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vEstimating Remainder Functionals
by the Moduli of Smoothness

P. Kohler

‘Abstract: For remainder functionals (e.g., approximation or quadrature errors), estimates b);
the moduli of smoothness are obtained. As a by-product, the constants in the estimate of the
K-functional by the moduli of smoothness are improved.
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1. Introduction

Let R : C[a,b] — IR be a bounded linear functional, and let R[P,_i} = 0, where P,_, are
the polynomials of degree less r (the setting in the following sections will be somewhat
more general). The standard estimates for R{f] are '

IR < IR IF D)oo for f € Cila,bjand 1 <G <, (11)
where A : .
R . .
ity =oup {1 1 € oo, 1N #0).

But if additional information on f is available, e.g. fU) € Lipa, this information cannot
be used by estimates of the type (1.1). Therefore, it is of interest to have estimates by
the moduli of continuity, i.e., estimates of the form

IRIAI < elt)wr(f,1). (1.2)

It is well known that such estimates exist, but, in general, no estirfl'ates for the constants
c(t) are available (see, e.g., Esser (3] and Ivanov [4]). The aim of this paper is to obtain
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c(t) are available such estimates in the non-periodic case, and to improve them in the
periodic case. Section 2 deals with functionals on C%, and L; 5, Section 3 with functionals
on C*[a,b],-and Section 4 with the K-functional. »

2. Functionals on C3, and L,
Let C3, be the class of s-times continuously differentiable, real-valued functions with

period 27, and L} ,, the class of 27-periodic, real-valued functions with absolutely con-
tinuous (s — 1)-th and p-integrable s-th derivative, with

27 »
IIg = [1f(@)Pdz (1<p<co) and  flw= sup If(2)l
° 0<z<2n

For convenience, we denote these classes by X5, e, X3, = C3, and X = L;,, for
1 < p < 0o. We.consider functionals 4
R:X; - R
satisfying . -
|R(f + 9]l < IR[f]| + |R[g]| (2.1)
and IRl
R i i A
171 = (AL e 20} <o 2
NSO,
fori=s,...,r, for somer > s > 0. We therefore have
[RLA < RN £, for f e,X;;, 1=38,...,T. : (2.3)

Further let .
) ) i f; .
0y = gup 1641, where o sz) =3 (1)1 a 4 ),
<t . 1=0

be the j-th modulus of smoothness (fdr the properties of w;, see Schumaker [12: Chap.
2.8]). To simplify notation, we introduce the following abbreviations. Let

[z] = min{i € u:iéz}., B = (fr;ﬂ)

and
f r 3] r 1777
: = r - =3 {i+=)<=|2 SR
N O/M i (f+2) dz =3 N ('+2) =3 [2] (2.4)

(p1 =1/2, p2 = 1/2, p3 = 31/48, ps = 9/8). Here, N, is the B-spline of degree r — 1 for
the knots 0,1,...,r, satisfying - : : : )

]N,(x) dz =1. : N (2.5)
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Further, there holds
: 1
[ Ne(@)dz = M) (26)
o1

(Schoenberg [11: p. 12]; this has been used to obtain the second formula for pr given in
(2.4)), and

/F(')(:c +av)N,(v)dv = a"ALF(z) for F € X] (2.7)
J ST

and a > 0 (Schumaker [12: p. 54]). The following lemma is well known (see, e.g., DeVore
[2]), but we have modified the proof such that better constants are obtained.

Lemma 2.1. Letr > 1 and 1 < p < oo. Then for all f € X2 and all t > 0, there
ezists a function g € X such that

a)|If - gll, <287 Pr“-’r(f: t), and ”g(')"p < ﬂr_l(2' - ﬂr)t_""r(f’t)m
or

) If = glly < B7w,(£,t), and [lg®]|, < [5176, t"wr(f,t)p, where & = 6, = 1 and
b6, =2 forr > 3.

- Proof. Let a, = [r/2], and let g be defined by

r/2
9@) = B[ (BS@) + (-1 AL (@ - at) N, (54 F) do
-r/2
B! E (:)(—l)i-a,_n((i - a,)t)"’AZi_c'),F(zék %(a, - i)t),v

=0

t#ay

by (2.7), where F(") = f.
a) Minkowski’s inequality and the periodicity of f yield

+r/2

B [ NALSIN (04 2) do
—r/
+r:2

gt / Q,.(f,|vt|),,N,(v+%) dv (2.8)

—r/é

B [ +ri20tolV e (£, 0,N (o4 ) do

-r/2

. 2ﬂr ﬂ"“_’f(.ﬂ t)m

while, by the triangle inequality,

I/~ glls

IN

IA

IA

r - . r -y
167 < 87 3 (7)li— el U O,

=0
i#ar
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T

g Y () i = el wn (£, li = arlt), (2.9)

=0
i#ay

g Y (:)w,(f,t)p
i

ﬂ:lt-'(zr - ﬂr)“’r(f’t)v-

IA

IA

b) From (2.9), we also get

r

~1,-r r -7

”g(r)”p < B 1, Z (1) Ji = ar|T"wr (f, art), < 647w, (f, art)p,
=

since 8! 2 (‘.)]i —a,|™" < §,, by some elementary calculations, while (2.8) together .

with (2.5) glves '

- r -
1 =gl < B7%r (£,5) < Bl ant).
P
Replacing u = a,t proves part b) i

From Lemma 2.1, we get the following estimates for |R[f]] in terms of the moduli of
smoothness.

Theorem 2.1. Let R: X; — R be a functional satisfying (2.1) and (2.3), and let
t>0andl1 <j<r-—s. Then

|RIAN < 87 (20511 Rllay + (2 = B | Rlljaan)ws(F,8),  for f € X3,

Proof. Let F = f(® € X?. By Lemma 2.1, there exists G € X such that

'

IF = Gli, € cwi(Fyt), and  [|GP, < cw;(F,t),. (2.10)
Now choose g € XJ** with ¢(*) = G. Then

IRIfIl < |RIf - gl +|R[g]l .
IRHp1f = gllp + 1 Rlli+05llg* 15
IRlLpllF = Glip + | Rl 42 1GD]]-

I IA A

Inserting the estimates from (2.10), together with the constants of Lemma 2.1a) (with r
replaced by j) completes the proof il

Example 2.1. Let E,[f] = infer, |f — dlloo be the error in the approximation of
f € Cyy by trigonometric polynomials of degree lesser or equal n. By the Theorem of.
Favard- Achieser-Krein,

00 | _1 PANAR!
Enllroo = Ke(n+1)"" where K, = % z (( ) ) < %
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is Favard’s constant. Choosing t =2/(n + 1) in Theorem:2.1, we obtain

P Ealf] <

= (n +1)' ’(f(’) +1) 'f".’fe,cg’"

s >0and j > 1; where
‘ ' -1 1 1 . ' ‘

55 (+3) 5 | 211

(c1 =3/4, ¢, = 3/8, c3 =23/72 and ¢4 = 23/96, but c; — oo for j — 00). The asymptotic

behaviour of ¢, is probably be given by

Vrr ( r
2 \4V3e

but we have not been able to prove this.

.
AY
Cy ~ ) for r — oo,

It can be shown that Theorem 2.1 remains true if || R)};, is replaced by

_ |RIS]| H i L _ .
1Rt =sup {TUL 7 € x5 170, 0, [ 192 42 =0

(obviously, ||R{l;» < {|R|lsp, but with equality for i > 1 because of the periodicity of the
functions considered). E.g., for quadrature errors

RIf) = / f(e)dz = Y aif(z

i=1

there holds

n

IRlowo =b—a+3 i=1"al, but [[Rlloc =3 lail

=1
(for an example and some other details omitted here, see [6]).

3. Functionals on C®[a,b]

Let C’[a,b] be the class of s-times continuously differentiable, real-valued functions on
[a,8], and || f|| = sup |f(= )|. We consider functionals R : C*[a,b) —» R satlsfylng (2.1),
and assume that, for f € C'[a, b] and 1=35,...,7,

IR[fll < IIRY; ||f(')|| . (3-1)
holds, where [|R); is defined analogous to (2.2), and ||R|); < co. Further, let

w;(f,t) = sup{|A}f(2)| : |h| < t and z,z + jh € [a, 8]}

denote the j-th modulus of continuity of f. The proof of an analogue of Lemma 2.1 is
more complicated, since f is not defined outside [a,d]. A standard method to overcome
this difficulty is to extend f in a suitable way (see DeVore [2]), but then one has to know
the constants related to this extension. For the case of the sup-norm considered in this
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section, this difficulties can be avoided by a modification of the step size of the differences
involved in the proof (this does not work for the L,-norms, 1 < p < oo, which is the
reason why we do not treat .this case here). This modification is a useful tool to obtain
explicit constants, when Steklov functions are applied to non-periodic functions. It was
derived by the author some years ago for a first version of this paper, but afterwards, I
discovered that it had already been used by Sendov in [9]; inserting t = (b — a)/r? in
part b) of the following lemma, gives the estimate of Sendov. Let

- / [21"N,(z)dz = 34" Ny (i) ) (32)
=1
(n =1, 7, =5/2, 73 = 10, 7, = 331/6; the second formula for 7 follows from (2.6)).

Lemma 3.1. Let f € Cla,b], r > 1 and t € (0,(b — a)/r’] Then there ezists a
function g € C[a,b] such that . . :

a) |f —gll < mw,(f,) and [lg) < (27 - 7w (f,1),

or

0) If = gll < w.(f,rt)-and [lg")] < (r + D)t (£, 7).

Proof Let

r—a

9(z) = /( (z) + (-1)*Ar f(z)) N.(v)dv  with  u=ut- - art.

Here, u and the restriction for ¢ stated in the lemma have been chosen such that z +i1u €
{a,b] always (i.e., for z € [a,b] and i = SyT).
a) We obtam

z -
1f(2) - 9(2)| < / w,(f,tfo = T Ne(v) do (3.3)
For simplicity, let a = 0 and b = 1, and let '
#(z) =w(fitz) and  ¥(z) = / #(|v = rz|) N, (v) dv.
From the monotonicity of w,(f, -), it follows t,hat é is an increasing functlon and the

symmetry of N, yields (1 —z) = y(z). Using the symmetry properties of N, a.nd ¥, and
the monotonicity of ¢ and of N, on [0, r/2], we obtain for z € [0,1/2]

HO = 9(2) = [(60) - blrz — NN0)do + [(6(0) - 80 - reNoe)do |
> [(4(v) - $lrz = v))N.(v) dv
Crxf2 . : :
= [z -v) = 6@ Nolrz —v)= N())do
>0 -



Estimating Remainder Functionals 177
Because of the symmetry, the same holds for z € [1/2, 1}, so that
IS —gll <(0) = jwr(f,tv)Nr(V)dv < /'fv]'Nr(v)der(f,t) = rw,(f, ).
0 ' 0
For the r-th derivative of g, we obtain, using (2.7),

2 ( )(—1)“‘(it)-r (1 _ bi:ta)'A;t. (x - :‘_:‘Zirt) |

< 2()t> wnfit) | | 34)

s £()rouo

= l)t"w,(f,t)

b) From (3.4), we also get

l9(z)” =

lg"(=)| < Z ( ) _'t"wr(f,;t) < (r+ D7 (frt).

i=1
Further, ||f - g|| < w.(f,rt), by (3.3) and (2.5) 8
In the same way as Theorem 2.1, we obtain the following one.

Theorem 3.1. Let R : C’[a,b] = IR be a fuﬁctional satisfging (f?. 1) and (8.1), and
let1 <j<r—sandte(0,(b—a)/j?. Then

RIS (18I + (27 = DEFRI4) w5(f9,0)  for f € C*[a8):

The estimate of Theorem 3.1 makes use of || R||, and || R||;+s, wﬁich how'e'ver, may'ﬁot',
be known. This difficulty can be overcome if || R||m and ||R|| are known for some m < 8
and some r > j + 8, by using the estimate C

(i-m)/(r—m)’ :
o o

< Ko (IRl [ ]
1) < Koo RIGe- (L

r—m

which holds for 0 < m <7 < r (see ngun [7] and Kohler [5]; the K; are a.gam Fava.rd’
constants). . ' : . p

Example 3:1. Let RS(f] = [, f(z)dz — QC[f] be the error of the n-point Gauss-
Legendre quadrature formula. It is wel] known that
Qn+1n14

IBlo=4  and IRl = G e
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Using Stirling’s and Wallis' formula, it can be shown that

e (L Y
" | RS lloK2n

IN

€
n

Using (3.5) to estimate [|RS|l, and |RS];+s by |RS]lo and [ RS lzn, and applying Theo-
rem 3.1 with r = 2n and t = t,,, yields

U< () (5K + (@ = DE) 0 (£9,5)  for feClad,
0<s<j+s<2nandn>e;?/8.

Finally, let us shortly consider compound functionals, and state an estimate given by
Sendov and Popov [10: p. 49] for the 7-moduli, in the framework of this paper. Let the
function R : C*[0,1] — IR satisfy (2.1) and (3.1), and let the N-compound functional
Rn : C’[a, b] — R be defined by

—a ! ) b—a |
3 R[f(a+(z+ ) N )] for‘fe C"[a,b].

=0

Rn(f] =

Theorem 3.2. Let 1 < j <r —gs. Then

b—a

Noan)  frfeCla.

) < 68= 0 (f"’

Especially, this can be applied to compound quadrature rules. Better (and partly
sharp) estimates by w.(f, -) have been obtained by Biittgenbach, Luttgens and Nessel
(1] for the compound midpoint and the first four compound Newton-Cotes rules, using
representations for the error by differences of order r.

4. Estimatés for the K-functional

a) Let us first consider the X-functional of Peetre in the periodic case, i.e.,
Kolfywp = inf (IF = gllp +ullgll)  for f € X.
Specializing to g from Lemma 2.1a), and choosing t = 2u, yieldé the following theorem.
Theorem 4.1. Let 1 <p < oo, r>1.and u > 0. Then

Ko(f,u)p < 26w0(f,20)p  for f € X2,

with ¢, as in (2.11).
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For r = 1,2, this coincides with the estimate given by Maligranda [8]. The unmodified
proof of Lemma 2.1, as given by DeVore [2], yields K, (f,u"), < (r" + 1 — 277 )w,(f, 2u),
(see also Maligranda [8]).

b) For the K-functional in the non-periodic case,

K.(f,u)= inf (”f —gll + u||g(')||) for f € C[a, b),

9€CT[ad)
choose, e.g., g from Lemma 3.1a) with ¢t = 2u.

Theorem 4.2, Letr > 1 and 0 < u < (b— a)/(2r%). Then

K.(fiu") (7 41 =27 (f,2u) for f € Cla,b}.

It is well known that K, can be estimated by w,, but, as far as we know, no explicit
constants have been given for r > 2.
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