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Modular Convergence Theorems 
in Fractional Musielak-Orlicz Spaces 
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Abstract: Here we study modular convergence in fractional Musielak-Orlicz spaces for se-
quences of moment type operators and convolution operators. To obtain the requested conver-
gence properties we give some estimates for the involved operators, using a growth condition on 
the convex function W generating the space L'°. Then the convergence theorems are obtained 
using a density theorem of Musielak type. For the convolution operators we also consider the 
line group setting. 
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1. Introduction 
The aim of our investigations in this paper is to present some convergence theorems of 
certain linear operators defined on fractionalMusielak-Orlicz spaces, in which the modular 
is defined by means of Riemann-Liouville or Weil fractional integrals (see [3, 11 - 13]). 
These fractional spaces were recently introduced in [3] where some modular estimates for 
"homogeneous" integral operators are given. Note that a different definition of fractional 
Orlicz spaces was given by H. Musielak and J. Musielak in [9], where the modular is given 
by means of a fractional derivative. 

The main theorems of this paper are concerned with modular convergence for moment 
type operators (see [1 - 3, 5, 6, 13]), and for convolution operators of classical type (see 
[4]).

In Section 2 we give some notations and definitions and we prove (Lemma 1) a density 
property. Section 3 concernes the study of moment type operators, for functions defined 
on a bounded interval, while in Section 4 we take into consideration convolution inte-
gral operators in the periodic case. In the last Section 5, we study the general case of 
convolution integral operator in the line group setting. 

For measurable space with infinite measure, in order to deal with fractional modulars, 
the assumption of local integrability of (t, c), c a real constant (here W = p(t, u) is the 
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generating function of the Musielak-Orlicz spaces) is no longer suitable. Actually we must 
assume the integrability of t (t, c) on R. We remark that this stronger assumption is 
not meaningful for functions W without parameter; so the results we have given in Section 
5 may be considered in the framework of weighted Orlicz spaces. However, an alternative 
condition is discussed at the end of Section 5. For usual Musielak-Orlicz spaces, in the 
bounded case these results were given by J. Musielak for convolution operators (see [10]) 
and by ourself for moment type operators (see [2]). As final remark we note that, for 
moment type operators, the line group setting seems to us to be attached by means of a 
different approach. 

2. Notations and definitions 

Let I = (0, 1) C JR and let m (or dt) be the Lebesgue measure on the Lebesgue or-algebra 
£ in I. For A E £, let XA denote the characteristic function of A. Let 4 be the, class of 
all functions W : I x JR,j - IR such that the following properties are fulfilled: 

(i) (t,.) is non-decreasing convex and (t, 0) := lim....o+p(t, u) = 0. 
(ii) ,(t,u)>0 for u>0 and tEI. 
(iii) W ( . , u) is measurable. 
(iv) W( . , a) is integrable for every constant a > 0. 

Let X be the class of locally integrable functions x : I -+ JR (that is x E L'(0, t) for every 
< 1) and let a E (0,1) be fixed. Following [3, 11 - 13], we define for x E X 

(P0x)(0	
f(1 - a) ft	du	(t E I).	 (1) 

This operator is known as the generalized fractional primitive of order (1 - a) of x. We 
note that, by the Titchmarsh theorem (see [8: pp. 22 23]), we have x(t) = 0 for a.e. 
t€l, whenever (l'aX)(t)= 0 for each tEl. For V E 0, x E X,a El we define 

p°(x) =j'(t'(PaIxI)(t)) dt.


It is very easy to show that p ' : X - [0, +00] is a convex modular on' X and the subspace 


L'° = {x € X : pa(x) < +00 for some A > o} 

is called the generalized fractional Orlicz space (see [3]). Moreover, E' denotes the space 
of all x E X such that p°(Ax) < +00 for every .\ >0. This' subspace of L IP,O is usually 
called the space of the finite elements of X with respect to p'. 

Definition. A sequence { xk} C L"° is said to be modular convergent to 'x E L'°, if 
for some \ > 0 the relation p°(.\(x k - x)) - 0 as k -' +00 is true. We denote this by 

P.



Xk + X.
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This notion of convergence induces a topology in L"°. Precisely, we say that a subset 
V C L' is p°-closed, If x k E V and xk x imply x E V. We denote by V the 
p°-closure of V. Finally, V is p°-dense in L"°, if VP* = L; for further details see [10: 
P . 19]. 

From now on we denote by S the class of all simple functions in I. 

Lemma 1. For W e 4b, we have 
(j) S C E 
(ii) 3"' = L'°. 

Proof. Step (j). Let A > 0 be fixed and let s(t) = 1a1(t) be the standard 
representation of s, where F1 = it E 1: s(t) = a1 ). Then, by properties (I) and (iv) we 
have

a 
p°(As)	](t,1(lA)	I (t — v) dvdt o	 ''F.r(O,t)	

°	I 
N	

dv\dt I(tF(l_O)ah1/(t_V)O ) 

J o(t,ii)dt <+00, 

0 

where j = AF(1 - )1 - )' Elv, J a i l.	 - 
Step (jj). Let x E L'°'° and let A > 0 be such that p°(Ax) < +oo. Firstly, we assume 

x > 0. Let {x) be a sequence from S such that 0< x,, < x,,., for every n E IV and 
x. - x a.e. on I. From property (i) we have (t, A(Pa[x - x])(t)) 5 cp(t, A(Px)()). 
Moreover, t i-+ çc'(t,.(Px)(t)) is integrable because x E L°'° and, by l',,x, - we 
deduce lim_+0 p(1, AP0 [x - x](t)) = 0 for a.e. t E I. From the Lebesgue dominated 
convergence theorem, we have p°(A(x - x)) -+ 0 as n -+ +00. Now, if we drop the 
assumption x> 0, we can split x into positive and negative parts, which belong again to 
L°'°. Thus, let {x,} and {x} he two sequences from S such that x, x+ and x 
on I. Then, by choosing A > 0 with A < A/2, we have 

(t, A(PQ IXfl - xI)(t))	(i, AP-(X' - x)(t)) +	(t, P(x - x)(t)) 

and so the assertion follows in the general case U 

3. Approximation properties for the moment type 
operators 

We denote by F the class of all the measurable functions f : I x I -t iR such that, 
putting h(v) = f1 f(t, v) it for v € I, we have H := SUPVEJ h(v) < +oo and h(v) - 0 as 

1- (see [10: p. 38, 2]).
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Definition. A function W E 1 is called h-bounded if there exist K0 E 1R and f € . 
such that

(tv',u)	,(t, Kou) + f(t,v)	 (2) 
for every v € I, t E (0, v) and tz E IR. 

The concept of h-boundedness is a modification of Musielak's r-boundedness, and it is 
introduced in [2]. Clearly, every function W E 1' of the form (t, v) '(v) is h-bounded. 
Other non-trivial examples are given in 131. 

Definition. A sequence of linear operators T L'°'° —+ L°' is said to be IN-bounded, 
if there are positive constants K1 , K2 and a sequence {a} C IR+ with an —+ 0 such that 

p°(Tx) Ki p°(K2x) + an	(x € L 5'°).	 (3) 

For each n € LW, we define a function w,. : I —* iR with the following properties, in 
which H1 and H2 are two positive constants. 

(W.1) w(t)t 2 € L'(I) and H1 < I w(t)dt < H2 (n € LW). 

(W.2) lima +f ö wn (t)t0_2dt = 0 for every 6  I. 

For each n E LW, we consider the linear operators 

(Tx)(s) 
= 

0
(t(t5t	

(s E I,x E L'°(I)). 

In the following we will prove that the operator T is well-defined and that the sequence 
{T} is LW°-bounded for v E h-bounded. A typical example is given by the "moment 
kernel" defined by the equation w(t) = (n + 1)t' (n E 1.W,t € I); see [1, 2, 5, 131 The 
following lemma is a simple consequence of properties (W.1) and (W.2). 

Lemma 2. If the sequence {w} verifies properties (W.1) and (W.2), then there is a 
constant W > 0 such that 

(W.3) fw(t)t"_2 dt < W (n € IN). 

Theorem 1. Let W E do be an h-bounded function. Then Tx € L'° for every x € L''° 
and {T} is an IN"-bounded sequence. 
Proof. We limit ourself to prove the LTV°boundedness, because the remainder is a con-
sequence. Let x € L°'° be fixed and K0 be the constant in (2). If p'(WK0 x) = +00, the 
theorem is obvious with K2 = WK0 . Thus, we can assume p(WKox) < + 00. We have, 
by the Fubini-Tonelli theorem, 

P, (T 	](t,r(l1) 
I 
J	

t

wn(s)J((
vs) dvds)dt 

0	0	
V)a	

J 

J	1	jwn (s) J Ix(u)I =	 du ds 
— c)	s	(ts - 

0	0	 } )
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Put now A = f' o  w(s)s°'ds. By property (W.1) and Lemma 2, we have H1 :5A < W, 
and so by Jensen inequality and Fubini-Tonelli theorem 

1	1	 ii
x(u A	(	) I	\ w,,(s)	1 

	

p°(Tx) < J ' A	r(1 — j (ts — u)° J 51 du j	— dsdt 
0 

1 

	

Ij 	(t, is

 TI' 
	

W	( Ix(u)I	\ w,(s) 
du	dt1ds. 

['(1 —	( ts — u)°	,, s'	j 0	 1 

Now, making use of the substitution z = ts, and by h-boundedness of the function W, we 
have

(
ZS	

W	Ix(u)I 	w,(s)
p°(Tx) <--- 1tf_1,F(l) 	du 	dz>ds 

	

—H1]o o 	 (z - u)  

<

	

I
	1],p1 í wa(s) 	WK0	Ix(u)I

H1j S2_Q('	
z 

F(l_O)f(Z_U)0)} o	0 

	

1

	lif(z,$)dz'()
H	2cs	 } ds +J 

	

0	0 

I1(n)+12(n). 

Now, I, (n) 5 H I 1 Wpo (WKox). Next, for a fixed e > 0, we can choose 6 E (0,1) such 
that s° 2 h(s) < H1 H'e, s E (1 — 6, 1). Then, we write 

12(n) = - { 
1-61 } 

w(s)s 2 h(s)ds =: I(n) + I(n). 

Now, I(n) <	f 6 w(s)s2 °ds, and so, by property (W.2), I(n) — 0 for n —' +oo. 
Finally, I(n)	f11_6 w,(s) ds < c. Thus we deduce lin_+ I(n) :5 e and hence

1im.+,I2 (n) = 0 and the assertion follows I 

We will make use of the following general theorem given in [10: p. 24]. We report this 
result in a suitable form, for L"° spaces. 

Theorem 2 (J. Musielak [10: p. 24]). Let {G} be an IN°-bounded sequence of linear 
operators G,. : — L°'. Let Xo C L' be a fixed set and S(X 0 ) the set of all the 
finite linear combinations of elements of Xo. Suppose that S(Xo) is p° -dense in 
Then Gx —* x for every x E L°° implies Gx x for every x E L"°. 

Now, we are ready to prove the main theorem of this section. 

Theorem 3. Let V E 4b be an h-bounded function. Suppose that H 1 = H2 = 1 in property 
(W.1). Then, for every x € there is a constant a> 0 such that p°(a[Tx — x]) — 0 
as n — +00.
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Proof. According with Theorems 1 and 2 and Lemma 1, we limit ourself to prove the 
theorem for x = XA, where A E C. We will prove that TXA strongly converges to XA, 
that is per (A(Tflx A — XA)) —* 0 for every A > 0. Let A > 0 be fixed. We have 

p°(A(TxA - XA)) = p(APITfl x A — XAI). 

We firstly evaluate P&I TnXA — XAI• By Fubini-Tonelli theorem, ____
	

U__
(PaITnXA—XAI)(t)	

1	fwn(s)IXA(vs) — XA(v)I dv}ds 
(1 —a)

o 	(t—v)° 

= F(la)J1(0,t)n(A.- 
I	(t_V)Odv}ds 

o	 1 A) 

r('_a)i{i(t — v)	j

dv1ds. 

o  
where A 3 -i	.sA. So,

1	 1 

	

(Pc IT,X A — XAI)( t ) <	 jWfl(S)—_dS < 
— F(1 —a)	1—a	F(1 —a)(1 —a) 0 

Hence, by the properties of the function , we have 

(t,A(PITx A — XAI)( t )	(t,
	

A

 F(1 — a)(1 -	
=:	 ( 4) 

and the function 0 is integrable on 1. 
Next, we will prove that P I TnXA — XAI - 0 a.e. on I. We have 

	

1(n)	(PITflXA — XAI)(t) 
I	I

1	rIxA(vs)_XA(v)I
dv}ds 

(t — v)  

( I-6 L	11 
=	

j + j (Wn(S) {
	

1	IXA() — XA(V)I 
[(l—a)I	(t — v)	

dvds) 
0	I-St J  

I, (n) + 12(n). 

Here, b t E I is a constant depending on t, which will be fixed later. First, consider 11(n): 
We easily deduce

I-Sg 1	f	 2 

	

1 1 (n)	
F(1 —a)(1 —a) J w(s)ds	 w(s)s' ds
l'(l —a)(1 —a) 

0	 0 

and, by property (W.2), Ii (n) - 0 as n —i +oo. Concerning 12 (n), we have 

.1  
12 (n)	f W. GO f(1 —a)	I	(t— 1

	
dy ds. I	 v)° 5 I-St	 (0,t)n(A_1 A)
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By integrability of v '—* (1— v)_0 and taking into account of the relation m(A,-iLA) — 0 
as s —i 1- (see [2: Lemma 1 1), for a fixed e > 0, we can choose 6 t E I such that the relation 
f(o.t)n(A_,AA)(t — v)°dv <e (1 - a) holds for 1 — t5 <s < 1. Then iT_,I2(n) 
and so lim_,,,I(n) = 0. The assertion follows from (4), the continuity of p( i ,.) and the 
Lebesgue dominated convergence theorem I 

4. Approximation by convolution integral operators: 
bounded case 

In this section we will refer, to the notations and definitions of previous sections. Let 
E 4P be a given function; we will extend the function 1 (t, u) to the whole real axis 

by 1-periodic way, that is (t + 1,u) = (t, u) for every I E JR and u E JR. We denote 
by r the class of all the measurable functions f : JR x JR —i IR such that, putting 
h(v) = f f(t, v) dl for v E 11?, we have H:= sup,, JR h(v) < + 00 and h(v) - 0 for v - 0 
and v - 1. 

Definition. A function is said to be r-bounded ( see (10: pp. 37 - 381) if there are a 
constant K0 E 1Rij and a function f E 7* such that 

p(t — v, u) <,(1, Kon) + 1(1, v)	 (5)


for v,t E JR and u € L0. 

Let now x € X be fixed. We denote by f the 1-0eriodic extension of x to the whole 
real axis. We need of a reasonable periodic extension of PIxI. So, we introduce a function 
g.:IxIR-4IRby

I (t—v)° iftE I, v  (0,1) 
g0 (l,v) =	 (0< a < 1) 

O	iftEI, v_>1 

and finally, we extend by 1-periodic way the function I i-+ g0 (t, v) on putting 

g,, (t ± 1,v) = g(t,v) for every v E 1R,t € I 

so that

(I - v)° if t E . I, v € (0,1)
(0<a<1) 

to	iftEl,v>t. 

Finally, we define the extended fractional primitive of order 1 - a of x by means of 

(Px)(t) = - a) 
Jgo (t,v)x(v)dv	- 

ro	 0 

for every x E X = {x € X : x E Dom1'}. We will denote by p*. the restriction of p° 
to Xand the corresponding modular space by L'°. 

We will use the following
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Lemma 3. Suppose that W E	is 7--bounded. Then the translation operator (rz)(s) = 
X*( + s) ( E 1,3 E I) verifies the boundedness property 

	

p'(rx) p(Kox) + h (e) .	 (6) 

Proof. We have, for E I, 
1	/	 t 

1 
p(rz) 

= j 
(t F(1— ) J x(v + )Ig0(t,V) dv) dt 

o	 0 

I	1	.	
) 

i	( 
=	

t' f(1	) J If(u)ga (t,u - )du dt 
o 

	

= J

+1 /
	1 1X-(u)1g-('-  , u - ) du) s—e  

Now, the function 8(s) = r(1 - )_1f 1 x (u ) 1 g0(s - , u - ) du is 1-periodic for every 
fixed E I. Indeed,

a+1 1 
f3(s+1) = F(l—o) I x(u)Ig(s+1 — ,u — e)du 

a+1 1 

	

=	J x(u)g(s - , u — 

But, for u > s, we have g0 (s - ., u - = 0 and so 
a

13(s+1)= r(1_ •a)  

Then, by 1-periodicity oft	p(t,u), we deduce 
I	 a 

	

P'. (T(X) 
= J 

(3	
f(1	

) J1r(u)IgQ (s —,u _)du) ds 
o

I	/	 a 

_______ 
r1X*(u) du ' ds 

= !	'r(i—o)J (s—u)° 

1	/	 S 

	

(3_(	
x(u) 

du"ds. 
o	 cx)J.(s—u)°	) 

Now, by r-boundedness of the function , we have 

i (s, p(rx) <,
	

K0	
a

1x(u)I 

0 	
I(1_cx)J (s_u)U3+J3	s=p0 H- h() I 

0	 1	o 
Next, we introduce the convolution operators as follows: for each n E RV, we define a 

function R: I —+ IR with the following properties:
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(R.l) R E L' (1), H 1 <jR(s) ds < H2 for two constants H1 , H2 > 0. 

.1-6 
(R.2)	 /	&(s) ds 0 for every	(0, 1/2). 

iS 

If we extend with 1-periodicity the kernels H,, to the whole real axis, we can define 

	

(U,,x)(t) 
= 

/ R,,(s - Ox(s) ds	(x E L"°) 

The following theorem shows that U,,x is well-defined for every x E L'° 

Theorem 4. Let E 4D be a r-bounded function. Then U,,x E L°'° for every x e L"° 
and {U,,} is an 1N-bounded sequence. 

Proof. By using Lemma 3, we can apply similar reasonings of Theorem 1. It is suffi-
cient to prove ITV-boundedness of the sequence {U,,}. Moreover, we can suppose that 
p"(KoH2x) <+oo. We easily deduce that, by periodicity assumptions, 

1 p I Unx I = f(1 - a) Jgo(t,v)IUnxI(v)dv 
0
Irj 

['(1— 

1	J Rn() IJ ga(t,v)Ix(v+)IdvId -	a)
o	lo	 J 

so that

1	r 
p(U,,x) = 1W (, ['(1 - a) J 

IUxI(v)90 (iv)dv) di 
0

1 

< 
	It 

-	i_a)fR	IJ(tv)If(v+)Idv] d) di. 
0	10 

Now, by Jensen inequality and Fubini-Tonelli theorem, it is easy to show that 

p'(U,,x) < - 
— H1 

JRn()p.°(H2r(x)d. 

0 

By Lemma 3, we obtain 

p(U,,x) ^	-JR()p(H2 Kox)de + 

^	p'(H2Kox)+J,,,
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where J, = HI 1 f' R (e) h() d. , We will prove that J. - 0 as n - +00. Let e > 0 be 
fixed. There is 6 € ( 0,1/2) such that h() <e for C E (0,6) and C E (1 - b, 1), so we can 
write

}	 H2	H2	r 
( o	i-s	i 

Jn=jJ+J+J

	

	
H1 H1 H1 

R()h(e)d.<e—+e_+ H 
1-6 

— / R()d, 
0	6	1-5	 5 

that is iT_- + J	22.e and the assertion follows by the arbitrariety of e > 01 

Finally we are ready to prove the convergence theorem for convolution operators. 

Theorem 5. Let p E 1' be a r-bounded function. Suppose that H 1 = H2 = 1 in property 
(R.1). Then, for every x E L' there exists a constant A > 0 such that p(A(Ux—x)) - 0 
as n - + 00. 

Proof. By IW0boundedness of the sequence {U} and Musielak density theorem, it is 
sufficient to prove the theorem for x = XA, A E L. Since, by Fubini-Tonelli theorem, 

(IUnxA - XAI)(t)	
1	

j 
R. (s) J

 IXA (s + v) - XA(V)I 

{ i 0	0	
(t_v)a	dvjds F(1 —a)


1 
F(1 - a) I (0,i)fl((A-s)AA)	

dv} ds 
{I	

( t — v) 

I
(1 —a)' 

we have, by properties of the function	(t, u), 

(t, APIUfl X A - X I( t )) <	
A 

F(1 - a)(l - 

for every A > 0 and the function i(t) = (t, r(I_(1_)) is integrable. Moreover, we have 

(PIUn X A XAI)(t) 

1	
j 

R,%(s)	IXA(s + v) - XA(v)I dv ds 
0	0	

(t_v)a 

1 A(3 + v) - XA(v)Idv ds 
=	—a) {+ 

75 
] } ( s ) [j Ix (It — v)

	

] 
5	1-6	0  

1 1 (n) + 12(n) + 13(n), 

where 6 € (0, 1/2) will be chosen later. We have 

(n) <
5 

['(1

1	
1 Ri(s)t	J	(t_vYdv}ds Ii	

-
0	 O,t)fl((A-s)A)

(7)
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and by integrability of (t - v)° on the interval (0, t), and by the convergence m[(A - 
s)LA] -p 0 as s - 0, it is possible to choose S > 0 such that the inner integral is less 
than E > 0. Thus, I, (n) < e/F(1 - o). 

Next, we estimate 13(n) as follows: 

5 

)jRfl(1—U){J dV}du =
o	 o	(t —v)° 

S 
1 

=	 )JRfl(l_u)	 dv 5 du 1J	 1 
o	 o	(t—v)° 
f(1 

and then, we proceed as before for obtaining 13(n) < c/17(1 - o). Finally, it is easy to 
show that

12 (n) <
	1	

76(S)dS, 

and hence we deduce lim_+PUX A - x.4I(t) = 0 for a.e. t € 1. By continuity of the 
function (t,.) and (7) we obtain the assertion from the Lebesgue dominated convergence 
theorem I 

5. Approximation by convolution integral operators: 
unbounded case 

We will refer to the notations and definitions of previous sections. 
Let now 40pbe the class of all the functions p: JR x IR,1 - 1Ri such that conditions 

i) - iv) are satisfied with I = JR instead of I = (0, 1). Let X be the class of all the 
functions which are integrable on every interval (—oo, a). For a fixed o € (0, 1), we define 
the Weil fractional primitive of order (1 - o) (see [6, 11]), the operator defined on X by 
the equation

(x)(t) 
= F(1 o)	(t—u)° du

	(t € JR). 

It is not difficult to see that x(u) = 0 for a.e. t . E JR whenever (150 x)(t) = 0 for every 
t€li?. 

As in Section 2, for. ^O E 0 P , x € X,a € (0,1) we define 

° ( x ) =J(t( 0 IxI)(t))dt.	 (8) 

It is easy to see that ji' : X - [0, +ool is a convex modular on X and the subspaces L° 
and are similarly defined, as well as the notion of modular convergence. Hence, the 
topological concepts related to this convergence are similarly introduced. 

Moreover, we denote by S the class of all simple integrable functions s: JR -* R. We 
remark that the set where the function s is not vanishing is bounded. In this case, the 
assumption iv) on cp E Ti i is not satisfied when (t,u)	p(u). Thus, this assumption
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is not meaningful in this case. Next, we discuss an alternative condition on W. In this 
setting, the class L'° may be regarded as a generalized version of fractional Orlicz spaces, 
with suitable weights; for example we may take p(t,u) = b(i)(u) with suitable 0 and 
W.

We denote by J the class of all measurable functions I : JR x JR - JR such that, 
putting h(v) = f.t°f( t , v ) dt for v E IR, we have H: = sup ER h(v) < +oc and h(v) —'0 
as v - 0. A function (p is said to be r-bounded if it verifies the same definition of the 
bounded case, with F instead of F. 
Lemma 4. For every interval [a, b] and number a E (0, 1) we have 

(a) J(t):=j ( t — v)X(_,t)(v) dv	
(1	

[b - a]	for every t E JR. 

(b) J(t, z):=j z)A - v)X(_,j)(v) A (b + Izi — a) 1 for every t, z E JR 

and for every measurable subset Ac [a, b). 

Proof. (a) It is sufficient to assume I > a. If a < I < b, the assertion is obvious. 
Suppose now I > b. Then we have 

J(t) = J(t — v)dv <f(b — v)°dv 
= (1	(b - 

and hence the proof of statement (a) is complete.	 - 
(b) Let z > 0. If I < b, the assertion is trivial. So, we assume I > b. In this case 

	

b	 b 

J(t,z) J(t —v)°dv < J(b_v)-adv 
=

(1—a)


	

a—z	 a—z 

Let now z 0. By considering the cases t < b - z and I > b — z, the assertion follows 
with similar arguments  
Lemma 5. For (p E R and a E (0, 1), we have 

(j) ScE'°'° 
(jj) 3"'° = 

Proof. The proof of statement (jj) is the same as of the bounded case. So, we will 
prove statement (j) . Let ,\ > 0 be fixed and let s(t) = 1ap,(t) where ai 36 0 and 
the sets F1 = {t € IR: s(t) = a,} are all contained in a bounded interval [a,b]. Then, by 
properties i), iv) and Lemma 4/a), we have 

+00 

s) ^
	J (p

/

t,	
aI J X(,t)(v) dv	dt 

— f(l — a)
F,

v)	
) 

+oo' 
<

b 

J X(_oo;t)(v)
dv"dt 

(I— v)	) 
+00 1 (p(t,71)dt< +00,
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where 77.= (	 ai I U	. 

Lemma 6. Suppose that V E '1 R is r-bounded. Then the translation operator (rx)(s) 
x( + s) (,s E IR) verifies the property 0(r)	°(Kox) + h() (here K0 and h are

related with the definition of r-boundedness of 'p E 

Proof. By using suitable substitutions, it is easy to show that 
. 

TV /
I1. 	x(u)I
S_F(lo)J(s_u)odU ds. 

-00 

Now, by r-boundedness of the function W , the assertion immediately follows I 

Next, we will introduce the convolution operators, whose kernels have properties which 
seems to be very useful to describe the unbounded case. 

For each n E LW, we define a fundionR : JR : JR with the following properties: 

(Ri) R,1 E L'(JR) and H1 <f	R,,(t)dt < H2 (n E IV) fortwo constants H1 , H2 > 0.


(R.2) lirn,.... 00 f 1 >5 R,,(t) di = 0 for every 6> 0. 
Now, we define the operators	 ..	. 

(Ux)(t) =JR(s - t)x(s)ds	(x E L). 

The following theorem shows that Ux is well-defined for every x E L'° when the gener-
ating function 'p is r-bounded.	. .	.	.	.	.• 

Theorem 6. Let V E	be ar-bounded function. Then U,x € L"°for every x € L'° 

and the sequence {U} is IN°-bounded. 

Proof. As in the previous section, we will prove only JTV0 boundedness of {U}. By 
similar arguments, one has

+00 1  TV
/	

x(+v)Id])di. 0(Ux)	
F(1 - a) 

I R. 	I (I - v) 
-00	\	 -00 

Now, by Jensen inequality, Fubini-Tonelli theorem and property (R.l), we have 
+00 

< --- I R,(ô°(H27-z)d. 

By Lemma 6 and property (R.1), we deduce 

j3(Uz) 15 112,50(HKZ) +
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Put now J. = H1 J 4 R,,()h() d. By the definition of r-boundedness, we know that 
h() - 0 as - 0. So, for a fixed c > 0, we can choose be > 0 such that h() < C 
whenever II <se. So, we can write 

	

n:={
I + j	 h()d	 R()de+e. 

.	(J<6 

From this, the assertion easily follows by property (R.2) and the arbitrariety of e > 0. 

Now, we are ready to prove the main theorem of this section. 

Theorem 7. Let V E4 be a r-bounded function and o E (0, 1). Assume that H 1 = 

112 =1 in property (R.1) and, for every 6> 0, 

(.	'° € L'(IR) and lim	f1 1 1 >5 R,,(t)ItI'	dt = 0. 

Then, for every x E bPO there is a constant .\ > 0 such that ?[ .\ ( Ux —	—* 0 as 
fl - +00. 

Proof. Firstly we note that properties (R.3) and (R.1) imply the existence of a constant 
K > 0 such that

J R(t)Itdt K for every n E EV .	 (9) 

Moreover, it is clear that property (R.3) implies property (). By L!V°-boundedness of 
the sequence f 0, 1, Lemma 5 and the Musielak density theorem, it is sufficient to prove 
the theorem for x = XA where A is a bounded measurable set. Let [a, b] be an interval 
such that A C [a, b). By Fubini-Tonelli theorem, Lemma.4/b) and (10), we have 

(7c(UnX.t	XAI)( t )	 . 

F(1—a) J Rfl(z) t J (t_v)X()(v)dv}dz 
A—z)A 

F(1.—)(1	
)JRfl(Z)[b— a + zI}'dz 

F(l —)(la) 1 Rn (z) dz+(b—a)° J R(z)IzI'dz} 

r( - o)(1 —	
{(b - a)H2 + (bT a)°K} =:M. l

So, by the properties of the function W , = (t, u), for every ,\ > 0 we have 

(t,UflxA- XAI( t )) 5 V(t, M)	 (10)
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and the function W ( . , AM) is integrable. Moreover, we have	F.. .t 

(i'aI (JnXA - XAI)(t)

{
dV}dZ 

-00  

r(i	
) { 

J ± j } R(z) [J x((v) dvj 

	

z l^!	 A- 

	

S	I z l< S	 z)A 
J'+J',	 . 

where the constant will be chosen later. Then, by Lemma 4/b), 

•jn
r(1— a)(1 - a) I R(z)(b - a + IzI)'d	•, 

IzI>6 

and so, by properties (Kb) and ()it easily followsthat J -' 0 as n -' +00.


	

Finally we estimate J'. We have	. 

J2<1(1) I &(z){ j X(:oo(:)dV}dz. (ii) 
(A-z)AA 

Now, by the integrability of the function (t —v) on [(A—z)A]fl(—oo, i) and by the con-
vergence m[(A - z)A] -i 0 as z - 0, it is possible to choose the constant 6 in such a way 
that the innerintegral in (11) is less then c> 0. Thus, J' :5 e/I'(l —a)and, from the arbi-
trarietyofE >0, J -' Oasn —'+oo. We conclude that lim...+C,O(P0IUflXA —xAD(t) 0 
for a.e. t E R. By continuity of the function (t,.) and (11), the assertion follows from 
the Lebesgue dominate convergence theorem I 

Remarks: a). Suppose that the generating function W E On verifies the condition 
(iv)' below instead of (iv):	 - 
(iv)' Let i i- cp(t,a) be locally summable for every a  R: and, for every g EL(R) 

such that g(t) = 0(r0 ) (t -' +oo,0 <a < 1) the function t -(i,g(t))-be inte-
grable on R.	 .	S 

Then it is possible to obtain all the results of Section 5. Indeed, if xta,b) is the characteristic 
function of an interval [a, b] C M, then P(xA) = O(t). Thus, it is clear that the same 
is verified for XA, A a general bounded measurable subset of R. So, from property (iv)', 
XA € E'°, A e C. Then, we can show that, for every A > 0, lim....o 0(A(rzxA - XA)) = 0 
and consequently, we can proceed as in Theorem 4 of [2]. 

b) We remark that for functions z E E"° we have a strong convergence for the 
sequences {Tx}, {Uz} or {Ux}. Indeed, by using similar reasonings of Lemma 1 and 
Lemma 5, it results that S is dense in E"° with respect to the norm. 

In general, the modular convergence seems to us the more appropriate topological 
setting in order to study convergence problems for sequences of integral operators. On 
the other hand, this is usual in the classical case of Orlicz spaces L (see [10: pp. 33 - 
43]).
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