (Sjzx, y)j	(x, y E K e ker M. 

Let i E 11, 2, . . . , N) be arbitrary. From Lemma 3.1 in [5] and (2. 1), X, are uniquely 
represented by

X = [Vx,IZII1/2 X 1	 (2.3) 

where
V, : 1 (I Z,I"2 ) (ç 7(z5) —' 

is isometric such that V 5 IZ,I"2 is bounded and the operator 

= X, I kerZ1 E C(kerZ1,G,) 

has its range 1(X9) neutral and included in 1(Vx,)1 . In particular 1 (X9) = 
(the isotropic part of R(X,)).
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Following [7], the operator X 1 has the property () if: 

(y) The isometry Vx, in (2.8) extend., (uniquely) in £(Nz.,g,). 

iFrom Lemma 3.2 in [7] this is equivalent with the condition that X I(kerZ ) extends 
(uniquely) to an isometry in C(K, •) and, as a consequence of this, 1(X) is a pseudo-
regular subspace of G i and R(X 1 ) = 

Similar considerations can be made for the operators Y,. 
Coming back to the problem EF(X,Y;), a special role will be played by the 

orthogonal projections in K, 

P, = P. and Q1 = P.	(i = 1', 2,... , N).	 (2.4) 

Also, recall that for two orthogonal projections P and Q acting in the Hilbert space N, 
P A Q denotes the orthogonal projection of H onto R(P) fl 1Z(Q). 

Proposition 2.1. Assume that for all i E {1, 2,. . . , N) the operators X 1 and Y1 
have the properly (y) and the projections P1 A Q i have finite ranks. If the problem 
EF(X, Y; ,K) has solutions, then 

•	ic+rank(P1(I—Q1))+iC[7(X1)1]	
25 

= ii +rank(Q(I—P))+K_[(Yj)]	(i = 1 ...... N)	. )


and

r- I rank (Qi(I—Pi)) 

', max {rank(P1 _ i (I_Q 1 _ i )), rank (Q1(I_.1))}	(i=1,...,N)	(2.6)


N+1 rank(PN(I — Qiv)) 

must hold. 

Proof. From Lemma 3.3 in [7] we know that for all i E 11, 2,..., N) we have 

xi + rank(P1 ) + ic[1Z(X1 )'] =	+ rank (Q,) + r.[1(Y)1].	(2.7)


On the other hand, taking into account the decompositions 

1Z(P1 ) = R(P1 A Q,) 1(P,(I - Q1)) 
1Z(Q 1 ) = 1(P1 A Qt) 7Z(Q 1 (I - F5)) 

we subtract rank (P, A Q,) from both sides in (2.7) and obtain the equation (2;5). The 
inequalities (2.6) are obtained exactly as in the proof of Theorem 3.4 of [7) 0
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The linear relations (2.5) and the constraints (2.6) are the basic conditions that 
sc = (Pc)' satisfy. If some of the quantities appearing there are infinite, then there 
are many possibilities for sc such that problem EF(X, Y;sc) has solutions. However, 
if all these quantities are finite, then the set of (N + 1)-tuples r. for which problem 
EF(X, ); ) has solutions depends only on one linear parameter, which can be chosen 
one of sc. In particular, in this case, the problem of determining the minimal value 
of sc for which the problem EF(X, )'; sc) has solutions does not depend on which order 
relation on 1R!''+l (e.g. product order, lexicographic order) we consider. 

For clarity reasons we consider first a linear programming problem which yields the 
minimal value of sc in a certain case. Let f ail, a12}1 and { rj_l },2,rjl ' consistsof 
real scalars and let us consider the relations 

sc, + r12 + a, 1 = ic 1 1 + r 1 + a 1	(1 < i < N)	 (2.8) 
,cj max{r_ 12 ,r, i }	(1 < i < N + 1)	(2.9)


for an (N + 1)-tuple n = 

Lemma 2.2. Let  E {1,2,...,N+1} be determined such that 

1-1 
max{r... 1,2 ,r i } + E [(afl -- akl) + ( fki - rk2)] 

k=i	 (2.10) 
=	

Imax{rn_12rnl} + > [(ak2 - akl) + (rkl - rk2)]} 

and then define ,min = (,cmlfl)N+1 as 

mm

I max{r1_i ,2,rt) +	1(	+	' -	i11 ^I < j (2.11) 
max{r1_1 ,2,r1i}	 if i=j 

I max{r1_i ,2,r,j} +	[(a - aki) + (rkl - rk2)] if j < i < N + 1. 

Then re'n is the minimal (N + 1)-tuple satisfying the linear system (2.5) and the linear 
constraints (2.9). 

Proof. We first note that in (2.11) we use. the convention that a sum whose begin- 
ning index of summation is greater than the ending index of summation is null. 

The linear system (2.5) represents a straight line in jN41 which is equally inclined 
with respect to each of the N + 1 coordinate axis. On the other hand, the constraints 
(2.9) represents a rectangle whose N + 1 faces are parallel, respectively, with respect to 
the N + 1 hyperplanes determined by the coordinate axis. Thus, there exists and it is 
unique the minimum of re satisfying the conditions (2.5) and (2.9). Moreover, denoting 
by sc"" this minimal solution, there exists at least one index j E 11, 2,..., N + 1} such 
that c" = max{r,_ 1 , 2 ,r11 }. The fact that this index  can be chosen as in (2.10) is a 
simple verification and now the formulae (2.11) are produced from (2.5) 1
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Coming back to the problem EF(X, Y; ) we make the following notation: 

	

r, 1 = rank (Q 1 (I - Ps)),	r,2 = rank(P1 (I - Q))	(2.12) 

	

a 1 = iC[1?.(X1)1],	a2 =	 (2.13) 

for all i E 11,2,. . . ,N} and, by definition, we put r01 =	 = 0. 
We are now in a position to prove our main result. 

Theorem 2.3. Assume that the operators X1 and 1', have the property (7) and also 
that the numbers rank (P,), rank (Q,) and [1Z(X1 )'], ic[1Z(Y)1] are all finite. Then, 
with the notation stated in (2.12) and (2.13), the (N + 1)-tuple Km1n defined in Lemma 
2.2 is the minimal value of the (N + 1)-tuples r. for which the problem EF(X,Y;ti) is 
solvable. 

Proof. From the Proposition 2.1 and Lemma 2.2 it follows that if ,c is an (N + 1)-
tuple for which the problem EF(X,Y;) is solvable, then ic > ?C", where mmn is 
defined in Lemma 2.2. 

Conversely, we will show that problem EF(X, Y; is solvable by producing an 
explicit solution. To this end, let us first notice that, for an arbitrary i E {1, 2,.. . , N), 
since X1 and Y1 have the property (7), we have the decompositions 

= £[+] [I(x) e J,R(X)] [+]r. 
= S[+] [7?(1';°) e J+ 1 R(Y°)} [+]s: 

where £1 ,C,S1 and S are regular subspaces such that 

R.(X1 ) 1 = 1.(X)[+]	and	R(Y)1 = 

and .1, are (fixed) fundamental symmetries on each of the Kren spaces 9i. 
If fi is a Hilbert space, then we denote by [fi ED fi] the Krein space obtained from 

the Hilbert space W ED fl with the fundamental symmetry J defined by J = ( ). We 
consider now a family of Krein spaces {i }', subject to the following conditions: 

(1) 9i , contains [fl i ® fl,] as a regular subspace, where fl, i is a copy of the Hubert 
space 1(Q(I— Ps)). 

(2) contains [flu2 ® flu] as a regular subspace, where fl 2 is a copy of the Hubert 
space 1(P1 (I - 

(3) If r_1,2 r11 , then fl11 g fl-1,2 and if ru1,2 r11 , then fli_1,2 c fli. 
(4) c[g,] = s". 

Then, let XS  be the embedding on the first component 

- Pd)) --[N11 e fld] 

and similarly, let 1'' be the embedding on the first component 

y1 : T(P1 (I - Qu)) c—' [flu e N12]
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and then extend X,' and Y' trivially onto the whole ker Z. Using these we define 

= [X Xi']' : kerZ 1 • 9[+][fl 1 (D will 

and similarly
kio = [Y° yl]t : kerZ1 -+ 9j+ 1 [+ ][fl12 ED fl12). 

With these definitions it is easy to check that 7.() = R(yoe ) , consequently, there 
exists an invertible operator Ti : R(Y°) -' 1(X) such that T,1'° = X? which (e.g. by 
Lemma 2.4 in [7]) can be extended to a unitary operator 

W, : (1(Y°) 0 J+11(Y°)) [+] [Hi2 ® fl12] 
-4 (7(x) e J1 7? (X?)) [+] [fl11 ® fl1] 

such that
Wio=±. 

Define

	

fci = [v 1 z' i	t]	 (2.14) 

	

= [vy,zii'	i>o]	 (2.15) 

and then extend W1 with VxV - In particular, we have 

	

W1 Y, = X1 .	 (2.16) 

On the other hand, since muh1 is a solution of the system (2.5) it follows that there 
exists a family of doubly contractive operators {C1 } 1 such that 

C, : £ [+](g 1,1 n [fl12 en12 ]) - 8 [+](g1,1 n [flu e fl11) 

Let us denote by

	

= £:[+](c+1,1 n [fl	fl12]) 

the domain of C1 , and also denote by 

= S[+](c1,1 n [fl1' ® fl11]-'-) 

its range space. We introduce now two families of Kren spaces {F}	and {J'}(

as follows:

= Dc[+]Dc;[+] - [+] Dc? ,[+]c[+]Vc[+]-- .[+]DCN 

= V . [+]Vc; [+] . - . [+]Vc. 1+121+JDc,j [+] -.. [+)VcN 

and using these we define the unitary operators W,' E £(F,Y) by 

= I1_l,l[+]R(Cs)[+]IN_l,2
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where R(C,) € £( 2 [+]Dc: , g [+]Vc,) denotes the elementary rotation of C (see [1] 
for the definition and the proof of the existence), I-i,i denotes the identity operator on 
the KreTn space VC,- 	... [+]Dcr  and 'N-1,2 denotes the identity operator 
on the Krein space	[+] ... [+)DcN. 

Finally, let us define the family of Krein spaces {)' by 

= ,i [+]Dq [+]Dc; [+] . . . [+]Dc. [+]Dc [+] .. . [+] Vc	(2.17) 

and then extend W1 E £(1[+]c 1 , g1[+}) with the unitary operator W1'. Extending 
trivially X 1 and Y, such that 

70C) c 1[+]	and	1t() c 

we claim that this way we have obtained a solution of the problem EF(X, )2; cm). 
Indeed, condition (a) holds since all of C are doubly contractive, i.e. Vci and Dc; 

are positive definite and hence, from (2.17) and the assumption (3) on gil , we have 

c[c] = -ic] = Tin 

The condition (b) follows from the construction of X 1 and Yj and taking into account 
of

J 7(l°_). 

The condition (c)/(1) follows since the extensions of X 1 and ki after proving (2.16) do 
not alter their ranges and, finally, the condition (c)/(2) follows from the minimaiity 
property of the elementary rotation (see [6]) U 

3. Completions of tridiagonal block matrix operators 

Before stating the problem to be investigated in this section we need first to recall some 
definitions and facts concerning selfadjoint two-by-two operators, in connection with 
induced Krein spaces. 

First recall that given a selfadjoint operator A € £(?(), one defines a KreTn space 
(ACA, [, ]4 as being the completion of fl e kerA under a certain Hilbert norm, the 
indefinite inner product [ • ,] A being defined as [x,y] A = (Ax, y) (x,y E flekerA). In 
addition, there exists the canonical mapping ir E 14R, AC A ), by definition this is the 
composition of the quotient mapping with the natural inclusion, and it holds 

7r1rA = A.	 (3.1) 

Let now 71 1 and fl2 be Hubert spaces and let also H € £(fl 1 (D W2) be a two-by-two 
matrix operator

_AB H_B. C.	 3.2
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Consider the operator PH,C E £(fl2,)CH) defined by 

This yields

PH,Ch = 7 11 h	(h € fl2 ).	 (3.3) 

P1ii,CPH,C = C,	 (3.4) 

hence the linear operator PH,C1fl2 e ker C : fl2 e ker C (9 Kc) -' KH is isometric. By 
definition, the Krein space Kc is canonically embedded in )CH if this isometric operator 
is bounded and, in this case, the Krein space KC is identified with the regular subspace 
pH,C)CC of K H . It is easy to see that this is equivalent with the condition that, with 
respect to the factorization (3.1), the operator PH,C have the property (y). 

There are several criteria assuring that X.c be canonically embedded in AH. Here 
we recall the one considered in [7: Lemma 4.31. 

Lemma 3.1. Assume that the operator B1 = B in2 e kerC is factored by the 
operator C and denote Sr(H;C) = PkerB;( A - $i CB)IkerB where B2 = BikerC 
and the inverse of C is defined on its range. Then Kc is canonically embedded into K,,' 
and, in addition,	[1Z(pH,c) 11 = ic(Sr(H; Q. 

The operator Sr(H; C) defined in Lemma 3.1 (if it exists) is called the reduced Schur 
complement of H with respect to C. 

Let us also record that 1.(p H,cI kerC ) is the isàtropic part of l(pH,c) and, as a 
consequence of [6: Lemma 4.21, we have 

rank (pH,cIkerC) = rank (BikerC).	 (3.5) 

Also, given a Krein space 9, we say that the decomposition KH = Kc[+]g holds modulo 
canonical embedding, if there exists a unitary operator U : ACc[+]c -' K,,' such that 
U I Kc coincides with the canonical embedding of Kc into ACH. 

In order to state the completion problem we consider a symmetric tridiagonal partial 
block matrix operator, let this be 

All Al2 
A 2 A22 A23 

H=	
A3 A33	

.	 .	 .	( 3.6) 

AN+1,N+2 
A + lN+2 'AN+2,N+2 

Here the operator H is supposed to "act", on the Hilbert space 

n=nl®n2e•(DnN+2 

or, equivalently, A, € £(fl,) for i € {1,. .. ,N + 2] and A,,.,. 1 € £(1(, 1 ,n,) for i € 
,N + 1]. In order to hold the symmetry of H we assume that A,, are selfadjoint.
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By definition, a selfadjoint completion of H is a selfadjoint operator H E £(1) such 
that, for all iE {1,...,N+1},

= P3.+1HI(1 

It is helpful to introduce the operators Hi € £(1, ® 

H, = 
[

A ii	A,,,1	
(3.8) A,,+ 1 A,+,,,+  

The selfadjoint operators Hi are viewed as maximal fully specified submatrices of H. In 
this context we can figure the partial matrix of H using the fully specified H, as follows: 

--------1 

A23 

A 3	A33 ................-. 

I	 .. 
I	 .

AN 

L________________ 

Figure 1 

We are now in a position to formulate the completion problem for chains of factor-
izations. 

Problem C(H; se): Given a symmetric iridiagonal partial block matrix operator H as in 
(9.6) and an (N + 1)-tuple ,c = ( j) of cardinal numbers, it is required to determine 
a pair (E; ()') such that 

(a) are Krein spaces and	= ,c, for all i € {1,2,... ,N + 1) 
(b) H € £() is a selfadjoint completion of H such that, modulo canonical embed-

dings, for all i € {1,. . . ,N + 11 we have Kç = 

We will first show that the problem C(H; ,) can be put into the framework of a 
problem of type EF(X, ));	To this end, let us assume that the problem C(H; )
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has at least one solution (E; (G)'). We consider the families of operators X = 
(X 1 ) 1 and Y = (Y1 ) 1 defined by 

X = HIfl +i	and	1' = 7r H,+,Ifl,+1 .	 ( 3.9) 

We take K,	 for all i E{1,. . . ,N}. Using (3.1) it is now easy to see that 

x!x1 =	=	 and	X!+I Y, = 

for all possible i, hence we can formulate the problem EF(X, Y; ti), with the same ic 
as in the problem C(H;c) and, in addition, Z = A + 11+ 1 and V1 = A1+1,8+2. By 
definition, there exist unitary operators : -' K j,, for all i E {1,...,N+1). 
Using these we consider the family of operators W = ( W1 ) 1 defined by 

WI =	 ( 3.10) 

and then define the families of operators X =	and .9 = (Y)( 1 by 

Xl='1r,IsCI	and	Y,=7r,1IACI.	 (3.11) 

It is useful to consider all the previous constructions through a diagram (see Figure 
2) which is drawn for all possible i. The symbol "///", placed in the centre of a 
triangular diagram, means that the corresponding diagram is commutative. The vertical 
or horizontal arrows having no name are supposed to be embeddings. 

	

e I+2	 1•1I +1 

III

	

	
III


[+]c:+ 

II	/ 

/1IIN 

e2 	
7r if	

@i=1 2 i 

Figure 2
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Proposition 3.2. Let ( H ;(c:)4') be a solution of the problem C(H;) and let 
X and 3) be defined as in (3.9). Then defining W 1 , X1 and 1', as in (3.10) and (3.11) 
the quadruple (; X, 3); W) is a solution of the problem EF(X, 3); ). 

Proof. We use the diagram in Figure 2 in order to simplify the notation. We have 
to verify the requirements (a), (b), and (c) in the statement of the problem EF(X, 3); ). 
The condition (a) is obvious. From (3.11) it is easy to verify that condition (b) holds. 
Using the same diagram we check immediately that condition (c)/(1) holds. In order 
to prove that the minimality . condition (c)/(2) also holds we use the lower part of the 
corresponding diagrams for all i E (1, 2,. .. ,N} and get 

)CH,
N	

•••W1HI =w' =H,[+]g. 

The proof is complete U 

In accordance with Proposition 3.2 and the results in Section 2 it is useful to intro-
duce the orthogonal projections P, and Qi of fl corresponding to those introduced 
in (2.4). In view of Proposition 3.2, P, is that onto the subspace Z(1e,Aj+1j+1A+1) 
and similarly Qi is that onto the subspace (1erA+j,+jA+l,+2). 

Corollary 3.3. Assume that KA,+i,+I is canonically embedded in both of )C ffi and 
ACHI+I , for all  € 11,2,. .. ,N), and assume also that all of the projections P 1 AQ 1 have 
finite ranks. Then, in order for the problem C(H;sc) to be solvable it is necessary that 
the following conditions be satisfied: 

rci + rank (Pi (I - Q)) +	[R(7rH,Ifl.11	
(3.12) 

= ,c+i + rank(Q 1 (I - F1 )) + IC[R(lrH,+, Ifl) 

(i € {1,2,... ,N}) and

max{ rank (P_ i (I - Q)), rank (Q,(I - P,))}	(3.13) 

(i € {1, 2,..., N + 1}) with the notation Po = 0 and QN+I = 0. 
Proof. This is a direct consequence of Proposition 3.2 and Proposition 2.1 U 

We have now to show that, in the framework established before, the solutions of the 
problem EF(X, 3); ) also produce solutions of the problem C(H; ). 

Lemma 3.4. Let X and 3) be defined as in (3.9) and also let (2;X,.9;W) be 
a solution of the problem EF(X,Y;,c). Consider the operator Ti € £(fl,KH1[+]9) 
defined by

1lrH,h	 for hENi 
T1 h	W1 ... Wk_2Xk_Ih for h € 7(k (2 <k < N + 1)	(3.14) 

I W1 ... WN 7r HN+l h forhEflN+2. 

Then T1 has dense range and TT1 € £(? 1) is a seifadjoint completion of H.
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Proof. The operator T1 has dense range because W has the minimal 'property 
(c)/(2). Clearly, TIT, is selfadjoint on fl. We calculate now the entries of the matrix 
of TI T, using (3.14). Firstly 

PII TI TI IN1 =P1I 1 4.1rH1 Ifl l =P, j H1 I1(1 = A11. 

Taking into account that R(X1 ) is an extension of 1(X 1 ) with a neutral subspace, we 
obtain

P71TTiIfl2 = P7,irJ 1 = P 1 H1 I7-(2 = Al2. 

Using the property (b)/(2) we obtain 

P b TTlIflk =	= A	(2 < k < N). 

Using the properties (b)/(2) and (b)/(3) of Xk and Yk we obtain 

P1 b TT1I 71k+I = X_ 1 Wk_lXk =	= Ak,k+j	(2 < k < N - 1). 

Similarly we obtain 

Pi N + L TT1I ? (N+2 = 4 7rHN + l 11(N+2 = AN+1,N+2 

and

	

P1iN+3TT1 I flN+2 = 17i N+2	HN+j IflN+2 = AN+2,N+2. 

We thus proved that TT1 is a selfadjoint completion of H U 

Proposition 3.5. Let X and  be defined as (5.1) and( k, 5);W;(Q ) ,N4 1 ) be a 
solution of the problem EF(X,Y;,c). If the operator T1 is defined as in (5.14) and has 
the property (-y), then (TTi;(c:)t'.) is a solution of the problem C(H;). 

Proof. Let us denote ft = TT1 € £(W). From Lemma 3.4 we know that ft 
is a selfadjoint completion of H. Since T1 has dense range and taking into account 
that T1 has the property (7) it follows that it uniquely yields a unitary operator w1 
K H1 [+]c - ftC 11 . From the definition ofT1 (see (3.14)) it follows that w1 is an extension 
of the canonical embedding of )CHI into K1. 

Further on, for i E (1,2,... ,N + 1) we consider an operator Ti € £(1(,KH4[+]Q) 
defined by .	 . 

Ti = wf_ 1 . . . Wil 	 (3.15) 

Then we also have	.	.. 
R_TtT.	 (3.16) 

and all T1 have the property (7). As before, we obtain from here a unitary operator 
-.	, which is an extension of the canonical embedding of )C H, into Itf,.


We proved thus that (H; (g) is a solution of the problem C(H;) 0
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We are now in a position to determine the minimal tc for which the problem C(H; ) 
has solution. One of the main technical difficulties in applying Theorem 2.3 comes from 
the assumption in Proposition 3.5 that at least one factorization as in (3.16) produces 
unitary operators (i.e. at least one of Ti has the property (7)). This difficulty can be 
removed by restricting ourselves to the case 

r. - (H) =LC(H,) 00.	 (3.17) 

Let now H be a selfadjoint tridiagonal partial block matrix operator such that (3.17) 
holds. We consider the families of operators X and ) defined as in (3.9) and notice that 
as a consequence of (3.17) all of the orthogonal projections P8 and Q, onto 

R(Pker(A.+i+i)H fl8)	and	l.(.Pker(A+ii)H+i I1+,), 

respectively, have finite ranks. Let us also consider the non-negative numbers r 1 and 
r,2 as in (2.12) and put r01 = rN+1,2 = 0. In accordance with (2.13) we consider the 
numbers

a, 1 = ,C[1? ( 7rH,Ifl 1+j) 1 ]	and	a,2 = C [7Z( 1rH8+JflI+j)]	(3.18) 

and notice that their finiteness is a consequence of (3.17). 

Theorem 3.6. Let H = ( H1 )4' be a selfadjoint tridiagonal partial block matrix 
operator such that (3.17) hold,, and let us assume that KA. 1I is canonically embedded 
in both of)CH8 and KH81 , for all  E {1,2,...,N). Then, with the notation fixed before, 
Km1 defined as in Lemma 2.2 is the minimal (N + 1)-tuple oc for which the problem 
C(H;,c) has solution,,. 

Proof. Indeed, using Proposition 3.2, the problem C(H; ) is reformulated as a 
problem of type EF(X, 3); ic). The first part of Theorem 2.3 shows that for any ic such 
that problem C(H; ) has solutions we must have r. > c". 

Conversely, recall that in Theorem 2.3 it is constructed a solution of the problem 
EF(X,Y;.c). This produces a solution (H;().t') of the problem C(H; mn ) since 
we can apply Proposition 3.5, taking into account that (3.17) yields the property (7) of 
T1 (equivalently, all other Ti have the property (-y)) due to a Pontryagin type Lemma 
argument (see, e.g., [16]) U 

Remark. One can ask if the finiteness condition (3.17) is strong enough to insure 
the canonical embedding of K A8+ 18 + 1 either into H,+, or into AH. As it happens, 
this is not the case, due to the existence of unbounded isometric operators even in 
Pontryagin spaces (of different negative signatures), as some examples in [16] show.
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4. The tridiagonal matrix case 
We consider now the case of matrices, i.e. all the operators Hi and A,, are acting in 
finite-dimensional spaces (all Hubert spaces fl, are finite-dimensional). Our aim will 
be, given a tridiagonal symmetric matrix H as in (3.6), to calculate the number 

min{(ft)I if € C(H))	 (4.1) 

where Ch(H) denotes the set of all Hermitian completions ft of H. Thus we will apply 
the results obtained in the previous section but this time we will do this calculation in 
terms of

=	bc(Hj ).	 (4.2) 

To this end let us first remark that we have 
c(H1 ) = ?C1KH,)	 (4.3) 

where )CH, denotes the (finite-dimensional) Krein space induced by H,. Also, we con-
sider the orthogonal projections {P,, Q,}, where P1 is the orthogonal projection onto 
the space 1(Pker(Aj+i+j) H'Ifli ) and, respectively, Q, is the orthogonal projection onto 
the space R(Pkef(A+11+l)HlI?(j+1). Using these we define the non-negative numbers 
{rI_1,2, rI1}t ' by 

	

ril = rank(Q,(I - F1 ))	and	r, = rank (P1 (I - Q,))	(4.4) 

and rot = rN+1,2 = 0. Let us also notice that in this finite-dimensional case the reduced 
Schur complements (see Lemma 3.1) exist and we can define 

	

a, 1 = s'C(Sr(Hi;Ai,,+i))	and	a2 = 'c(Sr(Hi+i;A,,,+i))	(4.5) 

for all i € {1,2,...,NJ. 
We are now in a position to give a formula for computing the number defined in 

Theorem 4.1. Given a symmetric tridiagonal partial matrix H, consider the num-
bers defined in (4 .4) and (4.5), and let  € 11,2,. . . ,N} be determined by the condition 

i—i 
max{r1 _ i,2 ,r11 } + > Kae2 - akl)+ (rkl - rk2)j 

k=1	 (4.6) 
N+1 = Max Imax{r_ 1 , 2 ,r 1 ) +	- akl) +(rki - tk2)] [(ak2	

I 
 ti-1 

n1 k= 1  

Then
rnin{s'c(ft)I if €C,,(H)) = iC (H1)+ max{r,_i,2, r,i} .	(4.7) 

Proof. Let us first notice that since all the spaces occuring here are finite-dimen-
sional, the conditions of canonical embeddings of different induced Kren spaces are 
automatically satisfied. On the other hand, it is easy to see that H belongs to C(H) 
if and only if there exist ()j' such that (H; is a solution of the problem 
C(H;), where K = (,cj)t' is defined by 

xi = ,c(E)—ic(H)	(i € 11,2,...,N+1)).	 (4.8) 
This observation enables us to apply Theorem 3.6 and obtain (4.7), where the index j 
is determined by the condition (4.6) 1
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Remark 4.2. With the notation in Theorem 4.1, let the (N + 1)-tuple ,cMUM be 
defined as in (2.11). Then 

min{i((ft)I H E Ch (H)} = IC(Hk) + 'c r"	(4.9)


for any other k  {1,2,... ,N + 1). 
Remark 4.3. Letting ?Cmi be defined as in Lemma 2.2, from Theorem 4.1 and the 

previous remark it follows

N+i 

	

min{ic(ft)I ft E Ch(H)} = sc(H) + mm ,c.".	 (4.10) 
1=1 

Also let us notice that the index p which realizes the maximum in 

L H)	c(Hk)	 (4.11)


is the same as the index p realizing min{,c"I i E {1,2,... ,N + 1)) and this index p 
can be also determined by the condition 

p-i (I-i 
[(a, - aki) + (rki - rk2)1 = Max 

	

N+1	
[(ak2 aki) + ( rkl - rk2)]} .	(4.12) 

k=i	-	=	(.k=1 

This also shows that the index p is in general different of the index j which realizes the 
maximum in (4.6). 

We are now interested in finding a condition assuring that the minimal negative 
signature is preserved by completion. This is possible by applying the results obtained 
up to now. 

Corollary 4.4. With the notation in Theorem 4.1,there exists ft E Ch(H) juch 
that c(H) = sc(H) if and only if for j determined by the condition (4 .5) and p 
determined by the condition (4.11), we have either 

i-I 
max{r,_ 1,2 ,r,1} +

	

	[(ak2 - aki) + (rkj - rk2)] = 0

kp 

if p !^ j , or
p-i 

max{r,_ 1,2 ,r1 1) +	[(ak2 - aki) + ( rki - rk2)} = 0 
k=j 

ifp>j. 
Proof. We use the previous remark and Theorem 4.1 I - Once the number in (4.1) is determined we can ask for determining a completion 

H E Ch(H) which realizes, the minimum of the negative , squares. Tracing back to 
Theorem 2.3 we notice that such a completion can be obtained by means of the formula 
(3.17) and the construction in the proof of Theorem 2.3.	'
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