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Estimating Remainder Functionals 
by the Moduli of Smoothness 

P. Köhler 

Abstract: For remainder functionals (e.g., approximation or quadrature errors), estimates by 
the moduli of smoothness are obtained. As a by-product, the constants in the estimate of the 
IC-functional by the moduli of smoothness are improved. 
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1. Introduction 

Let R : C[a, b] - JR be a bounded linear functional, and let R [P,_i] = 0, where P-.1 are 
the polynomials of degree less r (the setting in the following sections will be somewhat 
more general). The standard estimates for R[f] are 

	

IR[f]I :5 II RIIIIf t'IL0	for f E C'[a,b] and I < j :5 r,	(1.1) 

where
IREflI 

II RII = sup	: f E C[a, b], 1IfIl00	o 

	

{ 
iIF	 I. 

But if additional information on f is available, e.g. f(3) € Lip a, this information cannot 
be used by estimates of the type (1.1). Therefore, it is of interest to have estimates by 
the moduli of continuity, i.e., estimates of the form 

IR[fII :-^ c(t)w,(f,i).	 (1.2) 

It is well known that such estimates exist, but, in general, no estimates for the constants 
c(i) are available (see, e.g., Esser [3] and Ivanov [41). The aim of this paper is to obtain 
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c(t) are available such estimates in the non-periodic case, and to improve them in the 
periodic case. Section 2 deals with functionals on Ci,, and L 2,, Section 3 with functionals 
on C[a,b],and Section 4 with the IC-functional. 

2. Functionals on 021 , and L7,2, 

Let Cf,, be the class of s-times continuously differentiable, real-valued functions with 
period 27r, and L 2 ,r the class of 2r-periodic. real-valued functions with absolutely con-
tinuous (s - l)-th and p-integrable s-th derivative, with 

iiiii	Jif(x)i P dx (1 < p < oc)	and	IIf	= sup If(x)I. 
0<r<2,r 

For convenience, we denote these classes by X, i.e., X, = C2 and X.3 =Lps ,2, for 
1 <p < oo. We-consider functionais

R:X—+IR 

satisfying

	

IR[f + gil	IREfIl + IR[gjl	 (2.1) 

and

11R111,9 = SUP
{	

: j x;, iiii	o} <oc	 (2.2)

for i s,.. . , r, for some'r > s > 0. We therefore have 

IREfIl	ll Rll,llfll	for f EX, i = s,. .. ,r.	 (2.3) 

Further let

= sup	where Lf(x) =	(j)(_lyuf(x +ih), 
IhI^i 1=0 Z.

 

be the j-th modulus of smoothness (for the properties of w,, see Schumaker [12: Chap. 
2.81). To simplify notation, we introduce the following abbreviations. Let 

1x1=min{iE:i>x}, 

and
r/2	

r1

+	
'(2.4) Pr =

	nu1'Tt ( 
+	dx 

!  

(Pi = 1/2 7 P2 = 1/2, p3 = 31/48, p, = 9/8). Here, N. is the B-spline of degree r - 1 for 
the knots 0, 1, . . . , r, satisfying	r 

	

JN(x)dx = 1.	 (2.5)
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Further, there holds

	

J N,.(X)dX = N,.+1 (t)	 (2.6) 

(Schoenberg [11: p. 121; this has been used to obtain the second formula for Pr given in 
(2.4)), and

	

/ F'(z + av)N,.(v) dv = cs'iY0 F(x)	for F E	 (2.7) 

and a > 0 (Schumaker [12: p. 54]). The following lemma is well known (see, e.g., DeVore 
[21), but we have , modified the proof such that better constants are obtained. 

Lemma 2.1. Let r>1 and 	p !5 oo. Then for all fE X9° and all t>0, there
exists a function g E XT such that 

a) flf - g il9 < 2/3;-'p,(f, t),, and 11g (O Il p < f3, - '(2' -	 'w,.(f, t)9, 
or

b) Ill - g il9 S f3;-'.,.(f, t)9 and 11g (r) JIP < R] r6r t_rwr (f,t)p, where 6, = 62 = 1 and 
6,. = 2 for r > 3. 

Proof. Let ü,. = [r/2], and let g be defined by 

i-/2 

g(x) = j3;-' J (j3T f(x) + (_1)T°'',f(x - arvt))N(t +2 dv 

	

= ti;-' ±	(l)((j - U?) t )	I) F(z +  
i=O \2J 

by (2.7), where F() = f. 
a) Minkowski's inequality and the periodicity of f yield 

+r/2 

	

If -9119 5 j31 J lIfII9A'(t +	dv 

	

-r/2	
0 

+i-/2 

5 13;-' J wr(f,lvt l)pNr(v +)dv	 (2.8) 
-r/2 

0	 ^ j9;-' j +r/21ivI]wr(f,t)pN(v+)dv 
0 

-r/2 

= 2/3;-'p,.i.,.(f,t)9, 

while, by' the triangle inequality, 

Ii ()u	<	3;-'	(r' ii - a,.l'' t ll L.	Fjl9 9	ri p (,-Q,)g 

	

i=o	 0
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fr\ 
EJij_Qr p rWr (f,ij_ Q,.Ii)p	 (2.9) 
1=0 

ijoQr 

t	(.Jw(f,t) 
1=0 

ii4cz, 

= r t'(2 - 

b) From (2.9), we also get 

' I	(r) ig lip ^	
(r),, _

 c Tw,.(f rt)p ^ 6,.FTw,.(f, art),, 
1=0 

since /3'	o () ii ari 15 6,., by some elementary calculations, while (2.8) together 
with (2.5) gives

/ r\ 
if — Il :5/3', f, t) :5 0, 

p 
Replacing u = art proves part b) I 

From Lemma 2.1, we get the following estimates for IR[fli in terms of the moduli of 
smoothness. 

Theorem 2.1. Let R : X —+ JR be a functional satisfying (2.1) and (2.3), and let 
t>0and1jr—s. Then 

	

REfit :^ s;.(2pIIRiI,, + (2i — $1)t''ilRIi+.,,)w(f(),t),	for f E X,. 

Proof. Let F = f(a) E X. By Lemma 2.1, there exists G E X,' such that 

hF — G il, :^ ciw(F,t),	and	hh G hh,	czw,(F, t),.	(2.10)

Now choose g E X 4 ' with g(') = G. Then 

fRuit	I R[f — g]f + I R[g] 

^ hjRhh.,,hhf'	(a)ii + —g u 
=	II R fle,pfl F — G il, -F Ii,!hi	'''•-'(i) II 

j+a p 11'-'	IIp 

Inserting the estimates from (2.10), together with the constants of Lemma 2.1a) (with r 
replaced by j) completes the proof I 

Example 2.1. Let E[f] = infgET Ill — 1100 'be the error in the approximation of 
I € C2,, by trigonometric polynomials of degree lesser or equal n. By the Theorem of. 
Favard-Achieser-Krein,

4 00 

((_l)vi' iI EO,.,00 = K,.(n + l)	where K,. = —	______ 7r '_0 2v+1/	—2
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isFavard's constant. Choosing t =2/(n + 1) in Theorem2.1, we obtain 

(n + l)- j (f(s) 'n + 

	

irc1	 2	
for I E C, 

s 20 and j 2 1 where
1/	1\	1 cj (2.11) 

(c1 = 3/4, c2 = 3/8, c3 = 23/72 and c4 = 23/96, but c3 - oo for j - oo). The asymptotic 
behaviour of c, is probably be given by 

Cr I	I	for r —p 00 
2\4/) 

but we have not been able to prove this. 

It can be shown that Theorem 2.1 remains true if II RD, is replaced by 

2,r (IREfIl : f E X, IIfII	0,1 f ) (x)dx = ID R lII2, = sup	
IIfII	 Jo 

(obviously, III RIII1,	11 R111,,, but with equality for i 2 1 because of the periodicity of the 
functions considered). E.g., for quadrature errors 

b 

R[f] = Jf(x)dx - >2asf(z) 
0	 s=J 

there holds
n 

II R II0,oc = b - a+ E i = l "1 a11, but III RIIIo, = > lail 
i=1 

(for an example and some other details omitted here, see [61). 

3. Functionals on C8 [4, b] 

Let C'[a, b] be the class of s-times continuously differentiable, real-valued functions on 
[a,bj, and Ilf 11 = sup if We consider functionals R : C'[a,b] - JR satisfying (2.1), 
and assume that, for f E C[a, b] and i = s,. . . , r, 

R[f] I :5 II RIIIIf II	 (3.1)

holds, where 1l R1l1 is defined analogous to (2.2), and 1JR11 i < oo. Further, let 

w(f,t) = sup{If(x )I : IhI <t and x,z +jh E [a, b]} 

denote the j-th modulus of continuity of f. The proof of an analogue of Lemma 2.1 is 
more complicated, since f is not defined outside [a, b]. A standard method to overcome 
this difficulty is to extend f in a suitable way (see DeVore [2]), but then one has to know 
the constants related to this extension. For the case of the sup-norm considered in this
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section, this difficulties can be avoided by a modification of the step size of the differences 
involved in the proof (this does not work for the L 9-norms, 1 < p < oo, which is the 
reason why we do not treat this case here). This modification is a useful tool to obtain 
explicit constants, when Steklov functions are applied to non-periodic functions. It was 
derived by the author some years ago for a first version of this paper, but afterwards, I 
discovered that it had already been used by Sendov in [9]; inserting i = (b - a)/r2 in 
part b) of the following lemma, gives the estimate of Sendov. Let 

= ][x1'N(x)dx _jrN (i) <r	 (3.2) 

(r1 = 1, r2 = 5/2, 13 = 10, r4 = 331/6; the second formula for r follows from (2.6)). 

Lemma 3.1. Let f E C[a,b], r > 1 and I E ' (0,(b - a)/r2]. Then there exists a 
function g E Cr [a , b] such that 

a) 11f - lI	rrWr(f,t) and llg(T)ll 5 (2 - 1)t_rw7(f,t), 

or

6)111 - g il < w(f, rt) 'and g(T) 15 (r + 1)t_Tw,.(f, rt). 

Proof. Let 

g(x) = J(f(x) + (-1)'f(x))N(v) dv	with	u = vi - 

Here, u and the restriction for t stated in the lemma have been chosen such that x + itt E 
[a, b] always (i.e., for x E [a, b] and i = 0,... ,r). 

a) We obtain
r 

f(x)-g(x) 1 :5 
V - x — a 

Jw(f,tI 
b — a	

(3.3) 

0 

For simplicity, let a = 0 and b = 1, and let 

(x) = w,.(f,tx) and	(x ) = J(lv — rx l)N,. (v) dv.' 

From the' monotonicity of t,.(f, . ), ' it follows that is an increasing function, and the 
symmetry of N, yields 0(1 - x) = '(x). Using the symmetry properties of N,. and tk,and 
the monotonicity of 0 and of N,. on [0, r/2], we obtain for x E [0, 1/21 

(0) - (x) = J((v) —4,(rx - v))N,.(v) dv +J((v) - 4,(v - rx))Nr(v)dv 

rx 

^ J((v)_(rx_v))Nr(v)dv 

rx/2 '  

/;	

(4,(rx - v) - 4,(v))(N,.(rx - v) - N,.(v)) dv
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Because of the symmetry, the same holds for x E [1/2, 1], so that 

f — g il :5 (0) = ]wr(f,tv)Nr (v)dv < JrvvN(v)dvw(ft) = r,W,(f,t). 

For the r-th derivative of g, we obtain, using (2.7), 

=

	(r)(_l)j-j(,t)-r 
(1 -	ta ) ? Lf ( - 

(r)
( it ) lr(f,it)	 •(3.4) 

<
	(r)_rW(ft)	 - 

= (2' - 1)t',,(f,t). 

b) From (3.4), we also get 

g(x)I <
	(r)itw,(f ri)	(r + l)t',(frt). 

Further, Ill - ll :5 w,(f, ri), by (3.3) and (2.5)1 

In the same way as Theorem 2.1, we obtain the following one. 

Theorem 3.1. Let R : C [a, b] -p JR be a functional satisfying (2.1) and (3. 1), and 
let 1 j r -3 and t E (0,(b—a)/j2]. Then 

IR[f]l !^ (r II RIl. + (2 - 1 ) t— li R ll,+8) w1(f,i)	for I E C' [a, b] 

The estimate of Theorem 3.1 makes use of 11 R 118 and ll R ll,+, which, however, may not 
be known. This difficulty can be overcome if li R lIm and 1JR11, are known for some m <s 
and some r > j + s, by using the estimate	- 

R  

	

IIRli ^ K1mIIRII	/(r-m) 
(K)	

(3.5) 

which holds for 0 < m < i < r (see Ligun [7) and Kôhler [5]; the K1 are again Favard's 
constants). 

Example 31. Let R[f] f.1 f(x) dx - Q[f] be the error of the 'n-point Gauss-
Legendre quadrature formula. It is well known that

22m	14 

IlRllo = 4	and	1IR1I2 = (2n + 1)(2n)!3
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Using Stirling's and Wallis' formula, it can be shown that 

(

__IIRII2	
\1/(2fl) <

	

II R II0K2)	- 4n 

Using (3.5) to estimate II R . and II R II,+3 by lI R lIo and II R II2, and applying Theo 
rem 3.1 with r 2n and t = t 2,, yields 

R [f]I ^: 4
()S 

(rK3 + ( 21.2 -.- 1)K+ 3 )	
(1s £;:)	

for I E C'[a,b], 

0<s <j+s2n and n> ej2/8. 

Finally, let us shortly consider compound functionals, and state an estimate given by 
Sendov and Popov [10: p. 49] for the r-moduli, in the framework of this paper. Let the 
function R : C'[O, 11 - IR satisfy (2.1) and (3.1), and let the N-compound functional 
RN : C[a,b]— IRbe defined by 

N-i 

	

RN[f]=-R[f(a+(i+.)_f)]
	

for fEC'[a,b]. 

Theorem 3.2. Let 1 <j <r - s. Then 

IRN[f]I 
<6 (b— a)8+1 

II R II, w (f	N(j+1))	
for f E C'[a,b]. — N 

Especially, this can be applied to compound quadrature rules. Better (and partly 
sharp) estimates by .) have been obtained by Büttgenbach, Lüttgens and Nessel 
[1] for the compound midpoint and the first four compound Newton-Cotes rules, using 
representations for the error by differences of order r. 

4. Estimates for the AC-functional 

a) Let us first consider the ftC-functional of Peetre in the periodic case, i.e., 

	

ftCI. (L u) = inf 
'
iii - II + uIIglI p)	for f E X°. 

gEX 

Specializing to g from Lemma 2.1a), and choosing i = 2u, yields the following theorem. 

Theorem 4.1. Let 1 <p < co, r>1 and u > 0. Then 

	

ftCr (f, ur ) p < 2cw(f,2u)	for f E x:, 

with c as in (2.11).
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For r = 1, 2, this coincides with the estimate given by Maligranda [8]. The unmodified 
proof of Lemma 2. 1, as given by DeVore [2], yields K(f,if) < (r + 1 - 2_T)w(f,2u) 
(see also Maligra.nda [81). 

b) For the K-functional in the non-periodic case, 

X2r(f,U) = inf (ill - Il + uIIgII)	for f E C[a,b], 
gECa,b] 

choose, e.g., g from Lemma 3.1a) with t = 2ti. 

Theorem 4.2. Let r > 1 and 0 < ti < (b - a)/(2r2 ). Then 

ft,.(f, Ur) < (r,. + 1 - 2 T )w(f, 2u)	for I E C[a, b]. 

It is well known that IC, can be estimated by Wr, but, as far as we know, no explicit 
constants have been given for r > 2. 
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