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Modular Convergence Theorems
in Fractional Musielak-Orlicz Spaces

" C. Bardaro and G. Vinti

Abstract: Here we study modular convergence in fractional Musielak-Orlicz spaces for se-
quences of moment type operators and convolution operators. To obtain the requested conver-
gence properties we give some estimates for the involved operators, using a growth condition on
the convex function ¢ generating the space L¥®. Then the convergence theorems are obtained
using a density theorem of Musielak type. For the convolution operators we also consider the
line group setting.
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1. Introduction

The aim of our investigations in this paper is to present some convergence theorems of
certain linear operators defined on fractional Musielak-Orlicz spaces, in which the modular
is defined by means of Riemann-Liouville or Weil fractional integrals (see (3, 11 - 13]).
These fractional spaces were recently introduced in 3] where some modular estimates for
"homogeneous” integral operators are given. Note that a different definition of fractional
Orlicz spaces was given by H. Musielak and J. Musielak in [9], where the modular is given
by means of a fractional derivative.

The main theorems of this paper are concerned with modular convergence for moment
type operators (see [1 - 3, 5, 6, 13]), and for convolution operators of classical type (see
4. |

In Section 2 we give some notations and definitions and we prove (Lemma 1) a density
property. Section 3 concernes the study of moment type operators, for functions defined
on a bounded interval, while in Section 4 we take into consideration convolution inte-
gral operators in the periodic case. In the last Section 5, we study the general case of
convolution integral operator in the line group setting.

For measurable space with infinite measure, in order to deal with fractional modulars,
the assumption of local integrability of ¢(t,c), ¢ a real constant (here ¢ = ¢(t,u) is the
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generating function of the Musielak-Orlicz spaces) is no longer suitable. Actually we must
assume the integrability of ¢ — ¢(¢,c) on IR. We remark that this stronger assumption is
not meaningful for functions ¢ without parameter; so the results we have given in Section
5 may be considered in the framework of weighted Orlicz spaces. However, an alternative
condition is discussed at the end of Section 5. For usual Musielak-Orlicz spaces, in the
bounded case these results were given by J. Musielak for convolution operators (see [10])
and by ourself for moment type operators (see [2]). As final remark we note that, for
moment type operators, the line group setting seems to us to be attached by means of a
different approach.

2. Notations and definitions

Let 1 =(0,1) C IR and let m (or dt) be the Lebesgue measure on the Lebesgue o-algebra
Lin I. For A € L, let x4 denote the characteristic function of A. Let ® be the class of
all functions ¢ : 1 x Ry — IR$ such that the following properties are fulfilled:

(i) «(t,-) is non-decreasing convex and ¢(t,0) := lim,_o+p(t,u) = 0.
(ii) ¢(t,u) >0foru>0and te€l.
(iii) (-, u) is measurable.
(iv) (-, a) is integrable for every constant a > 0.

Let X be the class of locally integrable functions z : I — IR (that is z € L'(0,t) for every
t < 1) and let « € (0,1) be fixed. Following 3, 11 - 13}, we define for z € X

W)
e )] t=wp

(Paz)(t) = (tel). - (1)

This operatolr is known as the generalized fractional primitive of order (1 - a) of z. We
note that, by the Titchmarsh theorem (see [8: pp. 22 - 23]), we have z(t) = 0 for a.e.
t € I, whenever (P,z)(t) =0foreach t € I. For p € &,z € X,a € I we define

p*(2) = [ olt, (Palel)(t)) .

It is very easy to show that p® : X — [0, +00] is a convex modular on’ X and the subspace
L*® = {:t € X : p?(Az) < 400 for some A > 0}

is called the generalized fractional Orlicz space (see [3]). Moreover, E#* denotes the space
of all z € X such that p°(Az) < +oo for every A >0. This subspace of L#“ is usually
called the space of the finite elements of X with respect to p°.

Definition. A sequence {z;} C L* is said to be modular conve@ent tozr € L*°, if
for some A > 0 the relation p®(A(zx — z)) — 0 as k — +oo is true. We denote this by

p(l
T — I.
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This notion of convergence induces a topology in L¥. Precisely, we say that a subset
V C LY is p®-closed, if z, € V and =, 5z impjy z € V. We denote by V” " the
p-closure of V. Finally, V is p°-dense in L#°, if V° = L®°; for further details see [10:
p. 19].

From now on we denote by S the class of all simple functions in I.

Lemma 1. For ¢ € ®, we have
() ScCE¥°
@) 3 =1ee.

Proof. Step (_]) Let A > 0 be fixed and let s(t) = &N aixr(t) be the standard
representation of s, where F; = {t € I : s(t) = a;}. Then, by properties (i) and (iv) we
have

airey N Jai]
p*(Rs) = O/"’( [‘(l—a)z / (t—v)"dv)dt

=1pn(0,t)

1
A
< LN
= O/‘p(t’r(l—a),.zz:,la‘lo/(t—v)o d”)dt
1
< /w(t,n)dl < oo,
0
where 7 = AL(1 — a)7(1 —a) ' T ail.

Step (jj). Let z € L¥* and let A > 0 be such that p°(3z) < +oo. Firstly, we assume
z > 0. Let {z,} be a sequence from S such that 0 < z, < z,4, for every n € IN and
z, — z a.e. on I. From property (i) we have @(t, A(Pa[z — z.])(2)) < @(t, A(Paz)(t)).
Moreover, t — (t, \(P,z)(t)) is integrable because z € L and, by Pozn — Poz, we
deduce limy_. 400 p(t, APs[z — 2,](t)) = 0 for a.e. t € I. From the Lebesgue dominated
convergence theorem, we have p°®(A(z, — z)) — 0 as n — +oo. Now, if we drop the
assumption z > 0, we can split z into positive and negative parts, whlch belong aga.m to
L®°. Thus, let {z;} and {z;} be two sequences from S such that z, Tzt and z,, T 2~
on I. Then, by choosing A > 0 with A < X/2, we have

P (L APalza = 2D(0) € 50 (6 3Pa(* = 28)(0) + 50 (1, WPl = 20)(0))

and so the assertion follows in the general case

3. Approx1mat10n properties for the moment type
operators ‘

We denote by F the class of all the measurable functions f : I x I — IR such that,
putting h(v) = f5 f(t v)dt for v € I, we have H := = SUPye/ h(v) < 400 and h(v) — 0 as
v — 1~ (see [10: p. 38, 2]).
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Definition. A function ¢ € ® is called h-bounded if there exist Ko € R and f € F
such that

p(tv™", u) < o(t, Kou) + f(t,v) )
for everyve I, t € (0,v) and u € IR}.
The concept of h-boundedness is a modification of Musielak’s 7-boundedness, and it is

introduced in [2]. Clearly, every function ¢ € & of the form o(t,v) = ¢(v) is h-bounded.
Other non-trivial examples are given in [3].

Definition. A sequence of linear operators T, : L¥*® — L¥* is said to be IN*-bounded,
if there are positive constants K;, K, and a sequence {a,} C IR* with a, — 0 such that

p°(Tuz) < Kip™(Kaz) + a0 (z € L), (3)

For each n € IN, we define a function w, : I — IRZ with the following properties, in
which Hy, and H; are two positive constants.

(W.1) wa(t)®=2 € L\(J) and H, < /0‘ wa(t)dt < Hs (n € IV).

(W.2) limp— 00 Jo P wa(t)to2dt = 0 for every 6 € 1.

For each n € IV, we consider the linear operators
l -
(Tnz)(s) = /w,,(t)x(ts)dt (s € I,z € L**(I)).
0

In the following we will prove that the operator T, is well-defined and that the sequence
{T.} is IN*-bounded for ¢ € ® h-bounded. A typical example is given by the "moment
kernel” defined by the equation w,(t) = (n + 1)t* (n € IN,t € I); see [1, 2, 5, 13] .The
following lemma is a simple consequence of properties (W.1) and (W.2).

Lemma 2. If the sequence {w,} verifies properties (W.1) and (W.2), then there is a
constant W > 0 such that

(W.3) ofwn(t)t°‘2 dt <W (ne€ N).

Theorem 1. Let ¢ € ® be an h-bounded function. Then T,z € L¥* for every z € L¥*
and {T,} is an IN*-bounded sequence.

Proof. We limit ourself to prove the IN*-boundedness, because the remainder is a con-
sequence. Let z € LY be fixed and Ky be the constant in (2). If p*(W K,z) = 400, the
theorem is obvious with K; = W Kj. Thus, we can assume p*(W Koz) < +00. We have,
by the Fubini-Tonelli theorem,

} 1 ; f |z(vs)|

b/(p (t, ——F(l ~a) 0/w,,(.sl) {0 _—(t o) dv} ds) dt

f 1 Fwa(s) [ [ lz(w)]

'o/‘p (t, [l ~a) 0 si=e {o (ts —u)e du} ds) “

p°(Taz)

IA
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Put now A, = 3 w,(s)s®"'ds. By property (W.1) and Lemma 2, we have H, < A, < W,
and so by Jensen inequality and Fubini-Tonelli theorem

l ; l An ? |$(u)| w"(s)
0/ {0-/ Xn-‘p (t’ (1 -a) J (ts — u) du) sl-a ds} dt
1 1 1 W ts Iz(u)l ( )
/{b/ﬁl'(p ( F(l —0) (ts — u) du) dt}ds'

0

p°(Taz)

IA

Now, making use of the substitution 2 = ¢s, and by h-boundedness of the function ¢, we

have
a ! |z(u)l wn(s)
p°(Tnz) < /{/cp (zs "T(1 - a)./ (z — u) ) g2-a dz} ds
1 w,.(s) [ WKo [ |z(u)l
i) v {0/ (z M= a) G-ue du) dz} ds

1/ wn(s)
+Fxo gy {/f(z s)dz} ds
=: Li(n) + Li(n).

IA
l

Now, I)(n) < H;'Wp°(W Koz). Next, for a fixed € > 0, we can choose § € (0,1) such
that s°~2h(s) < HyH;'e, s € (1 — §,1). Then, we write

-

-6

Ig(n)=HL]{/+

Now, I1(n) < :} =% w,(s)s?~°ds, and so, by property (W.2), I}(n) — 0 for n — +oo.

Finally, I3(n) < 6 f, sWn(s)ds < e. Thus we deduce lim,_40/3(n) < € and hence
limy 4400 f2(n) = 0 "and the assertion follows i

1

/} wa(s)s*"2h(s)ds =: I}(n) + I3(n).
&

We will make use of the following general theorem given in {10: p. 24]. We report this
result in a suitable form, for L¥*® spaces.

Theorem 2 (J. Musielak [10: p. 24]). Let {G,} be an IN®-bounded sequence of linear
operators G, : L¥® — L¥®. Let Xo C L¥* be a fized set and S(Xo) the set of all the
finite linear combinations of elements of Xo. Suppose that S(Xo) is p®-dense in L.

Then Gnx Lo for every x € L¥® implies Gnz g for every z € L¥°.
Now, we are ready to prove the main theorem of this section.
Theorem 3. Let ¢ € & be an h-bounded function. Suppose that Hy = H; =1 in property

(W.1). Then, for every z € L¥°, there is a constant a > 0 such that p°(a[T,z — z]) = 0
as n — +00.
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Proof. According with Theorems 1 and 2 and Lemma 1, we limit ourself to prove the
theorem for £ = x4, where A € L. We will prove that T,x4 strongly converges to x4,
that is p°(A(T, nXA ~ x4)) — 0 for every A > 0. Let A > 0 be fixed. We have

PP (MTaxa — x4)) = p(AP,|Tuxa — xal)-

We firstly evaluate P,|T,x4 — x4|- By Fubini-Tonelli theorem,

F(1l_a)0/w" {/IXA t—v )Idv}ds

(PalTaxa — xal)(t) <
1 1
= ——— [ wn(s) T dvpds
ra _a)o/ {(O.c)n(A[_lAA) (t=v) }
1.} Foo
< F(l——a)o/w"(s) {0/ = dv}ds,

where A,-1 = 571 A. So,

l-o

ds <

1} t !
(PalTaxa — xal)(t) < F(I—_Q)O/“’"(s)l “T(l-a)(l—a)

Hence, by the properties of the function ¢, we have
- A
ol dnXa — < ] = ,
AP Tuxa = xa0) < o (L == ) = 40

and the function 8 is integrable on 1.
Next, we will prove that P,|T,,x4 — xal — 0 a.e. on I. We have

I(n) (PalTaxa — xAI)(t)
/wn(s){ s £ el )ld"}ds

L [ Ixa(vs) = xa()]
{/ /}(“’"”{ a1 = “’”}“s)

126,
=: Li(n) + Ix(n).
Here, é, € I is a constant depending on ¢, which will be fixed later. First, consider I;(n):

IA

We easily deduce

1 il 7 a2
hin) s =i —a) /w(s)d3<1(1-a 1—a) 0/ ds

and, by property (W.2), I;(n) — 0 as n — +o0. Concerning I(n), we have

/ 1 1
lg(n) S ‘/6: w,,(.s) {F(l——-a) / (t — v) dv} ds.

1= (0.6)N(A,-, AA)

—
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By integrability of v — (¢ — v)~® and taking into account of the relation m(A4,-1AA) — 0
as s — 17 (see [2: Lemma 1}), for a fixed ¢ > 0, we can choose é; € I such that the relation
Joosynia, -, aa)(t —v)7°dv < e T(1 — @) holds for 1 — & < s < 1. Then lima—4o0l2(n) <€,
and so llm,._.+m1(n) = 0. The assertion follows from (4), the contmunty of tp(t ) and the
Lebesgue dominated convergence theorem

4. Approximation by convolution integral operators:
bounded case

In this section we will refer to the notations and definitions of previous sections. Let
¢ € ® be a given function; we will extend the function ¢ — (¢, u) to the whole real axis
by 1-periodic way, that is ¢(t + 1,u) = ¢(t,u) for every t € IR and u € IRf. We denote
by F* the class of all the measurable functions f : IR x IR — IR} such that, putting
h(v) = f3 f(t,v)dt for v € R, we have H:= sup, g h(v) < +00 and h(v) — 0 for v — o+

and v — 1~

Definition. A function ¢ is said to be T-bounded (see [10: pp. 37 - 38]) if there are a
constant Ko € R} and a function f € F* such that

e(t —v,u) < o(t, Kou) + f(t,) (5)
for v,t € IR and u € RY.

Let now z € X be fixed. We denote by z* the 1-periodic extension of z to the whole
real axis. We need of a reasonable periodic extension of 'P |z]- So, we introduce a function

: I x R — R} by
(t—v)™® iftel, ve(0,t)
ga(t,v

0 iftel, v>t

0<axl)

and finally, we extend by 1-periodic way the function ¢ — go(t,v) on putting
go(t £ 1,v) = go(t,v) foreveryv e R* tel
so that

(t-—v)™™ iftel, ve(0,t)

ga(t:tlvv)= (0<0<1)
0 iftel, v>t.

Finally, we define the extended fractional primitive of order 1 —a of by means of

('P':z:)(t) = /ga t,v)z

for every z € X* = {x € X : |z°| € DomP;}. We will denote by p? the restriction of p*
to X"and the corresponding modular space by L#°.
We will use the following
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Lemma 3. Suppose that ¢ € ® is T-bounded. Then the translation operator (1¢z)(s) =
z°(€ + 8) (€ € I,s € I) verifies the boundedness property

pe(rex) < pl(Koz) + h(§). (6)
Proof. We have, for £ € I,

pre) = [o (tmlfa—) [l + Oente dv) di

1 £+t .
® (t, I"(l—-—a) £/ |z=(u)lgalt,u — {)du) dt.

/
{/l(p (8 I 1_ a) ]'I‘(u)!ga(s —&u-— {) du) ds.
¢ ¢

Now, the function B¢(s) = I'(1 — a)"'/:[:c‘(u)]ga(s — &, u — §)du is 1-periodic for every
fixed £ € I. Indeed,
1 s+1
Be(s+1) = ) / |z*(v)lga(s +1 = & u — £) du
Y
- e ! J2° (u)lga(s — &,u — &) du.

But, for u > s, we have g,(s — &{,u — £) =0 and so
Be(s+1) = / |2 (u)1ga(s — & u — €) du = fi(s)-

Then, by 1-periodicity of ¢t — ¢(t,u), we deduce

pi(rz) = /«»(s ) / 2 u)|ga(s—<,u—odu)d

_ ] ( e /Ix (w)] du) N
= J° ’F(l—a (s —u)

0/"° (8 5T —a) 0/ (Lz-(t:‘))L ) ds.

Now, by 7-boundedness of the function ¢, we have

IA

o2 (7e2) s /¢ (s’ r(1K—0 ) Iz (w)l du) ds + /f(s,{) ds = p2(Koz) + h(€) 1

(s —u)

Next, we introduce the convolution operators as follows: for each n € IN, we define a
function R, : I — R* with the following properties:
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1
(R.1) R,e€L'(I),H, < / R.(s)ds < H; for two constants H,, H, > 0.
(

1-46
(R.2) limpeioo /5 Ra(s)ds = 0 for every 6 € (0,1/2).

If we extend with 1-pertodicity the kernels R, to the whole real axis, we can define
1.
(Unz)(t) = /R,.(s —t)z(s)ds  (z € L¥°).
0

The following theorem shows that U,z is well-defined for every z € L¥¢. ‘

Theorem 4. Let ¢ € ® be a T-bounded function. Then U,z € L¥* for every z € L¥°
and {U,} is an IN®-bounded sequence.

Proof. By using Lemma 3, we can apply similar reasonings of Theorem 1. It is suffi-
cient to prove IN®-boundedness of the sequence {U,}. Moreover, we can suppose that
p2(KoHzz) < +00. We easily deduce that, by periodicity assumptions,

t
. _ 1
Pi\Unz| = ) 0/g,,(t,t,v)|U,.:::|(v) dv

IA

Ni=s [ [ [tz +¢)|dv] ¢

so that

1

p(Unz) = / 0 (tm—l_a—) / |U,nx|(v>ga<t,v)dv) dt

IC, (‘ﬁ [ @ [ [t +s)|du} df) dt.
] 0

[}

IN

Now, by Jensen inequality and Fubini-Tonelli theorem, it is easy to show that

1

p2(Un2) < - [ Rul@)p2(Harez) .

0

By Lemma 3, we obtain

p2(Unz)

IA

1 1
Hil 0/ Ro(€)02 (HaKoz) d€ + Hi / Ra(€)h(€) de

IN

" H
F:Pf(ﬁzKoI) + J,
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where J, = H;' [} Ra(€)h(€) d€E. We will prove that J, — 0 as n — 400. Let ¢ > 0 be
fixed. There is 6 € (0,1/2) such that h(£) < ¢ for £ € (0,6) and € € (1 — 4,1), so we can

write
s
0

that is m_,+ooJ,, < 2%136 and the assertion follows by the arbitrariety of e > 08

+/} Ra(OHO)dE< et + e —+—/m(£)d£,

1-4

“'\T

Fmally we are ready to prove the convergence theorem for convolution operators

Theorem 5. Let o € & be a T-bounded function. Suppose that Hy = H, = 1 in property
(R.1). Then, for everyx € L¥° there exists a constant A > 0 such that p®(A(Upnz—2)) — 0
asn — +o00.

Proof. By IN°-boundedness of the sequence {U,} and Musielak density theorem, it is
sufficient to prove the theorem for £ = x4, A € £. Since, by Fubini-Tonelli theorem,
. 1

(P2Unxa — xal)(t) < ‘ﬁ/&(s){o/ |xa*(s +v) — XA(v)ldv}ds

(t —v)@

1 .

-
F(l - a) /R“(s {/(o,z)n((A—a)AA)(t —v) dv} ds

0

IA

= F(l—a) (1-a)

we have, by properties of the function ¢ = (¢, u),
(NP3 U ) <ot a (1)
‘p Y o T‘XA XA —W ’F(l_a)(l_a)
for every A > 0 and the function 5(t) = (¢, m) is integrable. Moreover, we have

(P:lUnxa — xal)(t)
1 lR Flxa®(s +v) — xa(v)]
I'(l —a) 0/ (s) L : dv] ds

(t —v)@

;e (s +v)— xa(v
- [ ]+ o [l

=: ILi(n) + Ix(n) + Lin),

where 6 € (0,1/2) will be chosen later. We have

Ii(n) £ F(l /R,.(s){ {t—v)™® dv} ds

(0,6)N((A-3s)AA)
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and by integrability of (¢ — v}~ on the interval (0,¢), and by the convergence m[(A —
s)AA] — 0 as s — 0, it is possible to choose § > 0 such that the inner integral is less
than € > 0. Thus, I (n) < ¢/T(1 — a).

Next, we estimate I3(n) as follows:
. . . ) '
Ixa”(1 + v —1u) = xa(v)| ,- '
l_a)/R,,l—u {0/ e pdu

m/’*ﬂ“ {/'X”Z_“v (v)l“”}""

and then, we proceed as before for obtammg I3(n) < E/F(l — a). Finally, it is easy to
show that

I3(n)

I(n) < m!&(s)dS,

and hence we deduce lini,‘_.+°°'P;|U,,XA — xal|(t) =0 for a.e. t € I. By continuity of the
function ¢(t,-) and (7) we obtain the assertion from the Lebesgue dominated convergence
theorem U

5. Approximation by convolutlon mtegral operators:
unbounded case

We will refer to the notations and definitions of previous sections. '

Let now g be the class of all the functions ¢ : R x IRF — IR} such that conditions
i) - iv) are satisfied with I = IR instead of I = (0,1). Let X be the class of all the
functions which are integrable on every interval (—~o0, a). For a fixed a € (0,1), we define
the Weil fractional primitive of order (1 ~ o) (see [6, 11]), the operator defined on X by
the equation

‘ .
N _ 1 z(u)
(Paz)(t) = Mi—o) ) Gowr du (te R).
It is not difficult to see that z(u) = 0 for a.e. t-€ IR whenever (Poz)(t) = 0 for every
te R
Asin Sectlon 2,for p € ®p,z € X,a €(0,1) we deﬁne

+o00

(@) = [ et (Palal)(®)dt (8)

-00

It is easy to see that §* : X — [0, +o0] is a convex modular on X and the subspaces Lee
and E¥° are similarly defined, as well as the notion of modular convergence. Hence, the
topological concepts related to this convergence are similarly introduced.

Moreover, we denote by S the class of all simple integrable functions s : R — IR. We
remark that the set where the function s is not vanishing is bounded. In this case, the
assumption iv) on ¢ € ® g is not satisfied when ¢(t,u) = (u). Thus, this assumption
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is not meaningful in this case. Next, we discuss an alternative condition on . In this
setting, the class L* may be regarded as a generalized version of fractional Orlicz spaces,
with suitable weights; for example we may take p(t,u) = ¥(t)p(u) with suitable ¥ and
$.

We denote by F the class of all measurable functions f : R x R — IR$ such that,
putting k(v) = [*% f(t, v) dt for v € IR, we have H:=sup,.p h(v) < +00 and h(v) — 0
as v — 0. A function ¢ is said to be 7-bounded if it verifies the same definition of the
bounded case, with F instead of F*.

Lemma 4. For every interval [a,b] and number o € (0,1) we have

(a) J(t): /(t—v U (ooy(v) dv <

= ! )[b—a]“" for every t € R.
. 1
(b) J(t,z)::/(A_z)M(t =) X V) 0 S s

and for every measurable subset A C |a, ).

(6+|2z| — a)*~™ for everyt,z € R

Proof. (a) It is sufficient to assume ¢ > a. If @ < ¢t < b, the assertion is obvious.
Suppose now t > b. Then we have

(b _ a)l—a,

b b
J(z)=a/(:-v)-°dv Sa/(b—ty)_"dv: i _’a)
and hence the proof of statement (a) is completé. A

(b) Let z>0. If t < b, the assertion is trivial. So, we assume ¢ > b. In this case

b

J(t,z) < /(t —v) %v < /b(b—v)"’ dv =

a—2

ﬁ[b-f-z—a] o,

Let now z < 0. By considering the cases ¢ < b— z and t > b— z, the assertion follows
with similar arguments B

Lemma 5. For p € ®g and a € (0,1), we have
(3) Sc ke
) 5 = Lee.

‘Proof. The proof of statement (jj) is the same as of the bounded case. So, we will
prove statement (j). Let A > 0 be fixed and let s(t) = YN, aixr,(t) where a; # 0 and
the sets F; = {t € IR: s(t) = a;} are all contained in a bounded interval [a,b). Then, by
properties i), iv) and Lemma 4/a), we have

P(s) < +/°°¢( Z| Md)dt
: -4 )
T quo@)
< _[osp( )Zl / )di
+o00
<

/vmwa<+m,

—00
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where 7:=77 '\ab—l‘ = 2, R Ia. |l

Lemma 6. Suppose that ¢ € ® g is T-bounded. Then' the translation operator ('rgz)(s)
(€ + 8) (€,5 € IR) verifies the property p°(7¢) < p°(Koz) + h(€) (here Ko and h are
related with the definition of 7-boundedness of p € ®R).

Proof. By using suitable substitutions, it is easy to show that

+o0

o j2(u) -
p(TEI)_/ ( E’I‘(l—a)/(s—u)°du)ds‘

-0

Now, by T- boundedness of the functnon ap, the asserhon immediately follows | )

Next we w1ll introduce the convolutlon operators whose kernels have properties which
seems to be very useful to describe the unbounded case.
For each n € IN, we define a function“R, : IR — IR* with the following propertles

(R.l) Rn € L'(R) and H, < [*2 R.(t)dt < Hy (n € N) for'two constants Hy, Hy > 0.

(R 2) limp—co fiy55 Rn(t)dt = 0 for every §>0.

Now, we define the operators
~ +m -~
(Ua2)(t) = [ Ra(s—t)a(s)ds  (z € L"),

The following theorem shows that U,z is well- defined for every z € Lee when the gener-
a.tmg functlon <p is'T- bounded :

Theorem 6. Let p €O beart- bounded functton Then U,z € L“"’ for every z € L“’ i
and the sequence {U,} is IN°-bounded.

Proof. As in the previous section, we will prove only IN°-boundedness of {U,}. By
similar arguments, one has

e [ 1a(e + )
~a /T < ST PN
PO < [ ( T /Rn(c L_ p— d]dc) dt.
Now, by Jensen inequality, Fublm-Tonelll theorem and property (m), we have
- 1 P .
5 (Unz) < H_l_i Ra(€)5° (Haez) de.

By Lemma 6 and property (1‘%.“1), we deduce

. 400 . .
7(0n2) < %f?"‘”’,’.“” + ”L[o Ra(€)(E) dt.
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Put now J, = H{' [*% R,(£)h(£) dE. By the definition of 7-boundedness, we know that
h(€) — 0 as { — 0. So, for a fixed ¢ > 0, we can choose ¢ > 0 such that h({) <€
whenever [£| < §¢c. So, we can write. .

H | | H,
J":Fl{w/&( mé}Rn(ﬁ)h() E/ (f)df“,,,1

1125,
From this, the assertion easily follows by property (ITQ) and the arbitrariety of ¢ > 0
Now, we are ready to prove the main theorem of this section.

Theorem 7. Let ¢ 6 <I>n be a 7- baunded function and a € (0, 1) Assume that Hl =
H; =1 in property (R 1) and, for every 6§ > 0,

(R3) Ra()] - [ € L(IR) and limy—so0.fiyss R,.(t)ltl‘“" dt=0.

Then, for every z € L¥* there is a constant A > 0 such that P2 [MUnz — z)) — 0-as
n — +00.

Proof. Firstly we note that properties (R 3) and (R. 1) 1mply the existence of a constant
K > 0 such that

+00 L '
/ R.(t)|t|'dt < K for every n € IN. 9)

Moreove'r lt is clear that property (R 3) implies property (R2 2) By IN>- boundedness of
the sequence {U,}, Lemma 5 and the Musielak density theorem, it is sufficient to prove
the theorem for z = x4 where A is a bounded measurable set. Let [a, b] be an interval
such that A C [a,b]. By Fubini-Tonelli theorem, Lemma.4/b) and (10), we have

(PalUnxa — xal)(?).

+00
I‘(ll—a) /,R?(z){‘ / (t —v)—"X(-oo,:)(.v)dv}dz

A-z)AA

A

S Fimaisa ) bt |
*oo +oo .
: m{""“)‘_{, Ba(s)ds + (b= )" [ Rl w}
1
S Ti-a(i-a)

So, by the properties of the functlon (p (e, u), for every A > 0 we have

{(b—-a)H, + (b—a)’K} =M

‘P(t APalUnxa — xal(t) < tﬂ(i AM) (10)
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and the function (-, AM) is integrable. Moreover, we have EEUREN SR
(PalUnxa — xal)(2) v -

e ] o, [, Eeefe

(A=2)aA ST ;
_ _ X(-o0,)(V) T
= r(1—a)L/ /}R"(z)[ / (t-v) "_"]d“'_‘j :

z|>6 |z|<6 o (A-2)AA . ! S T
o= T+ g,
where the consta.nt will be chosen later. Then, by Lemma 4/ b),

J"_———— R.(z)(b—a+]|z|)'™"dz ' 7
'S FI—a) )H[s (2)(b—a+z]) S

and so, by properties (R.2) and (R.3) it easnly follows that J" — 0 asn — +oo
Finally we estimate J2 We have

. ) . _w")(v) . -

Now, by the integrability of the function (t— v) “on [(A— z)AA]ﬂ(-—oo t) and by the con-
vergence m((A —2)AA] - 0as z — 0, it i3 possible to choose the constant § in such a way
that the innerintegral in (11) is less then & > 0. Thus, J3' < ¢/I'(1 — a) and, from the arbn-
trariety of € > 0, J} — 0 as n — +00. We conclude that limp—.o0(Pe |U,.x,4 - xal)(t) =
for a.e. t € IR. By continuity of the function ¢(t,-) and (11), the assertion follows from
the Lebesgue dominate convergence theorem ] ‘

Remarks: a). Suppose that the genera.tmg functlon <p e Qn venﬁa the oondmtxon
(iv)’ below instead of (iv): : :

(iv)’ Let t — (t,a) be locally summable for every a'€ R and, for every g€ L,M(R)
. such that g(t) = O(t™*) (t — 400,0<a< 1) the function ¢ —. cp(t g(t)) be mte-
grable on RR.

Then it is possible to obtain all the results of Section 5. Indeed 1f X(a.t) is the cha.ractenstlc

function of an interval [a, ] C R, then P,(x4) = O(t~°). Thus, it is clear that the same

is verified for x4, A a general bounded measurable subset of R. So, from property (w) ,

xa € E»= A € L. Then, we can show that, for every A > 0, lim,_o 5*(X(7: x4 — x,q)) 0

and consequently, we can proceed as in Theorem 4 of [2].

b) We remark that for functions z € E¥* we have a strong convergence for the
sequences {T,z}, {Unz} or {U.z}. Indeed, by using similar reasonings of Lemma 1 and

Lemma 5, it results that S is dense in E¥* with respect to the norm.

In general, the modular convergence seems to us the more appropriate topological
setting in order to study convergence problems for sequences of integral operators. On
the other hand, this is usual in the classical case of Orlicz spaces L¥ (see [10: pp. 33 -
43)). '
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