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Tangential Carathéodory-Fejer Interpolation 

for Stieltjes Functions at Real Points 
V. Bolotnikov 

Abstract. In this paper we consider a generalization of the classical interpolation problem in 
a special class of analytic matrix-valued functions. The method used to solve this problem is 
that of the fundamental matrix inequality, suitably adapted to the present situation. 
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1. Introduction 

In this paper we consider the tangential Carathéodory-Fejer interpolation problem in 
the Stieltjes class. 

Definition 1.1. A matrix-valued function w, holomorphic in the complex plane (V 
with a cut along the semi-axis 1R = [0, +oo) is called a Stielijes function if 

1) 
w(z)_w(z)* 

>0 for  3k T	and	2)w(x)>O for x<0. - 

The class of all (V tm>m -valued Stieltjes functions is denoted by Sm. 

We formulate two theorems which are proved in [18]. 

Theorem 1.2. The function w belongs to Sm if and only if 

W(z) - 
w'' >0	and z''	 zw(z) - w(z)' > 0 

z — z 
Theorem 1.3. The function w belongs to Sm if and only if it admits the integral 

representation

w(z)=A±J
	

(1.1) 

where A > 0 and dci > 0 is a (Vmxm valued measure such that f°(1 + t)'dci(t) <00. 

In the class Sm we consider the following interpolation problem (IS): 
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(IS) Given a set of matrices a j , ci E ,aXm7. E7aXa (i = 0,...,n) and a point x <0 
find necessary and sufficient condition, which ensure the existence of a function 

W(Z ) =	- x) k wk	 (1.2) 

in Sm such that 

2: ak-iWi = ck and E E ak_w+)+1a'_J = 7k (k = 0,... , n)	(1.3) 
i=O j=O 

and describe the set of all functions when these conditions preva ii. 

Since wk = w(k)(x)/k!, (1.3) are conditions on derivatives of the function to at the 
point x. Note that representation (1.1) implies wk ^! 0 (k = 0, 1,...) because in case of 
real interpolation points the two-sided interpolation problem coincides with a tangential 
one. The tangential Carathéodory-Fejer problem can be set in other classes of analytic 
functions [3, 5- 7, 10, 14]. In the paper [13] there was considered the non-degenerate case 
of the non-tangential problem in the Stieltjes class and in [9] its two-sided generalization 
for simple interpolating points. 

Somewhat another interpolation problem in the same class is given in [1]. We also 
refer to the monographes [8, 111 where a number of approaches to solve some versions 
of the Nevanlinna-Pick problem have been developed. In the present paper a central 
role will be played by the method of the fundamental matrix inequality [12, 15 - 17]. 

The outline of the paper is as follows: 
In Section 2, following ideas of I. Kovalishina and V. Potapov, we establish the 

system of matrix inequalities for the problem (IS). A necessary ëondition of the solv-
ability of problem (IS) is the non-negativity of special matrices K and K. defined in 
(2.12), (2.13). The description of the set of all solutions to the problem (IS) depends 
on whether K and K,, are degenerate or not. In Section 3 we consider the case where 
K and K. both are strictly positive. The strict positivity of K and K,, is a sufficient 
condition for the problem (IS) to be solvable. The set of all solutions is parametrized 
by a linear fractional transformation of the form (3.16) with the resolvent matrix e of 
the class W, (see Definition 3.1). Section 4 deals with the degenerate case; we still 
have a description of all the solutions as a linear fractional transformation which can 
be obtained by a suitable version of the Schur algorithm. 

2. The fundamental matrix inequalities 

In this section we characterize the solutions to the problem (IS) in terms of a system of 
matrix inequalities. Descriptions of the set of solutions in terms of the linear fractional 
transformation will be given in Sections 3 and 4. We begin with a preliminary lemma. 

Lemma 2.1. Let the function w be of the class Sm and let 

(k = o,.:. ,2n + 1;	<0).	 ''(2.1)



Tangential Carat héodory- Fejer Interpolation	113 

Then for all z E C \ 1lt+ the inequalities 

T (zIy1{(?)W(Z) (:)} 
> 

	

*	 w(z)-w(z) 

- —'

(0)	( Wn

WO\ 
T (zI - r)	. zw(z) 

*	
zw(z)—w(z) 

are valid where T,T E(Tm(%+xm(n+1) are Hankel block matrices defined by 

	

(T) 1 =	 and	(T), = xw 1 + 

and I' is the m(n + 1) x m(n + 1)-matrix given by 

ZIm	 0 

0	Im XI. 

Proof: We first establish inequalities (2.2) for the simpliest functions w E Sm such 
that a measure u(t) from its integral representation (1.1) has a single point of growth 
s 0, i.e. for the function of the form 

w(z) = (it - z) 1 D	 (2.5)

with some non-negative matrix D E Omxm It follows from (2.1), (2.5) that 

	

wk. = (s x)'D.	 (2.6)

Substituting (2.3)—(2.6) into (2.2) we obtain the inequalities 

WDW > 0 and 14WDW > 0, 

where
= (14— Z) 1 1m ..... (ji - X ) ---, I.,(/, -  

which are evidently valid for p ^! 0 and D > 0. Hence the inequalities (2.2) hold for 
the simpliest functions of the class Sm. After summations and taking a limit we obtain 

	

that (2.2) hold for every function of the class Sm • 0	 0 

(2.2) 

(2.3) 

(2.4)
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The following theorem characterizes all the solutions to the problem (IS) in terms 
of a system of matrix inequalities. 

Theorem 2.2. Letw be arnXrnvalued function analytic in C \ liLf . Then w is a 
solution to the problem (IS) if and only if it satisfies the system of inequalities 

(K r(z)(A,.—c) ( 
tm ) \ > 0	 (2.7) 

*	w(z)—w(z)	
) - 

zw(z)\\ (K r(z)(A,	
( 'm ) I > 0	 (2.8) 

*	
zw(z)_w(z)*	

) 

for z 0 i, where

	

(

ao) 
=

	

	 c=(	)	 (2.9)
a 	

(co)

\cJ 
XI.	0 

	

r =	 (2.10) 

0	Ia xl, 

	

r(z) = (xl - )'	 (2.11)

and K, K,, are .s(n-- 1) x i(n + 1)rnatrices defined by 

C11	... c	0	a	... a*. 0	0	:..	0	- 

'K =A	 . —ó	S	

+	 '	

( 2.12) 
c	:	a'	:	0 
0	0	0	0	70 71 

	

K,, = rK + AC	 (2.13)

where A and O are V8(T1+l)xm(Th+l) Toeplitz block matrices defined by 

	

a0	0	... 0	 CO 0	 0 

	

A= "	 and	O= ''	 .	(2.14) 
0 •	 :	.	0 

	

an	a1 ao	 Ci CO 

Proof. Let w be a solution to the problem.(IS). Since w is of the class Sm, it 
satisfies in view of Lemma 2.1 the inequalities (2.2). Multiplying (2.2) by the matrix
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(°) on the left, by its adjoint on the right and using relations 

	

fTm\

	 ( Wn )

wo 

	

01	 wi	-	- 
A	= A,	A	= c,	Al' = FA	 (2.15) 

\o) 
(which follow immediately from (1.3), (2.4), (2.9), (2.10) and (2.14)) we obtain (2.7), 
(2.8) with blocks ATA and AT,,A instead of K and K,,, respectively. But the equality 

ATA' = K	 (2.16) 

follows from (2.3), (2.12) and interpolation conditions (1.3), and after a multiplication 
of the evident identity

fIm 
-	to 

T,,=l'T+1	(w,...,w,) 

.'0 

by A on the left and by A' on the right we obtain in view of (2.13), (2.15) and (2.16) 
that AT,,A' = rATA' + AC' = K,, which ends the necessary part of the theorem. 

Conversely, let assume that a(Vmxmvalued function w analytic in 0\1R4. satisfies 
the system of matrix inequalities (2.7) and (2.8). Then, in particular, 

W(Z) — w
'z' >0	and '	 zw(z) — 

z - i 

for i	. By Theorem 1.2, these inequalities imply that w belongs to Sm. 
The positivity of the matrix-valued function (2.7) implies the boundedness of its 

non-diagonal block, i.e. of the functions 

(z — X)_ 
k'— 

I { 
(> ai( z —	

W(, z 
	>cs(z _x

)
i}	(k = 0,... ,n)	(2.17) 

in compact neighbourhoods of the point x. Substituting into (2.17) the Taylor expansion 
(1.2) and setting z — x we obtain consequently 

= Ck	(k = 0,. . . , n).	 (2.18) 

Multiplying (2.7), (2.8) by the matrix-valued function Q(z) = (+1) °" ' ónthé left -r(i) rO)A) 
and by Q(z) ' on the right we come to inequalities 

/ K	W(z)\	 I >	and	K,,	W,(z)\ 

	

W(z)' R(z).) —	 W,,(z)' Rp(z)) ^ 0	(2.19)



116	V Bolotnikov 

where

W(z) = Kr(s)' + r(z)(Aw(z) - C)A1'(i)	 (2.20) 
W(z) = —Kr() + r(z){zAw(z) - rC}A*r(2)e	 (2.21)

R(z) = r(i)Kr'() - r()r(z){Aw(z) - C}AF(i)' 
- r(i)A{w(z)A - c}r(z)r()	 (2.22)

± --r(i)A{w(z) - 

R(z) =	 - r()r(z){zAw(z) - rC}Ar(i) 
- r()A{Ew(z)A - cr)r(z)r()*	 (2.23)

+— 
1 
=r(i)Af zw(z)  - 

	

Lemma 2.3. Let	 be matrix-valued functions defined by(2.20)—(2.28). 
Then

W(z) = zW(z) + K	 (2.24) 

	

R(z) = W(z)—W(z)	
(2.25) 

W(z)1W(z) R(z) = z	 (2.26) 

Proof. Using (2.13), (2.20), (2.21) and the identity 

	

I+rr(z) = zr(z)	 (2.27)

we obtain 

W(z) = —(Kr + CA)r(i)* + zr(z)Aw(z)A'r(i) + (I - zr(z)) CAr() 
= K(I - zr(i)) + zr(z)(Aw(z) - C)Ar(2)' 
= zW(z) + K. 

To prove (2.25) we use the identity 

rK -- Kr. = CA* — AC' (2.28) 

which follows immediately from (2.13). Multiplying (2.28) by r(E) on the left, by f(s)' 
on the right and using (2.27) we obtain 

(z - )r()Kr(i)' = F(i)K - Kr(i)' + r(i) {AC' - CA} r()'.	(2.29) 

Substituting (2.29) into relation (2.23) and taking into account the resolvent identity
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r(z) - r(i) = ( - z)r()F(z) we obtain 

R(z) = (z - i — ' {r(i)K - Kr(i) + (r(z) - r(i))(Aw(z) - C)AF() 

• r(i)A(w(z)A - C*)(r( i) e - r(z)e) 

• I'(E)A(w(z) - w(z)*)A'r()*} 

= (z -	{r(i)K - Kr()- + r(z)(Aw(z) — c)Ar() 

- r(2)A(w(z)'A - C')F(z)*} 
- W(z) - W(z)* 

By the same way, with help of the identity FK,, — Kr = rCA' - AC'' which follows 
from (2.16), we obtain

- 
WP(z) - W(z)' - zW(z) 

-	-	- z—z	 z—z 
which ends the proof of the lemma I 

In view of (124)—(2.26) the inequalities (2.19) can be rewritten as 

(

K	W(z)	 K,,	zW(z) + K 
W(z)s W(z)W() 0 and (W(z)' + K zW(z)-;W(z)) > 0 

and imply
W(z)—W(z)' > o

	and	
zW(z)-2W(z)' >o 

for z i4 E. By Theorem 1.2, W is of the class S(fl+i), and therefore is analytic in some 
neighborhood of x. Substituting into (2.20) the Taylor expansion (1.2) of w and using 
(2.15) and (2.18) we obtain

fw(z) — wo 
I

	

 
W(z) = Kr() + Ar	

—WI
(z)	 A'r()' 

/ w1 -4-w2(z—x)+.;. 

	

I	W2+W3(ZX)+... 

	

= Kr()' + A	 :	 A'r()'	 (2.30)

+ w+2 (z - x) +... 
f w1+w2(z-z)+... \ 

	

=—Kr(i)'+A	 :	 ) ((ZX),...,(Z;)fl+l)A'
Wfl+i + Wfl+2( Z - x) +... 

	

( Wn+1

wi  

 —Kr(s)' + A 	 ) A'r()' + O(Iz xI). 
w2+1J	

0
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Setting z - x in (2.30) we obtain in view of analyticity of W 

	

( Wn+l

w1	... 

K=A	 A.	 (2.31) 

 ..; wJ 

Substituting (2.12) and (2.14) into (2.31) and comparing there 3 right rows we obtain 
the equality   

7	( Wi	... w1 
:

	), (a *.

 7n/	\Wn+j	W2n+i 	a0 

which implies

7k =	ak_w1++1a_	(k = 0,. . . , n).	 (2.32)

i=0 1=0 

Equalities (2.19) and (2.33) mean that w is a solution to the problem (IS) , which ends 
the proof of theorem U 

	

Setting in Theorem 2.2 .s = m, ao	a = 0 for i > 0 and c = w (i =
0, . . . , 2n + 1) we obtain the following inversion of Lemma 2.1. 

Corollary 2.4. Let the `X'-valued function w analytic in tT \ JR satisfy the in-
equaliiiei (2.2). Then w belongs to S. and w(k)(x)/k! = wk (k = 0,... ,2n + 1). 

Remark 2.5. It follows from (2.7), (2.8) that the non-negativity of matrices K 
and K,, is a necessary condition to ensure that the problem (IS) has a solution. 

As will be proved in Section 3 , the condition (	) > 0 is a sufficient one. The
matrices K and K,, will be called the information matrices of the problem (IS). 

3. Solution to the problem (IS) : the non-degenerate case 
In this section we suppose that the information matrices K and K,, are strictly positive 
and describe the set of all solutions to the problem (IS) under this hypothesis To begin 
with we recall the necessary definitions. 

Definition 3.1. A C2,x2' -valued  meromorphic function e is of the class W. if

	

e(z)Je(z) = J (z € JR)	and	e(z)Je(z) ^ J (z € (Z)	(3.1)

and

	

•e(x)Je(x)* ^! J,	(x <0) 
where

/ 0	i'm"	 "0 Im" 
= ( •I	)	and	= i	0 )	 (3.2) \im	/	 \	/ 

and is of the class W if it satisfies only conditions (3.1).
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Lemma 3.2 (see [12]). The classes W and W. are closed under multiplication: 
(i) Let e 11 e2 € W. and e = e 1 e2 . Then, 8 € W. and, for i = 1, 2, 

8(z)J8(z)* e1 ()Je()*	(z EG+)	 (3.3) 
8(x)J8(x) 8.(x)J81(x)'	(x <0). 

(ii) If 0 1 , 0 2 E W,, then 8 = 8182 € W and the first inequalities of (3.3) hold. 

The following theorem establishes the connection between classes W and W,. 

Theorem 3.3 (see [131). The T2mx2m -valued function 8 belongs to W. if and only 
if

8 € W	and	9(z) = P(z)8(z)P(z)' € W	 (3.4) 

where
P(z) 

= ( 
Zm	 (3.5)IM) - 

The following two lemmas which in fact are contained in [12] describe a number of 
functions of the classes W and W1. 

Lemma 3.4. Let H be a strictly positive m x m matrix which is a solution of 
the Lyapunov equation rH - Hr = —iGJG, where J is a matrix defined in (3.2), 
G € jTrYm and r E (J]mXm Then the 02,,2, -valued function O(z) = I + iG(zI - 

is of the class W and 

O(z)J(w) - J = i(ti - z)G(zI - r)—'H—'(i3I - r)—'G. 

Lemma 3.5. Let H1 , H2 be strictly positive m x m matrices such that 

H2 - rH1 = G2 G	 (3.6) 

for some matrices G 1 , G2 EcVtm and r €1Tm(m. Then the C2,12, -valued function 

e(z)=I+i 1G G,-r- 
\ fr(')H'G1	o	

) G2* zG )	0 

(where r(z) is defined by (2.11)) is of the class W. and 

e(z)Je(w) -J = i(ti7 - z) ( G )r.H'rthal,G2 

e,(z)Je(w) - J = i(D - z) (G1' ' r('yHç'r(u,)(rG 1 , G2): ' -G2 / 

Note that under assumption (3.6) the function 8 admits the following representation 
which can be checked by a direct computation:. 

8(z) = {i+ () r(YHi(G1,G2)J1.(G.H..1G	)	
(3.7)

2 I
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where the first.factor is the function of the class W and the second one is a f-unitary 
matrix. In view of (2.16) matrices 

H1 =K,	H2 K,,,	G1 =C,	G2 = A 

satisfy the conditions of Lemma 3.5 and hence, the IT2,12mvalued function 

E)(	-	(	C'	0	(r'(E)'	r'r()' \ (K'	0	'\ (C	0	j (z) -	+ 3 8 0&A'	)	r()'	zr(fl' )	0	K;')	0	A 

is of the class W, and 

•	0(z)J0(w)' - J = i(	- z) ( C	r(i)'K-'r()(c,A)
0 

•
- J = i(zi - z) (

) 
r()'K;'r()(rc,A ). 

c'r'
(3.9) 

A- A' 

In view of (3.7) 0 admits a representation 

0(z)	0(z) (A'-'A	) ' 3 10) (3.10)

where the function	 -	 0 

O(z)= 1+	(:) I'(E)'(C,A)J 

belongs, in view of (2.28) and Lemma 3.4, to the class W. Since 0 and 0,, are both 
J-unitary on the real axis, the symmetry relations 

0'(z) = Je(2)'J	and	OP 1 (z) = 

hold and together with (3.9) imply 

J - 0(z)'J0 1 (z) = J(J -

z) ( -C rw'K.-'r(z)(A, -C) (3.11) 

J - 0,,(z)'JO'(z)	i(i - z) 
(r) 

r(z)K;'r(z)(A, -rC). (3.12) 

Since K, K,,> 0, inequalities (2.7), (2.8) are equivalent ,to the following ones: 

•	((z)',i) I i(-	(-C A*)f(z).K1r(z)(A_c).} ( w(z) )
 
^ 

•	(w(z)',I) 
f	

_	7 z)	(.) r(z)'K;'r(z)(A_r'c)} (zw(z)) ^ 0
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which in -view of (3.11), (3.12) can be rewritten as 

(W(Z),I)e(z)._Je(z) (w(z)) >0	 (3.13) 
(z—z) 

(Ew(z), 
J) eP(z) .Je; (z) I zw(z) 

i(E — z)	 )^o. 

Using (3.4) and (3.5) one can express the last inequality in the form 

(W(Z).,I)e(z)P(z)JP(z)8(z) (w(z)) ^ 0 .	(3.14) 
i(i — z) 

Thedescription of all solutions of the system of inequalities (3.13),(3.14) for the 
non-tangential problem (IS) was obtained in [12]. A generalization of this result to the 
two-sided problem with simple points of interpolation is given in [9]. 

The presence of multiple points has no influence on the character of the description, 
and the same arguments lead to a similary description for the present problem, that's 
why the proof of Theorem 3.7 will be omitted. To formulate this theorem we need some 
definitions. 

Definition 3.6. Let {p,q} be a pair of	 functions meromorphic in 

(i) {p, q} is called a Stieltjes pair if 
() det(p(z)p(z) + q(z)q(z)) 0 
() (q(z)p(z) - p(z)eq(z))/(z - i) > 0 for Imz 0 0 
(y) (zq(z)p(z) - Ep(z)q(z))/(z - ) > 0 for Im.z 9k 0. 

(ii) {p, q} is said to be equivalent to the pair {pi, qi} if there exists aGJrnXrnvalued 
function 11 (detcl(z) 0) meromorphic in (Z' \ R such that Pi = pQ and qi = q ft 

The set of all Stieltjes pairs will be denoted by 
Using the matrix A defined in (2.9) we introduce the following subset of m: 

So 
= {{p, q } € S. : det(p(z)*A'Ap(z) + q(z)*q(z)) o}.	(3.15) 

Theorem 3.7. Under the hypothesis K, K,, > 0 , let e be the function defined 
by (3.10) and let e = (9,,) be the block decompo3ition of e into four C"-valued 
functions. Then the linear fractional transformation	

0 

W(z) = (811 (z)p(z) +912(z)q(z)) (021 (z)p(z) +022(z)q(z))	(3.16) 

gives a parametrization of all solutions to the problem (IS) (or, equivalently, of the 
system (8.18), (8.14)) when the parameter {p,q} varies in 

More precisely: 
(i) Every solution w to the problem (IS) is of the form (8.16) for some pair {p, q) E 

goM
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(ii) For every pair {p, q) € goM the transformation (5.16) is well defined (the relation 
det(921 (z)p(z) + 922 (z)q(z)) 0 0 is true) and the (Jjrnxrnvalued function w defined by 
(3.16) is  solution to the problem (IS). 

(iii) Pairs {p, q), (pi, q, } € S,, are equivalent if and only if they lead under the 
transformation (3.16) to the same w. 

Corollary 3.8. Since the class go defined in (3.15) is non-empty, the conditions 
K, K,, > 0 are sufficient to ensure the problem (IS) to be solvable. 

Definition 3.9. The matrix of the linear fractional transformation describing all 
the solutions of the interpolation problem is called the resolvent matrix of this problem. 

To conclude this section we note that the problem (IS) can be set in the class S,. 
of Stieltjes pairs; we consider the following problem (ISP): 

(ISP)Given a3et of matrices a1 ,c 1 Ea?Ixm ,7, €tax1 (i = 0,... ,n) and a point x <0, 
describe all Stieltjes pairs {p, q} E Sm with Taylor expansions 

	

p(z)= >(z - x)kp	and	q(z) =	- 

such that

=ck_iq. 

and

(ak_jpj+j+j —ck _ i qi+j+ 1 )g j =7k	(k =0,...,n) 
i=0 1=0 

where (go,... ,g,,) €a?Ixm(12+l) is the unique solution of the system 

= c,	E qjg*_1 = a	(k = 0,... ,n). 

Sixnilary interpolation problem on the set of Nevanlinna pairs was considered in [1, 10] 
and in much more general classes in [3]). The following theorem shows that problem 
(ISP) is also equivalent to a system of matrix inequalities. 

Theorem 3.10. A pair {p, q) ofTrnXrn.valued functions meromorphic in a \ ifl+ 
is a solution to the problem (ISP) if and only if it satisfies the inequalities 

(K r(z)(A,—c) ((z)) \ (K, r(z)(A,—rC) ((z)) \ q(z)	i >
 0,	

i	 q(z)	i > 0 (3.17) 

	

* qzrpz 
I 

p(z)*q(z)) - 	z(z)*p(z_p(z)(z)) -
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for z 36 i , where the matrices K,K,,,A,C,I' are as in (2.9), (2.10), (2.12) and (2.13). 

A representation of inequalities (3.17) as 

8(z)-	 p(z) Ip(z)\ (p(z)',q(z)') i(z —)	q(z)) ^° 

(p(z)s,q(z).)P)JP(e(	
° 

I(z)\ 
q(z)) ^ 

(analogue of (3.13), (3.14)) with P, 8 defined in (3.5), (3.8) leads to the following "pro-
jective" analogue of Theorem 3.7. 

Theorem 311. Under the hypothesis 	> 0 the following statement., are true: 
(i) All the solutions {p, q} of the system (8.17) are parametrized by the linear trans-

formation

q(z))
= 8(e) (z)	(3.18) 

	

with the resolvent matrix 8 € W defined by (8.10) and parameters	varying in 
Sm.

(ii) Pairs {p, q} and {u, v} are equivalent if and only if the corresponding parameters 
and {ü,13} of the linear transformation (8.18) are equivalent. 

Note that the subclass ,, does not appear in Theorem 3.11, since the non-singularity 
of q in "projective" case have not to be insured. 

4. The Schur algorithm to the degenerate case 

The problem (IS) as a number of classical interpolation problems can be solved by a 
recursive algorithm. This originates with the work of Schur [19]. We also refer to papers 
[4, 161 where some generalizations of this recursion were considered. 

In this section we construct a suitable version of the Schur algorithm to the degen- 
erate case of the problem (IS) where information blocks K, K. being possibly singular: 
K, K,, > 0. As usual, the Schur algorithm will be concluded in a gradual (step by step) 
decrease of a number of interpolation conditions both with a simaltaneous recounting 
of the interpolation data. 

Let a pair {p,, q,} E Sm satisfy the following system of matrix inequalities: 

/ r,(z)(A(), —C(')) (z(z)) q,(z) ) (4.1) 
=	*	q,(z)p,(z) p,(z)q,(z) 

(K(') (r,(z)(A'),—r,c(')) (P1(z))

	

)^	(4.2) 
=

	

	
q,(z) 

zq,(z)p,(z) - ip:(z)qi(z) 
z—i 

where r, E_t+1)1x_t+1) is the matrix defined as
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xl,	 0 

XI =	 (4.3) 

	

0	I, XI, 

with the resolvent

	

F,(z) = (zI(fl_,+l), -	 (44) 

and matrices A( ') , C ( ') E a'(n_l+l)axm and K( ') ,K, E	—l+i)ax(n—l+i)e are defined 
(1)	(1) after data a, ,c 1 € a1xm	€ 1Z1x (i = 0,...,n —1) similarly to (2.9), (2.12) and 

(2.13), i.e.

/ (O\	 / (I) 

= I	I ,	= I	 (4.5) ' (') I	 CO) 

/ msn(r,n—j-1)

	

(a'	

'n—i 

	

(')•	- 
r_J CI+i+l C_, j+l+1 

1=0 

	

i'	...	0	(l) 

	

+1	I	 (4.6) 
(1)	(1)	(I) 

\7o	7i 

=	+ A'C''.	 (4.7) 

In particular, Jpi , qi) satisfy the inequalities 

(1) (ki (z —x) j (ao ,—c) (i(z)) q,(z) 0	(4.8) 
*	

qj(z)'p,(z) - pj(z)'q(z) 
z—z

( 
(kr: (z - x) 1 (za0(1) ,—xc0(I) ) 

p1(z) q,(z) )) ^o	(4.9) 
*	

zq,(z)'p,(z) - p,(z)'q(z) 

where	 -. 
ki	

(1) (1).	(1) (1).	 co(1) (1). 

	

= a0 c1 - co a1	and	k, = Al - a0 	.	 (4.10) 

Taking into account a possible singularity of k,, k, we introduce orthogonal projections 
PiCer kg and PKer k,, on their kernels and set 

= I. - Pjey ,	and	Q, = I. -	 (4.11)
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Since the transformations k, : Ranks —+ Rankj and k,, 1 : Ran k,,, --o, Ran k,,, are one-to-
one, the pseudoinverse operators 

	

= I (Qj kj , 1 f	for I € Rankz 
for fEKerk, 

khlf = I (Qpl k,,IRnk,,Y'f for I E Rank,,z	
(4.12) 

	

t O	 for f€Kerk,,, 

are well defined on W' and 

	

k1 kj 1 ' = k,[— "k, = Qj	and - k1k,,1 = Q,,,.	(4.13) p1 — p1 

Lemma 4.1. A non-degenerate pair { pl,q,) of mXm -valued function., meromor-
phic in l' \ li4 satisfies the system of matrix inequalities (4.8), (4.9) if and only if it 
admits a representation

= e,(z) (z+i(z)	 (4.14) 

	

\q1(z) J	\q1+1(z)J 
where

(1)• 

	

1 ( Co ) 1- 11 (1) -co(,) )}	( 1)• e,(z) = {i+ (z - x)	
0 1a,	) 

	

'	i 

	

a	 (4.15) 

	

(1)	k1	(a0 ,	 0 

and {pj+j, qj+} is some Stielije, pair such that 

	

PKerk,,a'p,+j(z)	0	and	 0.	(4.16) 
Proof. In the proof the index I will be omitted. Let a pair {p,,q,} satisfy the 

inequalities (4.8), (4.9). According to a lemma about a non-negative block matrix [13] 
the inequality (4.8) is equivalent to the system 

	

fp(z)\ — O	 (4.17) P1(erk (ao_Co ) q (z)) = 

(p(z),q(z)') _ - Iz - x12 ( a (p(z)\	(4.18)0. 1z—z	—COO	 q(z)) 

Using (4.15) and Lemma 3.4 we obtain 

•	O(z)Je(z) - J = i(z - )I z - x12	
\ k[_h)(co,ao).	(4.19) (ao) 

Hence the function e is J-unitary on the real axis, E)- I (z) = Je(i)*J, and, in view of 
(4.19),

e(z)Je 1 (z) - J = J(e()Je() — J)J 

= i(z - )z - x12 I a \ k 1 ' J (ao, —co).	
(420)
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Using (4.20) we can rewrite (4.18) as 

(p(z)*,q(z)*)e(Je(	(p(z)\> 0. z-2 

It follows from the last inequality that {p, q} admits a representation (4.14) with some 
non-degenerate (since det e(z) 0) pair {p, qi } such that 

qi(z)'pj(z) - pj(z)q1(z)

	

> 0.	 (4.21) 

It remains to show that the pair {pi, q i } belongs to 9.. and satisfies conditions 
(4.16). According to the cited lemma about a non-negative block matrix the inequality 
(4.9) is equivalent to the system

(p(\ - 
PKer	

z) 

	

k(za0,—xc0) q(z)) = 0	 (4.22) 

a 

I.. z — z

	

	 —xc) k1(ao_zco)} (zp(z)'\ ^ 0. (4.23)
q(z)) 

Using (4.10)—(4.13) and (4.15) we obtain 

	

(ao,—co)e(z) = (ao,—co) I 
	i)( a O' k,'_ ']ao  

	

= ((i - (k - xk)kj, h1 ) a0 ,	 (4.24)

((Pi<erkp +xkk'1)ao,—co) 

and

(zao,—xco)e(z) = (((z - x)ao,0) + x(ao,—co))e(z) 
= ((z - x)ao,0) + XP}(erk (PIcerk,,ao, —co)	 (4.25)

+ k ((kFh) PI(er kp + xQk h1 ) a0 , _k(—'lco). 

Substitution of (4.14), (4.24) into (4.17) gives

(pi (z)\ 

	

PKerk (Pxerkpao,co) 
q, (z) 	

0.	 (4.26) 

Substituting (4.14) into (4.22) and taking into account (4.25), (4.26) we obtain the 
identity PKerk,aopl(z) E 0, which both with (4.26) implies PI< erk coqI (z) 0. Using 
two last identities and substituting (4.14) into (4.23) we obtain the inequality 

(Epi(z),qi(z))--- 
/ zp(z)\ 

z_z	q, (Z) ) 
^0 

which both with (4.21) means that {pj,qj} E Sm. 
The necessary part of the lemma can be obtained by a direct substitution of (4.14) 

into (4.8), (4.9) and use of (4.16) 1
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The solution {p,, q,} of the system (4.8), (4.9) (i.e. a Stieltjes pair of the form (4.14) 
) to be a solution of the "full" system (4.1), (4.2), its parameter {p,+i,qz+i) in (4.14) 
has to satisfy some additional conditions which are given in the following lemma 

Lemma 4.2. Let {pj+j,q,+i} be a non-degenerate paii of C"' -valued functions 
meromorphic in(i'\liL. which satisfy (4.16). Let e, be aCJ2mx2m -valued function defined 
by (4.15) and let {p,, q,} be a pair defined by the linear transformation (4.14). Then 
{p:, q,) satisfies (4.1), (4.2) if and only if {pz+',q,+'} satisfies the system 

R'' > 0,R(1+1) ^ 0	 (4.27)

where matrices R'' ans R,,(1+1) are defined by (4.1) and (4.2), and (j ^! 0) 

	

1'	( j)	 )•	()	(j)	() 
- J a 1 - (xc1^2a0(1) (j

 - xa,+ 2 c0 + c1+ i a )k " a ' if j <n —1 
I	- 

1
( 1)	(1)	(1)	(1)•	

(4.28) 

	

- X7	+ c341 a0 )k, a0(1)	 if j = n - I 
1 (1)	(1)	 (1)	(1) 

	

(z+1) - )	
- (c12a0(l)•	, 

	

- a 2 c0 )k"c'	 ifj < n - I 
I	-	(I)	(l)	(-1] (1)	 (4.29) 

c,+ 1 —yo k, c0	 ifj=n — l 
(I)	(I)	(Z)•	(1)
	(') * )k[_11 (I) 

(1+1) - v,+ - (c12a0 - a,+2 co )k,	 if j < n- 1 
f- 
1 

(1)	(1)• r-' (1)	 ifj=n—l. 
(4.30) 

7.,+-7o k i  ,	Vo  
Proof. In the proof the index I will be omitted. Let 

K=( B"	K - (k,,	
)	(4.31). k)	and	

K,, 

be block decompositions of information matrices K and K,,. The non-negativity of K 
ans K,, implies PKerkB 0 and Pi<erk,Bp = 0 which in view of (4.10) can be rewritten 
as B = QB and B,, = Q,,B. Therefore, K and K,, admit the factorizations 

	

0 \ 1k	0	' II, k(—'1B K = (B —h1 'a.) 0 i? - B'k I ' )B) 0	In, )	
(4.32) 

	

)  0	 I kH'IB \
K,,

- 	
I.0 \ (kp	 a p	p	(4.33) -. B; kr" i,, 8 )  0 K,, - B; k' 1 B,,	0	I,,, ) 

Substituting (4.14), (4.15) into (4.1), (4.2) and multiplying matrices from (4.1),(4.2) on 
the left by matrices 

	

/	I	oo\ 	I	0 o\ 

	

L = f —Bk1) I 0	and	L,, = ( —B;k" I 0 ) 

	

\ 0	0 ImJ	 \ 0	0 IMJ 

and on the right by byL' and L,* , respectively, we obtain in view of factorizations (4.32) 
and (4.33) the inequalities 

/ k	0 

( .0
	1? - B'k1— '1 B	 tIi(z)	 > 0 (4.34) 

) - 
qj (z)'pi (z) - p1(z)q1(z) 

+ (z)*k(11(z)



128	V. Bolotrnkov 

and 

/ k	 0	 .	 t,bp(z) 

( 0
	Rp — BP' k p— Bp	 IPPW	 >0 

zq i (z)pi (z) - p1(z)q1(z) + p ( Z )sg_ 1 1 p ( Z)) - 
z-2

(4.35) 
where

/ b(z) = (z - z) 1 (ao , —co)e	P1(z) (z) qi(z))	 (4.36) 

b(z) = (z.— z)'(zao,—zco)O(z) (pi(z)\ (4.37) .qi(z)) 

T(z) = _BkFhl ,I,(z) + (0, I 3	 (4.38) )r(z)(A, —C)e(z) PI (Z) \ 
qi(z))  

(4.39) Wp (z) - —B kiu1 b(z) + (0,I,)I'(z)(zA,—rC)e(z) ( PI(z)\ 
- Pp 

Substituting (4.24) and (4.25) into (4.36) and (4.37), respectively, and taking into ac-
count (4.16) we obtain 

	

= (z - x)' (xkk ,_ h 1aop i (z) - coq i ( z))	 (4.40) 

t,b(z) = aop i (z) + (z - x) — 'kp (xQkj, hl aopi (z) - kL_ h lco qi (z)) .	(4.41) 

To transform (4.38) and (4.39) we consider block decompositions 

A= ('j) c= () r= (xi, 0 )rz_ (z—x) — 'I.	0 " 

	

G r1	- I	G(z)	ri(z)) (4.42) 

where

a1	 Cl	 i,	 i (Z X)-2j. 

-	 cj	0	1 (z—x)31, 
A =	C =	, G=	, G(z) = 	 (4.43) 

c	(0)	\(z - 

and r1 (=r, 1 ) and ri (z) (= r,+1 (z)) are matrices defined according to (4.3) and 
(4.4), respectively. Substituting decompositions (4.31),.(4.42) into (4.7) and comparing 
in the obtained identity non-diagonal blocks we have 

	

B - xB = a0 C'	 (4.44) 
B; - r1 B' - Gk = Aco*	 (4.45) 

	

kp - r, k* 7 GB= A'.	 (4.46)
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Substituting (4.15), (4.40), (4.41) into (4.38), (4.39) and using (4.44)—(4.46) we obtain 

IJ!(z) = r' i (z) (A - B;k —"ao, - + B*kl_ h1c0 ) (Pl(z) \ (4.47) qi(z))' 
Izpl(z)\ W(z) = F 1 ( z) (A - B;k — "ao, —r 1 (c - Bsk1_hico)) Is q, (z) )	

(4.48)

It follows from (4.6), (4.7), (4.31) that 

B= (ao4 —co a ,..., aoc— coa,,7o)	(4.49) 

Bp=xB+ao(cT,...,c).	 (4.50) 

Comparing (4.49) and (4.50) with (4.28) and (4.29), respectively, we obtain 

= A - B;k — ' J ao	and	= C - B'k' 1 co	(4.51)

and therefore (4.47), (4.48) can be rewritten as 

(z) = r 1 (z) (AW ,_CW)
(ql(z))

pi(z)
) (4.52) 

W(z) = r i (z) (A('),—ricw/
(zP1(z)\ 

q, (z) ) (4.53) 

It follows from (4.6), (4.28)—(4.30), (4.49), (4.50) that 

	

= K - BkH1I B'.	 (4.54) 
Moreover, we show that

	

K' = kp - Bk 1I B;.	 (4.55) 

Really, substituting (4.51), (4.54) into (4.7) and using (4.44)—(4.46) we have 

= r 1 K - r 1 Bk [ ' I B + A - AckN'IB 

- B;kaoc— ' l	+ B;k—hIaock(—hlB 

= r' 1 k - r 1 Bk1— 'B + AO' - (B; - r 1 B . - Gk) k111B 
- B;k — ' ] (Bp - xB) + B;kl— ' ) B - xBk'1B 

= r 1 k + Ae o - GB - B;k,—']Bp 
=	- B;kI_h]B. 

To conclude the proof we note that according to the lemma about a non-negative block 
matrix the system of inequalities (4.34), (4.35) is equivalent to the system 

(

K - BkH ' )B	'I'(z)

(z)	qi(z)pi(z) Pi(z) * i z)	0

f	pz.[11p	 T 
P -7P' P	p	 pZ• 

I  'I' (z) *	zqi(z)*pi(z)_ipi(z)*qj(z)	^0 
\ z — z 

which in view of (4.1), (4.2) and (4.52)—(4.55) coincides with (4.27) 1 
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In view of Lemma 4.2 the conditions (4.27) on the parameter {p+, q,+i} preserve 
the structure of inequalities (4.1), (4.2) and, thus, the process is continuable. Under 
the process we obtain a sequence of resolvent matrices e,, matrices 
matrices	E (L' and parameters (pi,q,) E L for 1 = 0,...,n and j = 
0,... ,n —1 (recursive formulas for	 and {p,, q,} are given correspondingly 
by (4.28) - (4.30) and (4.14); in formula (4.10) k =	= X76 + ao co	for 
1 = n). 

We notice that in conditions (4.16) and in the formula (4.15) for the resolvent matrix 
e, only matrices 4 ) , 41) (i = 0,... , n) present. The following lemmas establish some 
properties of the last ones. 

Lemma 4.3. Let E and 'y, k,, k,,, E V xI be mairice, defined in 
(4.28) - (4 .80) and (4.9), respectively, and let {p,, q,} be Siieltjeo pairs defined by (4.14). 
Then

(1) (r)	 (1) (r) (i) PI(,k,.a0 c1	= 0 and PKerkgC0 a	= 0 (r > l;j = 0,.. . ,n - r)	(4.56) 
(ii) Pierk,s ao(1) pr(z)	0 and PKerksCo(1) qr(z) E 0 (r > 1).	 (4.57) 
Proof. At first we prove (4.56) for r = 1 + 1. Using (4.43), (4.44), (4.51) we obtain 

IKer &,,a(l) ( ( 1+1)	(1+1) \ 
o	C0	, . . . , C,,_1..1) = PKer k,,a)C(+1 

PKerk,.:a3 (	(	—J =	 —c1)0k1i B) 

= PKerk,,s (B,, - xB - (k,,, - xk,)kjh1B) 

= XPKerk,, ( B + QB) 
=0. 

By the same way we get	 = 0 for j = 0,... ,n - i — i. To obtain (4.56)
for all r it sufilcies to note that, in view of recursive formulas (4.28), (4.29), 

Rana C Lin (Rana') )	 (4.58) 

C Lin (Ranc'))	 (4.59) 

for all r > I and j = 0,... ,n - r, where Lin stands for linear span and Ran  denotes 
the left image of the s x m matrix F: RanF = If E O m : f = gF for some g € l?'}. 

To prove (4.57) we use induction. The assertions of the lemma are valid for r = 1+1 
in view of (4.16). Let (4.56) hold for r = t. Then, (4.14) implies 

(qt+l(z))
p+ (1)

PKerk,,,aop 1 (z) = 1 (erkps(0o(1)	 (z),o)e(z) 	 (4.60) 

Substituting into (4.60) the expression (4.15) for E)t and taking into account (4.56) we 
obtain

PKerk,iaopt(Z) = PKerk,,4Pt+1( Z) 0. 
The second identity in (4.57) can be obtained by the same way 0
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• Lemma 4.4. Let M,I be subspaces in C' defined by 

Th M = Lin (Ran pi< erk,,4°)	and	E = Lin (Ran i eyk,40) ' .	(4.61)

Then,

(i) M ± e	 (4.62) 
(ii) dim  = rank Pier*,A and dim  = rank PKerkC	 (4.63) 

where A,C are matrices defined in (2.13). 

Proof. Relation (4.62) follows from (4.56) and the equality 

P k,g a4 PKer k, 1 = PKer k,.(kpl — Xki)PKer kg = 0. 

To prove relation (4.63) we note that, for any (n — 1 + 1)s x (n — 1+ 1) non-degenerate 
matrix T,	 . 

rank PKer K( 1 ) CW = rank PKer rK (g) T. TC'	 (4.64) 
(K ( ' ) is the informative matrix defined by (4.3)). Turning to the block decomposotion 
(4.31) of K' we put T= (_B.'k( .lI c).. It follows from (4.32), (4.51) and (4.54) that 

S = TK'T = (K(1+1)) and	TC' 
= 

ki	0	 (4:65) 0 .

Substituting these equalities into (4.64) we obtain 

, • ( l )	' Co	't rank PKeyK( s ) C'	 ( = rank 	c(1+1)J 

= rank Pi<er kg 41) + rank Ker K('+') 

	

Applying induction we receive rank P K C =	=o rank PKer c = dim C. The first 
equality in (ii) can be obtained by the same way I 

Lemma 4.5 (see 19]). Let (P, q) € Sm. 
(i) If [0,I]p(z)	0, then there exists a pair {pj(z),qj(z)} € gm— &, such that the 

pairs

	

'	 \l {p(z),q(z)}	and	{(1(Z) O	qj(z) o 
o)'

f
 0 

are equivalent. 
(ii) If [0, 1.1q(z) 0, then there exists a pair {p2, qz} € Sm—, such that the pairs 

P2 ( Z ) o\ (q2(z) 0 {p(z),q(z)}	and	
{( 0	 0 

are equivalent 

The following theorem is a degenerate analogue of Theorem 3.10 and gives a de-
scription of all the solutions to the problem (ISP).



132	V. Bolotnikov 

Theorem 4.6. Let A,C,K > 0,K,, ^! 0 be matrices defined by (2.9), (2;12), (2.13) 
and let e, (1 = 0,.. . ,n) be T2mx2m -valued functions defined by (4.15). Then the linear 
transformation (3.18) with the 'resolvent matrix 

O(z) = 11 0 1 (z)	 (4.66) 

gives a parametrization of all solutions to the problem (ISP) (or, equivalently, all the 
solutions to the system (3.17)) when the parameter {,4) varies in Sm and is of the 
form

fAz)	 f(z) 
(z) =U	O.	and	4(z) =,U. 	I,	 (4.67) 

oJ 
with unitary matrix U E Qrnxrn depending only on the interpolation data and Stieltjes 
pair {j3(z),4(z)} E Sm_,j_v, where 

	

•= rank PKer K, A	and	v = rank PI(er K C.	 (468) 

Proof. Setting a° 'a1, c0 = c1, = 7j 0;... , n) we apply n +1 times 
Lemmas 4.1 and 4.2 to the system (3.17). As a result we obtain that every solution 
{p, q} of the system (3.17) admits a representation (3.18) with the resolvent matrix e 
defined by (4.66) and parameter	(=	 in 9 ,n. In view of (4.57) 

	

PMJS(z)mO .	and	Peq(z)0	 (4.69) 

where PM and PC are orthogonal projections on subspaces M and C, respectively, 
defined by (4.61). To represent (4.69) in the form (4.67) we note that in view of (4.62) 
there exists a unitary matrix u E QJmxm such that 

fOm_p_v	\	(Gm_p_v	 \ 
UPMU = (	1,,1 and UP1U.= (	O,	J	(4.70). 

	

0j	 Iv) 

where

	

= dimM	and	v.= dime.	 (4.71) 
Substituting (4.70) into (4.69) and applying Lemma 4.5 to the Stieltjes pair {U, U4} 
we obtain equivalence of the pairs 

	

I f(z)	\	f(z) 
{(z),j(z)}	and	U (	O	J , U ( 

4)	 O 

Equalities (4.68) follow from (4.63) and (4.71). 
To check that any pair {j3, 41 of the form (4.67) (or, equivalently, satisfying the 

conditions (4.69)) under linear transformation leads to some solution {p, q} to (3.17) we 
use a multiplicative representation (4.66) of e and apply step by step Lemmas 4.1 and 
4.2. Finally, sincefunctions e1 (1 = 0 ...... n) belong to  (see (4.19)), the matrix e of 
the form (4.66) belongs to W as well' U
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Corollary 4.7. The problem (ISP) is solvable if and only if. the matrices K and 
K,, are both non-negative. 

Proof. The necessity follows from Theorem 3.10. The sufficiency follows from 
Theorem 4.6 since the set of elements, of the form (4.67) is not empty I 

Corollary 4.8. The problem (ISP) has a unique solution if and only if A+ ii m, 
where j.i,i' are numbers defined in (4.68). 

To obtain the analogous description for the problem (IS) we have to care of the 
non-degeneracy of the "denominator" in the linear fractional transformation (3.16). 

Lemma 4.9. Let e = (9w ) be the block decomposition of e defined by (4.66) into 
four (LrnXrnvalued functions and let (p, q) be in.8, n and satisfy the conditions (4.69). 
Then

det(921(z)p(z)4 922 (z)q(z)) 0 0 

if and only if {p, q} belongs to the subclass S
o

defined in (3.15): 

Proof. In view of (4.28) Ran A = Lin(Rana( ') ),o ....,,, and therefore, (p, q) belongs 
to S,, if and only if  

det 
(P 

(Z ) *
(	4 40)p(z)+q(zYq())	0. .... '	(4.72) 

Let 1p, q} € go . We introduce a pair 

\qo(z)J	\q(z) 

and show that det qo(z) 0 0.. Indeed, suppose. that the point z E 0. and the non-zero 
vector h € tm are such that	 . 

qo(z)h =0.	 (4.73) 
Since  

h*(p(z)*,q(z)s)e(z)*Je(z) ("1) h = (hpo(z),0)J (P0()hl)= 0 

then, in vies of (4.66) and Lemma 3.2, 

0 < h*(p(E)*,q(z)*)J 
 

= h*(p(z)*,q(z)*)(J - e(i)eJe(z)) ("1) h  

	

:5 h(p(z)',,q(z)) (J - ej(z)*Je,(z)) ('1) h	(1 =o,. . 

Substituting (4.15) into the last inequality and using (4.69) we obtain 

'	p(z) - c() 

	

h (xp(z)ak"ki .- q(z)c) k1	' xk,k	a0 '	0 q(z)) h = 0



134	V. Bolotnikov 

which is equivalent to 

kr" (,—'Ja0p(  (1) z)—c (1) 

	

0 q(z))h=O	(l=O,...,n).	(4.74) 

Setting {pn, qn) = {p, q} we apply the inverse Schur process using (4.14). In view of 
(4.69) and (4.74),	 - 

I	0) 

	

h-=((ak;hba")	

(n) ) p(z)\ h 
Z 

(qn1(z))
1 (4) k"(, knk;'1a,_co )	 q(z) X ao 

= (ak;hbPP(z)+q(z) 

	

(z)	
)h. nW 

By induction we obtain 

	

(po(z)\h. ( E1"=O	
p(z) 

qo(z)) a0 
k1 ) a(1z)q(z) ) h ,	(4.75) 

and, hence, (4.73) contradicts to (4.72). 
Let, conversely, (4.72) be broken, and for any z E Q there exists a vector h € j7mXm 

such that

	

q(z)h=0	and	ap(z)h=0	(1=0,...,n).	(4.76) 
Therefore equalities (4.74) hold for 1 = 0,.. . , n and after the inverse Schur process we 
obtain (4.75), which in view of (4.76) implies (4.73) U 

Now we can state the main result of this section. 
Theorem 4.10. Let A,C,K > 0 and K,, ^! 0 be matrices defined by (2.9), (2.12), 

(2.13). Then the linear fractional transformation (8.16) with the resolvent matrix e 
defined by (4.66) gives a parametrization of all the solutions to the problem(IS) when 
the parameter 1p, q} varies in,, and is of the form (4.67). 

Corollary 4.11. Let rank A = m. Then the problem (IS) is solvable if and only if 
K .> 0 and K,, > 0. 

Proof. Since rank A = m, then goM = m and we use arguments from the proof of 
Corollary 4.8 U 

The following example shows that conditions K, K, ^! 0 alone do not ensure for the 
problem (IS) to be solvable. 

Example 4.12. Let s = 2,m = 3,n = 0,x <0 and let 

	

'i 0 0) 	2x O \	fi O\ 

	

i o)'	co=( o	0 i)'	.0=(0 o)	(4.77) 

Then, according to (2.12) and (2.13), 

K= (
	) 

^o	 and	K,= (
	) 

^0	(4.78)
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and, therefore,
(0 0'\ 

PKe1K = PKerK, = o i)	
(4.79) 

Let the problem (IS) with the interpolation data (4.77) has a solution. Then, in 
view of Theorem 4.10, there exists a Stieltjes pair {p, q} such that 

PKeYKPO.OP(Z) 0	and	PKe1KCOq(z) 0	 (4.80)

and

	

det(p(z)*aaop(z) +q(z)*q(z)) it 0.	 (4.81) 

	

Substituting (4.77), (4.79) into (4.80) we obtain (1,1,0)p(z)	0 and (0,0,1)q(z)	0.
Applying Lemma 4.5 to the last identities we obtain that, up to equivalence, 

p(z) = Az )
)	

and	q(z) = ((2	
).	

(4.82) 

Substituting (4.82) into (4.81) we obtain a contradiction. So, the problem (IS) has no 
solutions in spite of the non-negativity of K, K,, which have been established in (4.78). 
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