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Tangential Carathéodory-Fejer Interpolation

for Stieltjes Functions at Real Points

V. Bolotnikov

Abstract. In this paper we consider a generalization of the classical interpolation problem in
a special class of analytic matrix-valued functions. The method used to solve this problem is
that of the fundamental matrix inequality, suitably adapted to the present situation.
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1. Introduction
In this paper we consider the tangential Carathéodory-Fejer interpolation problein in
the Stieltjes class. ‘ :

Definition 1.1. A matrix-valued function w, holomorphic in the complex plane @
with a cut along the semi-axis R+ = [0, +00) is called a Stieltjes function if

1) w(zl__';_’(z) ->0 forz#z and 2) w(z) 20 forz <0.

The class of all €™*™-valued Stieltjes functions is denoted by S,,.
We formulate two theorems which are proved in [18].
.Theorem 1.2. The function w belongs to S, if and ovnly if
w(z) — tf)_(z) >0  and 2w(z) - z_w(z)
z2—%2 z2-Z

Theorem 1.3. The function w belongs to S,, if and only if it admits the integral
representation

>0 for 2 #£ 2.

- 00

w(z)=A+ /

0

where A > 0 and do > 0 is a €™ ™ -valued measure such that LCa + t)~1do(t) < oo.

do(t)

t—z

(1.1)

In the class S, we consider the following interpolation problem (IS):
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(IS) Given a set of matrices ai,¢c; €C* ™, v, €€’ (i=0,...,n) and a point z < 0
find necessary and sufficient conditions which ensure the ezistence of a function

w(z) = E(z—z)"wg SR (1.2)

k=0

in S,, such that

Zak ;2w =cr and ZZak_.wH.,.Ha =7 (k=0,...,n) (1.3)

1=0 j=0

and describe the set of all functions when these conditions preva il.

Since wi = w®)(z)/k!-, (1.3) are conditions on derivatives of the function w at ‘the
point z. Note that representation (1.1) implies wg > 0 (k =0,1,...) because in case of
real interpolation points the two-sided interpolation problem coincides with a tangential
one. The tangential Ca.ratheodory-FeJer problem can be set in other classes of analytic
functions (3, 5 - 7, 10, 14]. In the paper [13] there was considered the non-degenerate case
of the non-tangential problem in the Stieltjes class and in [9] its two-sided generalization
for simple interpolating points.

.Somewhat another interpolation problem in the same class is given in [1]. We also
refer to the monographes [8, 11] where a number of approaches to solve some versions
of the Nevanlinna-Pick problem have been developed. In the present paper a central
role will be played by the method of the funda.menta.l matrix 1nequallty [12 15 - 17).

The outline of the paper is as follows:

In Section 2, following ideas of I. Kovalishina and V. Potapov, we establish the
system of matrix inequalities for the problem (IS). A necessary condition of the solv-
ability of problem (IS) is the non-negativity of special matrices K and K, defined in
(2.12), (2.13). The description of the set of all solutions to the problem (IS) depends
on whether K and K, are degenerate or not. In Section 3 we consider the’case where
K and K, both are stnctly positive. The strict positivity of K and K, is a sufficient
condition for the problem (IS) to be solvable. The set of all solutions is parametrized
by a linear fractional transformation of the form (3.16) with the resolvent matrix © of
the class W, (see Definition 3.1). Section 4 deals with the degenerate case; we still
have a description of all the solutions as a linear fractional transformation which can
be obtained by a suitable version of the Schur algorithm.

2. The fundamental matrix inequalities

In this section we characterize the solutions to the problem (IS) in terms of a system of
matrix inequalities. Descriptions of the set of solutions in terms of the linear fractional
transformation will be given' in Sections 3 and 4. We begin with a preliminary lemma.

Lemma 2.1. Let the function w be of the class S,, and let

w®)(z)

wp = ] (k=0,...,2n+1; z <0). B ¢ 3))
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Then for all z € T \ IRy the inequalities .

[ )
. -1 0 Wo
T (a1-F) N we) -
. >0
0 Wn -
. o) ety
‘ I z-z (2.2)
-1 ol Wo \
T, (zI - I") : . fzw(z)=T}| ¢ |
: w >0
0 . »
. zw(z) — zw(z)* }
z—-z
are valid where T, T, € @™"+V)*m("+1) o0 Hankel block matrices defined by
(T); = Wigj+1 and - (Tp).',' = ZTWipj41 + Wity (2.3)
and T is the m(n + 1) x m(n + 1)-matriz given by
zly 0
f=| ™= = : (2.4)
0 I, zIn

Proof: We first establish inequalities (2.2) for the simpliest functions w € S, such
that a measure o(t) from its integral representation (1.1) has a single point of growth
p 20, i.e. for thg: function of the form

| w@=(k-27D (25)
with somé non-negative matrix D € ¢ mxm oIt foilows from (2.1), (2.5) that -
we=(p—z)"*"'D. (2.6)
Substituting (2.3)—(2.6) into (2.2) we obtain the inequalities
WDW* >0 and pWDW* >0,

where

W= (b= 2) " omye o (= ) o, (s = 2) ™ i)

which are evidently valid for u > 0 and D > 0. Hence the inequalities (2.2) hold for
the simpliest functions of the class S,,. After summations and taking a limit we obtam
that (2.2) hold for every function of the class S, 8 :
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The following theorem characterizes all the solutions to the problem (IS) in terms
of a system of matrix inequalities.

Theorem 2.2. Let:w be a €™*™-valued function analytic in@ \ R;. Then wis a
solution to the problem (IS) if and only if it satisfies the system of inequalities

K T(z)(4,-C) ( WI:)) \

« w(z)z__':(z) /

K )4, -r0) (4

. 2w(z) - E_w(z)‘ /

>0 (2.7)

>0 (2.8)

for z # z, where

Qap Co
an/ Nea/
zl, 0
[ = I. Tt € ay.(n+l)Xl(ﬂ+1) (2.10)
0 I, zI,
I(z) = (I — T)~! (2.11)

and K, K, are s(n + 1) x s(n + 1) matrices defined by

w0 af ... a3 0\ /0 . 0 7

2 cn
K=A|"° -elr |+ "l (212
c’.‘ . a; . 0 .
0" 0 0 0 Yo M Tn
K, =TK + AC* (2.13)

where A and € are ¢*("+V*™("+1) Toeplitz block matrices defined by

ag 0 B | ] ) Co 0 e 0

A=|® & ; and C=|% . (2.14)
T 0- . 0
a, --- ay Qg L Ch O Co

Proof. Let w be a solution to the'problem.(IS)._ Since w is of the class S,,, it
satisfies in view of Lemma 2.1 the inequalities (2.2). Multiplying (2.2) by the matrix
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'g I?..) on the left, by its adjoint on the right and using relations

Im We

. 0 .| w ax "

A . =A, A . =C, Al'=TA (2.15)
0 Wy .

(which follow immediately from (1.3), (2.4), (2.9), (2.10) and (2.14)) we obtain (2.7),
(2.8) with blocks ATA* and AT, A® instead of K and Kj, respectively. But the equality

ATA* = K (2.16)

follows from (2.3), (2.12) and interpolation conditions (1.3), and after a multiplication
of the evident identity
Inm

N 0
T,=TT+} . |(wg...,w;)
0

t

by A on the left and by A* on the right we obtain in view of (2.13), (2.15) and (2.16)
that AT,A’ =TATA* + AC* = K, » which ends the necessary part of the theorem.

Conversely, let assume that a @™*™-valued function w analytic in € \ IR, satisfies
the system of matrix inequalities (2.7) and (2.8). Then, in particular,

w(z) — w(2)* > and

2uw(z) - 7w(z)" o

for z # z. By Theorem 1.2, these inequalities ir'nply.that w belongs to S,.
The positivity of the matrix-valued function (2.7) implies the boundedness of 1ts
non-diagonal block, i.e. of the functions

. x _ S o o
(z—z)7%! { (Z ai(z — z)'..) w(z) — z ci(z — x)‘} (k=0,...,n) (2.17)
i=0 ‘ =0 _
in compact neighbourhoods of the point z. Substituting into ( 2.17) the Taylor expansion
(1.2) and setting 2 — z we obtain consequently

Zak_jwj = Ck (k=0,...,n). (2.18)

j=0

Multiplying (2 7), (2. 8) by the matrix- valued functxon Q(z) ( :‘l':(*;)’ r(:)A) on the left
and by Q(z)* on the right we come to inequalities

.(wﬁ)' vz‘z,((zz)).)z" and (Wﬁ'i)'.%((f)))z" - .(219)
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where
W(z) = KT(2)" + I'(z){ Aw(z) - C}A°T(2)* (2.20)
Wy(z) = —K,I'(2)* + T(2){zAw(z) - TC}A'T(2)* (2.21)
R(z) = T(5)KT(z)* - T(5)[(z){ Aw(z) — C} A*T(5)"
—T(2)A{w(z)*A* - C*}T(2)*T(2)* (2.22)

+ i EP(E)A{w(z)'— w(z)* }A°T(2)"
Ry(z) = T(2)K,I'(2)* — [(2)[(z){zAw(z) - TC}A*T(2)*

- T(2)A{zw(z)*A* — C'T*}T(2)*I(2)* (2.23)
1 _F(E)A{zw(z) - zw(z)* }A'T(2)".

Lemma 2.3. Let W, W,,R R, be matriz-valued functsom defined by (2.20)—(2.23).
Then

Wo(z) = 2W(2)+ K (2.24)
- =W -
. : Ry(z) = ZW(ZL:ZEW(Z)"_ (2.26)

Proof. Using (2.13), (2.20), (2.21) and the identity
I+TT(z) =2I(z) (2.27)
we obtain

Wy(z) = —(KT* + CA*)L(2)" + 2I'(z)Aw(2)A’T(2)* + (I - zI‘(z)) CA'T(z)*
= K(I — zI(2)*) + 2T(z)(Aw(z) — C)A°T(2)*
=:W(z2) + K.

To prove (2.25) we use the identity
K - KT*=CA* -~ AC* (2.28)

which follows lmmedxately from (2.13). Multiplying (2 28) by I'(Z) on the left by F(z)‘
on the right and using (2.27) we obtain :

(z - HT(2)KT(2)* = I(2)K — KT(z)* + I(3) {AC" — C_A'} r(z)". (2.29)

Substituting (2.29)' into relation (2.23) and taking into account the resolvent identity
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I(z) - I'(z) = (2 - 2)[(Z)(z) we obtain
R(z) =(z-3)™! {I‘(E)K — KT(z)* + (I'(z) = I'(2))(Aw(z) — C)A*T(z*)
+T(2)A(w(z)" 4" - C)(I(2)" - T(2)")
+ T(2)A(w(z) - w(z)")A"T(2)"}
=(z-2)"" {I‘(E)K — KT(2)* + I(z)(Aw(z) - C)A*T(3)*

— I(2)A(w(z)" A" = C*)T(2)" }
_ W) -Wea)

By the same way, with help of the identity 'K, — K,I['* = I‘CA' AC*T* which follows
from (2.16), we obtain

Wp(z) - Wp(z2)* zW(z) = zW(z)‘
. z—Z . - o z—Z
which ends the proof of the lemma 8 .
In view of (2 24)—(2.26) the inequalities (2.19) can be rewritten as

Ry(z) =

K W(z) ) - K, 2W(z) + K-
(W(z)‘ W(Z)z:‘;Y(Z) ) 20 and (EW(Z)' +K ZW(Z: : ;W(Z))Z 0
and impl
e W(z) - W(Z)' zW(z) - zW(z)‘

. and
z—3 z2—3

for z # z. By Theorem 1.2, W is of the class S(,41), and therefore is analytic in some
neighborhood of z. Substituting into (2.20) the Taylor expansion (1.2) of w and using
(2.15) and (2.18) we obtain

. | w(z) — wo N
W(:)=KI() +4rG) | . |4y
(mmgr ) |
— _KTG) + A (e mo) b ATE 0 (230)
' \'w,'.+|+w;.+g(z—z)+...) v : “
.( wy +waz—z)+... \ I I B
=—-KI(z)"+ A : Do . ((z_"‘z),...,(z_'z")n“)A.
\w,.“ + w,.+2(z - .1:) +.. )

) wy . ... ‘P'H-l
=-KT(GE)+A| : A'T(2)* + O(|z = z|).

Wn41 <. Wangl,
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Setting z — z in (2.30) we obtain in view of analyticity of W

why e W41
K=A| : | A (2.31)
Wn41 - Won41

Substituting (2.12) and (2.14) into (2.31) and comparing there s right rows we obtain
the equality

-
Yo w) e Wn+t1 - a,

YTn Wn41 ... Wop4d ag
which implies - v .
"k n o
Zz Gk~ —iWitj410,_; (k=0,...,n). (2.32)
=0 y=0

Equalities (2.19) and (2.33) mean that w is a solution to the problem (IS) , which ends
the proof of theorem 8

Setting in Theorem 2.2 s = m, ag = Im,a; = 0fori > 0and¢; = w; (i =
0,...,2n + 1) we obtain the following inversion of Lemma 2.1.

Corollary 2.4. Let the C™*™ -valued function w analytic in € \ R satisfy the in-
equalities (2.2). Then w belongs to S, and w®(z)/k!' =wx (k=0,...,2n+ 1).

Remark 2.5. It follows from (2.7), (2.8) that the non-negativity of matrices K
and K is a necessary condition to ensure that the problem (IS) has a solution.

-.As will be proved in Section 3 , the condition ('0( ,3’) > 0 is a sufficient one. The
matrices K and K, will be called the information matrices of the problem (IS).

3. Solution to the problem (IS) : the non-degenerate case

In this section we suppose that the information matrices K and K, are sirictly positive
and describe the set of all solutions to the problem (IS) under this hypothesis To begin
with we recall the necessary definitions .

. Definition 3.1. A €*™*?™._valued meromorphic function © is of the class W, if
6(2)JO(2)*=J (z€R) and ©O(2)J6(2)*2J (z€C4) (3.1)

and

-.e(z)J,.G(z)' > Jx (z <0)

0 il, L (0 I, ,
1= () me w=(n ) @2

and is of the class W if it satisfies only conditions (3.1).

where
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Lemma 3.2 (see [12]). The classes W and W, are closed under multsplication:
(i) Let ©,,02 € W, and © = ©,0;. Then, © € W, and, fori=1,2, :

8(2)J6(2)" 2 8i(2)78i(z)*  (z €C4) (33)
O(z)J=0(z) 2 Oi(z)JOi(z)* (z <0).

(4) If©,,0, € W,, then © = 6,0, € W and the first inequalities of (3.5) hold.
The following theorem establishes the connection between classes W and W,

Theorem 3.3 (see [13]). The &*™**™.valued function © belongs to W, if and only

B0eW and 8,(z) = P(2)B(z)P(z)"' e W (3.4)

Pa = (0 L) . (35)

The following two lemmas which in fact are contained in {12] describe a number of
functions of the classes W and W,.

where

Lemma 3.4. Let H be a strictly positive m x m matriz which is a solution of
the Lyapunov equation T'H — HI'* = —iGJG®, where J is ¢ matriz defined in (5.2),
GeQ@™™ and T € C™*™. Then the ¢'2"'xz"' valued function 9(2) =I+1iG*(zI -
I*)"YH-YGJ is of the class W and

8(2)76(w)" — J = i(® — 2)G*(zI = [*)"H™*(@I —T)™'G.

Lemma 3.5. Let H,, H; be strictly positive ‘m X m matrices such that
H,—TH, = G,G: 36)
for some matrices G, dz € (I"x';' and T € C™*™. Then the d’zmxzm-valued function
o=r+i(g ) (" rerare,)?
(where T'(z) is defined by (2.11)) is- of the class W, and
06w = =i@—2) (& ) T B @61, 62)
0,(2)18,(w)" - 7 =itw - 5) ( G ) T B @)1, G-

Note that under assumption (3.6) the function © admits the following representation
which can be checked by a direct computation:.

6(z) = {I.-H (g;) L(z)*H{ NGy, G;)J}( Gs Hf_, G (I’) (3.7
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where the first. factor is the function of the class W and-the second one is a J-unitary
matrix. In view of (2.16) matrices

H, =K, Hz P G, =C, G2 =A
satisfy the conditions of Lemma 3.5 a.nd hence the € Zmxim -valued function
L ( Cct o\(rEr DTEr) (KT 0 \(Cc o),
O(z) = I +i (O&A‘ ) (I‘(z)‘ e J\ o k1 )\o a)d 38
1s of the class W, and T o . .

0(z)JO(w)* - J = i(w — 2) (C) I'(z)* K~'T(5)(C, A)

oo (39)
0(:)10,w)' - I = (w - ) () ey K r@)(rC, 4)
In vi;aw of (37) (S t;dmits 8; representatién . |
0 =0C) (pogig 7)o GW)

where the function

8() =1+ ( i) N(z) K~ (C, A),

belongs, in view of (2. 28) and Lemma 3.4, to the class W. Since © and 6, are both
J-unitary on the real axis, the symmetry relatxons

©07()=JO(:)J and O l(z) - 76,(2)"J
hold and together with (3.9) lmply
7= 8(:)107(2) = J(J — 6()16()"))
— iz z)( Ac.,.)l"(z)‘K_“-l"(z)(A,—C) (3.11)

J = 0,(2)7°70;(2) = i(2 - z)( C_r_)I‘(z)“K;',I‘(z)(A,—I‘C). (3.12)

Since K, K, > 0, inequalities (2.7), (2.8) are equivalent to the following ones:

wer D =ts- (% # ke -0} (*9) 20

(2w(2)", 1) {ﬁ - (.—g:r') I(z)" K II‘(z)(A I‘C)} (Z"’-I(‘?)) >0
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which in view of (3.11), (3.12) can be rewritten as

e(z) *JO~(2) (w(IZ)) >0 (3.13)

(wiay, D2
8,(2)"*705(2) [ zu(z)
(zw(2)",1) e z) ( I )>0
Using (3. 4) and (3.5) one can express the last inequality in the form
| . 8P IP()BI) (u(z)
(w(ay, 2T (") 20 (314

The description of all solutions of the system of inequalities (3.13),(3.14) for the
non-tangential problem (IS) was obtained in [12]. A generalization of this result to the
two-sided problem with simple points of interpolation is given in [9].

The presence of multiple points has no influence on the character of the description,
and the same arguments lead to a similary description for the present problem, that’s
why the proof of Theorem 3.7 will be omitted. To formulate this theorem we need some
definitions.

Definition 3.6. Let {p,q} be a pa.ir of €™*™-valued functions ﬁleromorphic in
C\R,.
(i) {p,q} is called a Stieltjes pair if -
(a) det(p(2)*p(z) + q(2)°q(2)) £0
(B) (9(2)°p(2) — p(2)*q(2))/(z — 2) 2 0 for Imz # 0
(7) (29(2)*p(2) — 2p(2)*9(2))/(z — 2) 2 0 for Imz # 0.
(i) {p,q} is said to be equivalent to the pair {p,q;} if there exists a €™ *™-valued
function @ (det§(z) # 0) meromorphic in @ \ R4 such that p, = pQ and ¢ = ¢Q.

The set of all Stieltjes pairs will be denoted by S,.-
Using the matrix A defined in (2.9) we introduce the following subset of Sn

= {{p,q} €S,, :det (p(z)‘A‘Ap(z) + q(z)'q(z)) # 0}. (3.15)

Theorem 3.7. Under the hypothesis K, K, > 0 , let © be the function defined
by (3.10) and let © = (6;;) be the block dccompo.ntwn of © into four C™*™ -valued
funct:om Then the linear fractsonal transformation R

w(z) = (Ba(Ip(2) + 02 )(0)) (B (Ip(a) + (@) " (2.6)

gives a parametrization of all solutions to the problem (IS) (or, equivalently, of the
system (3.13), (3.14)) when the parameter {p,q} varies in §e..
More precisely:
(i) Every solutson w to the problem (IS) is of the form (3.16) for some pair {p,q} €
§0

m°
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(ii) For every pair {p,q} € 89, the transformation ($.16) is well defined (the relation
det(621(z)p(z) + 622(2)q(2)) # 0 is true) and the €™*™ .valued function w defined by
(3.16) is a solution to the problem (IS).

(i5i) Pairs {p,q},{p1,q1} € SY are equivalent if and only if they lead under the
transformation (3.16) to the same w.

Corollary 3.8. Since the class 8% defined in (3.15) is non-empty, the conditions
K,K, > 0 are sufficient to ensure the problem (IS) to be solvable. :

Definition 3.9. The matrix of the linear fractional transformation describing all
the solutions of the interpolation problem is called the resolvent matriz of this problem.

To conclude this section we note that t;he problem (IS) can be set in the class S,,
of Stieltjes pairs ; we consider the following problem (ISP):
(ISP) Given a‘ set of matrices a;,c; Ed"x_':',‘y.' €C*** (1 =0,...,n) and a point z <0,
describe all Stieltjes pairs {p,q} € Sm with Taylor ezpansions '

oo N o0’

Pe) =Y (=2l and  g(z)= ) (: -
. k=0 . - k=0 . '
such that
Z ap—ip; = E Ck—iQi
=0 i=0
and

k =n : . ) .
> D (ar-ipirj+1 — ck-igirjr1)on_j=m  (k=0,...,n)
=0 y=0

where (go,...,gn) €EC**™"*D s the u nique solution of the system

k k
ZP:'Q;-.' =c}, 29.'9:_.' =a; (k=0,...,n).

=0 i=0

Similary interpolation problem on the set of Nevanlinna pairs was considered in [1, 10
and in much more general classes in [3]). The following theorem shows that problem
(ISP) is also equivalent to a system of matrix inequalities.

Theorem 3.10. A pair {p,q} of C™*™ -valued functions meromorphic in € \ R,
i3 @ solution to the problem (ISP) if and only if it satisfies the inequalities

22)) 159 9(2)
9(2)°p(z) = p(z)°q(2) | =7 |, ze(2)'P(2) — Zp(2)a(2)

22—z z—Zz

K r(z)(A,—C)(p(z)) Ky P(’)(A’_FC)(W)) >0 (3.17)
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for z # z , where the matrices K,Kp, A,C,T are as in (£.9), (2.10), (2.12) and (2.13).
A representation of inequalities (3.17) as

(p(z)" a(2)" )M’—’ (P(’)) 0

i(z - 2) a(2)
. o(2y) B P(2) I P(2)07(2) (p(2)
(p(z) ,q(Z) ) .i(z —E)- (q(z))

(analogue of (3.13), (3.14)) with P, © defined in (3.5), (3.8) leads to the following ”pro-
jective” analogue of Theorem 3.7.

Theorem 3.11. Under the hypothesis K, K, > 0 the following statements are true:
(:) All the solutions {p,q} of the system (3. 17) are parametrized by the linear trans-

i (5) o0 (22)

with the resolvent matriz © € W, defined by (5.10) and parameters {p,§} varying in
Sm-

(i) Pairs {p,q} and {u,v} are equivalent if and only if the corresponding parameters
{p,§} and {it, 0} of the linear transformation (§.18) are equivalent.

Note that the subclass §%, does not appear in Theorem 3.11, since the non-singularity
of ¢ in "projective” case have not to be insured.

4. The Schur algorithm to the degenerate case

The problem (IS) as a number of classical interpolation problems can be solved by a
recursive algorithm. This originates with the work of Schur [19]. We also refer to papers
[4, 16] where some generalizations of this recursion were considered.

In this section we construct a suitable version of the Schur algorithm to the degen-
erate case of the problem (IS) where information blocks K, K, being possibly singular:
K,Kp > 0. As usual, the Schur algorithm will be concluded in a gradual (step by step)
decrease of a number of interpolation conditions both with a simaltaneous recounting
of the interpolation data.

Let a pair {p;,q1} € S» satisfy the fol]owing system of matrix inequalities:

KO ryz)a®,—cw) (P12)

0 = “qi(2)
"= q(z)*pi(z) - }-71(2) a(z) 20 (4.1)
K Ty(z)(AW, -TiCc!) p(z)
= a(z)
R = . zqi(2)*pi(z) — zpi(2)qi(2) 20 ) (4.2)
z2—32

where I'; € @("~"+Dex(n=41)s i the matrix defined as -
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zI, 0
= L ‘ (4.3)
o L zI
with the resolvent |
Ti(z) = (zliaetgn)s = T0) " ' (4.4)

and matrices A(),C" € @n-iHexm ng K('),K,(,') € @n—iHDax(n=l+1)s ope defined
after data asl),c?) € @'x"',‘y,m €C*™* (i=0,...,n — 1) similarly to (2.9), (2.12) and
(2.13), i.e.

a‘(JI) C((JI)
A= |, W= : (4.5)
) {
An csl)—l
min(r,n—jy—1) n-l
! )} 1 n*
KO = Z (a(rzjcﬁ'-f)'ﬁl - C(r_lj°§'+)5+1) S
=0 rj=0
o ... o0 7‘(,0 v
+1 : (4.6)
1 { 1
A0,
KO =T, KO 4 400", (4.7)
In particula.r,v{pl,ql} sétisfy the inequalities
kl.. (z—z)_l(agl),—c(()')) (P!(Z)) :
. =) 5 (43)
. 2@rn(z) —p(2)a(z)
2=z '
b (- 0)7 =2 (7))
o o\ >0 (4.9)
- 2q(2)°pi(z) — Zpi(2)° @u(2)
z—-2
where T
ki = a{" - c((,l)agl)' and  kp =zk — a((,')c((,')'. (4.10)

Taking into account a possible singularity of ki, kpi we introduce orthogonal projections
Fxerr, and Pxeri,, on their kernels and set

Ql =1I,- }:’Kerk, - and Qpl =1, - })Kerk,,- (411)
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Since the transformations k; : Rank; — Rank; and ky; : Ran k,; — Ran kp are one-to-
one, the pseudoinverse operators

k[‘l]f = (QlkllRan k,)-lf for f € R.&nk(
L for f € Kerk;

(4.12)
k[—l]f (Qplkpllkxn k,,) lf for f € R'ankpl .
pl for f € Kerk,;
are well defined on €’ and
kT =k =@ and kM =ik = Q. (413)

Lemma 4.1. A non-degenerate pair {pi, i} of €™*™ -valued functions meromor-
phic in @ \ Ry satisfies the system of matriz inequalities (4.8), ({.9) if and only if it

admits a representation
()=o) ww
where

Wy I o\
0i(2) = {1+ (z—z)! (zg,)) k! ‘l(ag’),-cf,")} ( a0 Hyl g0 1) (4.15)

and {piy1,qi+1} is some Stieltjes pair such that

Pyger k,,agl)pzﬂ(z) =0 and  Pgerk, cgl)qzﬂ(z) =0. (4.16)

Proof. In the proof the index ! will be omitted. Let a pair {p;,q:} satisfy the
inequalities (4.8), (4.9). According to a lemma about a non-negative block matrix [13]
the inequality (4.8) is equivalent to the system

Pxer (a0, —co) (:g;) =0 (4.17)
0 e { T~ ol (4 ) K-} (%) 200 g

Using (4.15) and Lemma 3.4 we obtain

O(2)JO(2)* - J =i(z — 2)|z — z|~? ( ) k- l](co ao) (4.19)

Hence the function © is J-unitary on the real axis, 8~!(z) = JO(z)*J, and, in view of
(4.19), _

8(z)~"JO 1 (2) — J = J(B(2)JO(2)* - J)J

= i(; — )z —z|? (_"55 ) k=Y ag, —co). ‘(4-26)
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Using (4.20) we can rewrite (4.18) as
6(z)~*JO(2)! z
(p(2)*,49(2)")- ) 2( E (pgz;) 0.

It follows from the last inequality that {p,¢} admits a representation (4.14) with some
non-degenerate (since det O(z) # 0) pair {p1,q1} such that

q(2)*p1(z) - Pl(z) 41(2)

(4.21)

It remains to show that the pair {pi,q:1} belongs to S,, and satisfies conditions
(4.16). According to the cited lemma about a non-negative block matrix the inequality
(4.9) is equivalent to the system

* Pgert, (2a0, —2¢) (;’g%) = 0' B (4.22)
(epte) a0 { 755 — e = 21 (B, ) o, e} () ) 20, (a29)

Using (4.10)—(4.13) and (4.15) we obtain
I 0
(an,=e0)0() = (a0, o) gyt ll,, 7

= ((r- k- zk)kS) o, —co) ©(4.24)
= ((}:Ker kp + xkk;,—l]) ao, _CO)
and , o
(280, —2¢0)0(2) = (((z — z)ag, 0) + z(ao, — o)) O(2)
= ((z — 2)a0,0) + Pxer k (Pkerk, 80, —Co) (4.25)
+ kp ((k[;l]j)l(er K + sz},‘l]) Go, —k[—llco) .
Substitution of (4.14), (4.24) into (4.17) gives
p(z)\ _
Pxerk (PKer k, 0, —CO) (q:(z)) =0. ) (426)

Substituting (4.14) into (4.22) and taking into account (4.25), (4.26) we obtain the
identity Pker,a0p1(z) = 0, which both with (4.26) implies Pikerx cog1(z) = 0. Using
two last identities and substituting (4.14) into (4.23) we obtain the inequality

nr @2 () 20

which both with (4.21) means that {p;,q,} € S,.. :
The necessary part of the lemma can be obta.med by a direct substitution of (4.14)
into (4.8), (4.9) and use of (4.16) &
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The solution {p;, qi} of the system (4.8), (4.9) (i.e. a Stieltjes pair of the form (4.14)
) to be a solution of the "full” system (4.1), (4.2), its parameter {pi4+1,qi+1} in (4.14)
has to satisfy some additional conditions which are given in the following lemma

Lemma 4.2. Let {pi4+1,q14+1} be a non-degenerate pair of C™>™-valued functions
meromorphic in @\ R, which satisfy ({.16). Let ©; be a@*™**™ _valued function defined
by (4.15) and let {pi,qi} be a pair defined by the linear transformation (4.14). Then
{p1,q1} satisfies (4.1), (4.2) if and only if {pi+1,qi1+1} satisfies the system

RV >0, RV >0 (4.27)

where matrices RU+1 ans RUYY are defined by (4.1) and (4.2), and (7 > 0)

n o IO ! ~1) (D) .
LD ;_l, (zcﬁl,af,) zaglgcg) + cgllao)k[ ! ( ) iffj<n-— (4 28)
B A T Fi-n-i
1 n o n {
@ _ [ - (C(izaf») a}ocd el ifj<n- (4 29)
ST (1)°k( 10
Cip1— ifi=n=1
1 n o (-1 g
vy _ 10 = (el = o Fi<nt
A RN CUAE o : ! (4.30)
Yi+1— Yo ki fij=n-1
Proof. In the proof the index ! will be omitted. Let
k B k, B
K=( i ) and x=(z -v) 4.31)
. B* K P B, K, (

be block decompositions of information matrices K and K. The non-negativity of K
ans K, implies Pger B = 0 and Pier &, B, = 0 which in view of (4.10) can be rewritten
as B = QB and B, = Q,B,. Therefore, K and K, admit the factorizations

K= L 0 k 0 1, k-1B
K__ (B‘k[“' I...) (0 K- B‘kl—llB) (0 I., (4.32)

(L 0\(k 0 L B,
K = (B;k£"l I,,,) ( 0 K- B;k‘[,-lpr) (0 I, . (4.33)

Substituting (4.14), (4.15) into (4.1), (4.2) and multiplying matrices from (4.1),(4.2) on
the left by matrices

I 0 0 I 00
L=|-B%-1 1 0 and L,=|-Bikb™ 1 0|,
0 0 I, 0 0 I

and on the right by by L* and L;, respectively, we obtain in view of factqrizaiions (4.32)
and (4.33) the inequalities ' ‘

k 0 ¥(2)
.0  K-B%l-1B ¥(2)
‘p(z). \I'(z)‘ QI(Z) pl(z) "pl(z) ql(z) +¢(z)‘k(‘1]¢(z)

z2-2Zz

>0 (4.34)
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and
ky : 0. . . ‘ ¥p(2)
0 K,-Bk B, . ¥,(2) >0
bier () z2q1(2)*p1(2) — fpl(z)‘q:(z) + p(2) ks, (2) -
' ' e (4.35)
where
=(z—-2z) "(ag,—c z n(2)
We) = (2 = 2 (an,-e)0(e) (23 (436)
=(z—z) (zap, —zc z pl(z) :
¢F(z) = (2- : ) 1( 0y~ 0)9( ) (QI(z)) ' (4.37)
z) = —Bkl=y(z ‘ z - z Pi(2) .
¥(z) = =Bk "M(z) + (0, I,,)T(2)(4, —C)6( ).(ql(z)) (4.38)

¥y(2) = =Bk 5(2) + (0. Lo )I(2)(4,~TC)O(2) (2’:8) . (4.39)

Substituting (4.24) and (4.25) into (4.36) and (4.37), respectively, and taking into ac-
count (4.16) we obtain ' ' '

¥(z) =(z=2)"! (1kkL_1]00P1(2) - Coq:(z)) (4.40)
¥p(2) = aop1(2) + (2 - -‘F_)-lkp (kaL'l]aopl(Z) - k[_llcoth(z))- (4.41)

To transform (4.38) and (4.39) we consider block decompasitions

o (2)- 0= (2)o5 (% )mom (™ o8 o

where |
a _ < _ | I, (z.— xj""l,
i=|7].¢ _ 1. ¢= . 6 = (==L (4.43)
an/ cn 0 (=21,

and I'; (=T41) and I'1(2) (= Ti41(2)) are matrices defined according to (4.3) and
(4.4), respectively. Substituting decompositions (4.31),.(4.42) into (4.7) and comparing
in the obtained identity non-diagonal blocks we have y

B, —zB = a,C* (4.44)
B} ~T\B* - Gk = Ac} (4.45)
K,-T'K-GB'=AC". " (4.46)
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Substituting (4.15), (4.40), (4.41) into (4.38), (4.39) and using (4.44)—(4.46) we obtain

, _ i_pel-. A or(-1) pi(z) ‘ '
¥(z) = [1(2) (A - Byk{ao, ~C + Bk co) (ql(z)), | (4.47)
(A Bl _roA L merl-1) zp1(2)
¥,(z) = I'y(2) (A Brkl-Yag, -1y (C - Bk q,)) ( s ) . (4.48)
It follows from (4.6), (4.7), (4.31) that '
B = (agc; — coa3,...,a0¢h — coa@nyY0) (4.49)
By = zB + ag(cy,...,ch). . (4.50)
Comparing (4.49) and (4.50) with (4.28) and (4.29), respectively, we obtain
AD = A-BikbMay  and €W =& - Brkl-e, (4.51)
and therefore (4.47), (4.48) can be rewritten as
= M _cwm) (Pi(2) '
¥(z) = T'y(2) (A ,—C ) (ql (Z)) | (4.52)
- M _1,cw) [ 271(2) :
U,(z) = I'1(2) (A ,-T'\C ) ( e ) (4.53)
It follows from (4.6), (4.28)—(4.30), (4.49), (4.50) that"
KM =k — Bkl-1p*, (4.54)
Moreover, we show that - ) :
KV = K, — Bkl 1B;. (4.55)

Really, substituting (4.51), (4.54) into (4.7) and using (4.44)—(4.46) we have
KV =TWK -T1B*k-1B + AC* — Acjk-"1B
— Bykl"aoC* + Bkl Yagcgkl-11B
=T,k -TB°k"1B + AC* - (B, -T\B* - Gk) k"B
- By k(B — zB) + Bjk=B — 2Bk
=I1K + AC* -GB - B}k "'B,
=K, - Bjkl~'B,.

To conclude the proof we note that according to the lemma about a non-negative block
matrix the system of inequalities (4.34), (4.35) is equivalent to the system

K — B*kl-1B ¥(z)
( ' ¥(z)* Q(2)*p1(2) — p1(2)*q1(2) ) >0

z2—-2z

K, - B3k "B, U,(z), .
v, (z)° 2q1(2)*p1(2) — Zpa(2)°qu(2) | 20

z2—-2

which in view of (4.1), (4.2) and (4.52)—(4.55) coincides with (4.27) ®
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In view of Lemma 4.2 the conditions (4.27) on the parameter {pi41,q1+1} preserve
the structure of inequalities (4.1), (4.2) and, thus, the process is continuable. Under
the process we obtain a sequence of resolvent matrices 6, matrices agl),c(l) eq**m,
matrices ‘7,~ ,k;, ot € €*** and parameters {p;,q;} € S;, for I = 0,...,n and j =
0,...,n — 1 (recursive formulas for ay),c} ,'y;') and {p:,q:} are given correspondingly
by (4 28) - (4.30) and (4.14); in formula (4.10) kn = 7™, kpn = z9{™ + o (™" for
I=n

Vefe notice that i m conditions (4.16) and in the formula (4.15) for the resolvent matrix
©; only matrices ao ,co) (i =0,...,n) present. The following lemmas establish some
properties of the last ones.

Lemma 4.3. Let a)') J' €C**™ and 7)' vkt kpt € @*%* be matrices defined in
(4.28) - (4.90) and (4.9), respectively, and let {pz,qz} be Stieltjes pairs defined by (4.14).
Then

(1) Pxer,a (')c(') = 0 and Pger a,cf,’)cﬁ«" =0 (r>4j=0,...,n~r) (4.56)
(35) Pxerk,, “o p,(z) =0 and Pxe, ;,,cg)q,.(z) =0 (r>1). (4.57)
Proof. At first we prove (4.56) for r = I+ 1. Using (4.43), (4.44), (4.51) we obtain

Pxer k1 Qg (l) ( (l+l), ceey S'H'll) l) = Pker k,,a(')C("“).
= Pr o (6 = 4 15)
= PKer kpi (B, —zB - (kpl - Ikl)kg_l]B)

= zPger ;,,(_B +@B)
=0.

By the same way we get ﬂe, 5 Co Y ('“) =0for j=0,...,n—1—-1. To obtain (4.56)
for all r it sufficies to note that, in v1ew ‘of recursive formulas (4.28), (4.29),
r . , {
Ranag ) C Lin (Ra.n qS»_)) (4.58)

i=1,...,n-{
(r) : )
Ranc;” C Lin (Ranci )":l‘,m'"_’ (4.59)

forallr >l and j =0,...,n — r, where Lin stands for linear span and Ran F' denotes
the left image of the s x m matrix F: RanF = {f €™ : f = gF for some g €C*}.

To prove (4.57) we use induction. The assertions of the lemma are valid for r = {+1
in view of (4.16). Let (4.56) hold for r = ¢. Then, (4.14) implies

Pl(er ky a(()l)P((z) = PKex k,:(agl): 0)61(2) (:’::Igig ) . (460)

Substituting into (4.60) the expressxon (4 15) for ©; and taking into account (4.56) we
obtain

Pyer k,.ao Pt(z) = })Ketk,:ao P¢+1(2) =0.
The second identity in (4.57) can be obtained by the same way &
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Lemma 4.4. Let M, & be subspaces in C™ defined by

M = Lin (Rm Pierk,, af,"),=o and € =Lin (Ran Per ,;,c,‘,")l=0 . (4.61)
Then,

()MLE : (4.62)

(1) dim M = rank Pker 1, A and dim€ = rank Pke::C (4.63)

where A,C are matrices defined in (2.13).
Proof. Relation (4.62) follows from (4.56) and the equality

Pxer kpt ag )C(()I) Pxer ky = Fyer k,:(kpl —zki) Perr, = 0.

To prove relatlon (4.63) we note that, for any (n —1+41)s x (n—1+1) non-degenerate
matrix T,

rank PKer K(I)C( ) = rank PKet TKOTe TC( ) (464)

(K is the informative matrix defined by (4.3)). Turning to the block decomposotion
(4.31) of K we put T = (_B,Ik[_u g).;It follows from (4.32), (4.51) and (4.54) that
- . ]

hpe _ (k1O . (0 A
S=TKT* = ( 9 K(,“,) and = TCW = (nym . (4:65)
Substituting these equalities into (4.64) we obtain
kP, CO = rank Prars 0.
ran Ker KD = ran erS C("H)
= ra.nk.P}(e, ky cf)l) + rank PKer'K('*") C(,'“).

Applying induction we receive rank Pke; k C = Y[, rank Pyer k, c((,') =dim €. The first
equality in (ii) can be obtained by the same way W

Lemma 4.5 (see [9]). Let {p,q} € Sn..
(1) If [0, 1,)p(z) = 0, then there ezists a pair {pi(z),q1(2)} € Sm—. such that the

T e we (P9 O).(%0 2
are equivalent. '

(i3) If [0, 1,]g(2) = 0, then there ezists a pair {p2,q2} € Sm—u such that the pairs
pa)  ama {(BP D) (=0 8 )}

. The following theorem.is a degenerate a.nalogue of Theorem 3.10 and gives a de-
scription of all the solutions to the problem (ISP).

are cquwalcnt
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Theorem 4 8. Let A,C,K > 0,K, > 0 be matrices defined by (2.9), (2:12), (2.18)
and let ©; (I = ,n) be (Z'z"'xz"' valued functions defined by (4 15) Then the linear
transformation (3 18) with the resolvent matriz

o(z) = H ©i(z) (4:66)

gives a parametrization of all solutions to the problem (ISP) (or, equwalently, all the
solutions to the system (3.17)) when the parameter {p,§} varies in S,, and is of the

(ﬁ(Z) ) | (e(z) )
pz)=U\|. .04 ). and ' §(2)=U I, (4.67)
I, 0.

w;th umtary matriz U cgmxm dependmg only on the mterpofatton data and Stseltjes
pair {H(2),4(2)} € Sm-p—-v, where

p=rank Pkerx, A - and gu=rankPKe,KC. .o . (468)

Proof. Setting a(o) = a,, &0 = c,,‘y; ) —:71 (7 =0,...,n) we apply n +'1 times

Lemmas 4.1 and 4.2 to the system (3.17). As a result we obtain that every solution
{p,q} of the system (3.17) admits a representation (3.18) with the resolvent matrix ©
defined by (4.66) and parameter {5,§} (= {Pn+1,gn+1}) in Spm. In view of (4.57)

Ppup(z)=0. -and” * Pegg(z)=0 - (4.69)

where Ppq and Pg are orthogonal projections on subspaces M and €, respectively,
defined by (4.61). To represent (4.69) in the form (4.67) we note that in view of (4.62)
there exists a unitary matrix U € € _"'x"' such that

Orm—pms | Om—pv
UPMU = I, | and UPU=|. 0 - | -(4.70)
0./, . T R B C e

where

g=dimM . and u—dlmé' . (471)

Substltutxng (4.70) into (4.69) and applying Lemma 4.5 to the Stxelt_]es pa.lr {U*p,U*q)
we obtain equwalence of the pairs

5e) i(z) ,
{#(2),4(2)}  and {U( 0, )U( I, )}
S i o

Equalities (4.68) follow from (4.63) 'and (4.71).

To check that any pair {p,§} of the form (4.67) (or, equxvalently, satlsfymg the
conditions (4.69)) under linear transformation leads to some solution {p, ¢} to (3.17) we
use a multiplicative representation (4 66) of © and apply step by step Lemmas 4.1 and
4.2. Finally, since functions ©; (I = 0,...,n) belong to W (see (4 19)), the matrix © of
the form (4.66) belongs to W as well l :
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Corollary 4.7. The problem (ISP) is solvable if and only if the matrices K and
K, are both non-negative.

Proof. The necessity follows from Theorem 3.10. The ;uﬁciency follows from
Theorem 4.6 since the set of elements of the form (4.67) is not empty #

Corollary 4.8. The problem (ISP) has a unigue solution sf and only tf,u +v=m,
where p,v are numbers defined in (4.68).

To obtain the analogous description for the problem (IS) we have to_ea.re of the
non-degeneracy of the "denominator” in the linear fractional transformation (3.16).

Lemma 4.9. Let 6 = (0,,) be the block decomposition of © defined by (4.66) into
four €™ ™ -valued functions and let {p,q} be ins_m and satisfy the conditions ({.69).
Then

det(621(2)p(z) + 622(2)q(2)) # 0
if and only if {p,q} belongs to the subclass SO, defined in (3.15).

Proof. Inviewof (4.28) Ran A = Lm(R/an a('))1 =0,....n» and therefore, {p, q} belongs
to S, if and only if

. det (p(z)'.('z ag‘>’ag'>) p(2) +lq(z)‘q(z'.)) ,aéo e (4T2)
Let {p,q} € §° We mtroduce a pair . . - o
po(2) o0 (P2}
(qo(z)) =96 (q(z))

and show that det go(z) # 0. Indeed, suppose.that the point z € €'y, and- the non-zero
vector h € €™ are such that

B

qo(z)h =0. s o (4.73)

Since ' C : : AR
ooy e se0e) (%)) - Oty 0 (M) =0
'then, in view of :(4.66) and Lemma 8.2,A ‘ ‘ o
. 2)* 2)* p(z)
0k (ot a2 (7))
= h*(p(2)",9(2)") (J = ©(2)* JO(2)) (szg) h
< h*(p(2)", g()") (J — ©i(2)* TOu(2)) (PE ;) C4=0,0.m).
Substituting (4.15) into the last inequality and using (4.6.9)‘”we. ol;tali‘n‘ A

h* (2p(2) 0y ki Mk = q(2) el ) K7 (hkly Mo p(z) — o a(2)) b =
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whiclll is equivalent to
K7 (zkikl Vol p(2) - "’q(z)) h=0 (I=0,...,n). (4.74)

Setting {pn,qn} = {p,q} we apply the inverse Schur process using (4.14). 'In view of
(4.69) and (4.74),

(ooe (oo )
+ziz (c:(’::) K1 (kakinlal™, - ("))) (;’8)

( " kg ?"z’ixz) + q(z)) h

By induction we obtain

po(2) ), _ p(z) . .
(qo(Z)) h= (E?_ ke p(z) + q(z)) h (4.75)
and, hence, (4.73) contradicts to (4.72).

Let, conversely, (4.72) be broken, and for any z € €* there exists a vector h € ¢™*™
such that

g(z)h=0 and a"p(z)h =0 (1=0,...,n). (4.76)

Therefore equalities (4.74) hold for { = 0,...,n and after the inverse Schur process we
obtain (4.75), which in view of (4.76) implies (4.73) 8

Now we can state the main result of this section.

Theorem 4.10. Let A,C,K >0 and K, > 0 be matrices defined by (2.9), (2.12),
(2.13). Then the linear fractional transformation (8.16) with the resolvent matriz ©
defined by (4.66) gives a parametrization of all the solutions to the problem(IS) when
the parameter {p,q} varies in 8%, and is of the form (4.67).

Corollary 4.11. Let rank A = m. Then the problem (IS) is solvable if and only sf
K >0 and K, > 0.

Proof. Since rank A = m, then S9, = §,,. and we use arguments from the proof of
Corollary 4.8 8

The following example shows that conditions K, K, > 0 alone do not ensure for the
problem (IS) to be solvable.

Example 4.12. Let s=2,m=3,n = 0,z <0 and let

100 (=22 22 0 (10
°°"(1 1 o)’ °°“( 0 -0 }1)’ ,7°"(0 o)' (4.77)

Then, according to (2 12) and (2. 13)

10 _(-=z O
K_(o o)>0, , and4 K,—(O 0)20 ' -(4.78)
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and, therefore, . , S
00 . o
Perk = I’KCYK, = (0 l) . (479)

Let the problem (IS) with the interpolation data (4.77) has a solution. Then, in
view of Theorem 4.10, there exists a Stieltjes pair {p, ¢} such that .

Pxerk,a0p(2z) =0 and ° Pkerk cog(z) EO . o (4.80)

and

det (p(2)" ajaop() + 4(2)"q (z))¢o @

Substituting (4.77), (4.79) into (4.80) we obtain (1,1,0)p(z) = 0 and (0,0,1)¢(z) =
Applying Lemma 4.5 to the last identities we obtain that, up to equivalence,-

w0=(7 1) w w=("P ) ew

Substitut{ng (4.82) into (4.81) we obtain a contradiction. So, the problem (IS) has no
solutions in spite of the non-negativity of K, K, which have been established in (4.78).
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