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Asymptotic Formulas for Small Sessile Drops

E. Miersemann

Abstract. We will prove asymptotic formulas for the wetted disk of a drop with small volume
resting on a horizontal plane which is in a vertical gravity field. These formulas are general-
izations of results of Finn. There is a non-uniformity in the asymptotic behaviour depending
on whether the boundary contact angle is near = or not. If the contact angle is different from
T we get a complete asymptotic expansion of the wetted disk in powers of the volume. These
results are consequences of the strong non-linearity of the problem.
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1. Introduction

We consider a connected drop of liquid of volume V resting on a horizontal plane II
in a vertical gravity field ¢ directed downward II. We suppose the plane to be of
homogeneous material so that the contact angle y will be a constant, 0 <y < 7.

Let S be the surface which defines the drop, Ny the unit normal on S directed
toward and Ng the unit normal on S directed into the fluid (see Fig.1.1). The surface
S satisfies the following boundary value problem (see Fum [1] concerning the derivation
of the equations and for historical remarks):

2H = ku+ A on S (1.1)
Ng-Npp = cosy on SnNII. (1.2)

Here H denotes the mean curvature of S, & >.0 the capillary constant, A-some other
constant (Lagrange multiplier) and u the height of S above II.

The symmetry of S was proved by Serrin [8], provided S is a graph over II, and by
Wente [9] without this restriction. Because of Wente’s result, we may restrict attention
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to axially symmetric drops (see Fig.1.1).
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Fig. 1.1 Sessile drop

P.S. Laplace [5] gave a formal formula for the height of a large drop. No contribution
to the analytical theory seems to have appeared prior to the paper [3] of Finn in 1980,
in which upper and lower bounds for the height and for other quantities are given for
small as well as for large drops.

The further discussion is based on the following two results due to Finn [3, 4].

Theorem 1.1. There is a unique symmetric sessile drop with prescribed volume V,
which meets Il in a prescribed constant contact angle v, 0 < v < 7. The solution curve
(r,u) can be parametrizied by the inclination angle ¥, where r(1) increases strictly in
¥, 0 < < /2, and decreases strictly in v when ¢ > 7/2 and u(3) increases strictly
in Y. Moreover, r(m) = 0,u(m) = ug and ay = r(7 — ) is strictly positive (see Fig.
1.2). C
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Fig. 1.2 Inclination angle
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Theorem 1.2. Let R = r(7/2) for v > /2 and R = r(n — 7) for v < n/2. Then
R=0(V'/?) as the volume V — 0, uniformly inv, 0 < v < v < .

The first Theorem 1.1 shows that we can decompose S into two parts S*, S~ which
are graphs over the plane Il . Our proofs of the asymptotic formulas in the following
sections are based on this decomposition. In the next sections we prove asymptotic
formulas for (small) volumes V as R — 0. At this point we need the above Theorem 1.2
of Finn which asserts that in fact R will be small for small V. This expansion implies
expansions for R and for the radius a = r(7 — ) of the wetted disk.

In particular, we are interested in asymptotic formulas of the type

a=F(7,V) +O(V¥)
as V — 0, where F(v,V) is an ezplicitly known expression and the remainder o(V#),
B > 0, is tndependent of the boundary contact angle v, 0 < 49 < ¥ < 7. This property
is caused by the strong non-linearity of the problem. Thus, we can use these formulas
for measurements of the unknown boundary contact angle 7.

We have shown such asymptotic formulas for the height rise of a fluid in a narrow
capillary tube (see [6]). The method and results in this note depend strongly on the
paper [6). An inspection of the proofs in (7] shows that the remainder in the asymptotic
expansion of the rise height in a narrow wedge is independent of the boundary contact
angle, too.

In a later note we will make some asymptotic formulas more precise by calculation
of the constants in the estimates for the remainder. » ’

In this paper we obtain for the radius a of the wetted disk the existence of a complete
asymptotic expansion uniform in 4 when v is in an interval (yp,7v:) where 0 < 7 <
M <7

a=Y" B(y)K'ViEHY 4+ Ray,y (1.3)

=0
if V < V,, where |Rapq] < CV3ICn+3) € = C(x,70,71,Vs). The constant Bo(7) is
given by
S ¥ ~1/3

.l /sin38d0
sin®

0

Bo =

Near v = m we will prove that

3\!/3 t 2 2/3\*®
a=(4—;) v/ §+ Z+N§ (G) V23 | +R (1.4)

ift =siny <tgand V < Vp, wheré |R| < C(V + V3¢ 4 V342, C = C(«k,to, Vo).
These formulas are generalizations of results of Finn [3, 4]. He proved that, for fixed v
with0 < vy < ,

a =BV +o(V'F)

2 \!/% /3 2/3
a=(§n) (4—”) V3 4 o(V23)

and, if ¥y = 7, then

asV —0.
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2. Drops without an overhang
In this section we assume that the contact angle satisfies the inequalities
O0<y< /2. (2.1)

According to Theorem 1.1 there exists an R for each given V and because of (2.1) the
surface $: z = u(z) is a graph over the supporting plane II (see Figure 2.1).

u

\ , R

- Fig. 2.1 Drop without overhang
Thus we can write the boundary value problem (1.1) - (1.2) as

divTu = ku + A in Bpg
v-Tu= —siny on JOBp

where

Tu = __Vu ,
V14 |Vu|?

Bp = {r € R? : z? + 1 < R} and v is the outer normal at 3Bg . After the mappings

A z
u=v- = and v=Rw(§)
the above problems change to
divTw = Bw in B, (2.2)
v-Tw=—-siny on OB . (2.3)
Here B = kR? is the Bond number and u is given by
u=Ruw(Z)- % (2.4)

provided w is a solution of the boundary value problem (2.2) - (2.3).
There exists a complete asymptotic expansion of w in powers of B. More precisely,
we have shown in [6] the following
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Lemma 2.1. For each non-negative integer n there ezist n radially symmetric func-
tions Pi(x,7) analytic in B, and bounded on the closed disk, such that

2siny

W(I,’Y,B):— B

+3 bz, B +O(B™)
=0

holds unsformly in B, and v, 0 <y < w/2, as B — 0.

The crucial point here is that the remainder is uniformly bounded with respect to v
in 0 < 4 < 7/2 despite the fact that |Vw| becomes unbounded if v — 7/2. The reason
for this behaviour is the strong non-linearity of the problem. The proof of Lemma 2.1
is based on a maximum principle of Concus and Finn [1]. The functions i; can be
calculated by using the formulas in [6]. In particular, one obtaines for 1, the upper

hemisphere . .
2(1 — 3 1 /
1[)0(2:’7) = - ( .C(::S 7) + = 1- 7‘2 Siu27 ]
3sin” ¥ sin 7y

where r = \/z?% + 22 .

From Theorem 1.2 we see that the asymptotic expansion in Lemma 2.1 makes sense
for sufficiently small volume of the drop since R is then small and hence also B = kR2.
Formula (2.4) and Lemma 2.1 imply

u(z,7,R) = R (—25;;7 + vz, 7)B' + O(B"*‘)) -

=0

x| >

Since u(R, v, R) = 0, we have

n

u(e,n B) = Y (v (F7) - 0il1,m) £ B2+ O(RE™)

=0

From this expansion we obtain for the volume
V= / u(z,y, R)dz
Qr

the asymptotic expansion

V = Z C[(‘Y)K‘RZH'? + O(R2n+5) (25)

=0

uniformly in v, 0 < ¥ < 7/2, as R — 0. The remainder depends on the capillary
constant k. In particular, one has

~

~co(y) = ‘7;7/sin30d0

sin
0
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and co(7/2) = %71' . c(r/2) = —:—571' .
From (2.5) and an inverse function lemma for asymptotic expansions one obtaines
the asymptotic expansion of R in powers of V :

R - Zal(_y)nlvé(ﬂ-#-l) +0 (‘/%(271-#3)) (26)
1=0

uniformly in 7, 0 < 70 < v < 7/2, as V — 0, where, for example,

-1/3

ao(7) = cof) and  ai(y) = ~ze(n) ().

3. Dfops with an overhang

In this section we are interested in asymptotic expansions analogous to those of the
previous section, when the boundary contact angle v satisfies

g <v<T7. (3.1)
The question as to what happens if v — /2 will be discussed in Subsection 3.3 (the
other borderline case ¥ — 7 is considered in Section 4).

According to Theorem 1.1 the drop has an overhang if the boundary contact angle
satisfies (3.1); the free surface S can then be decomposed into two graphs S* and §—

over the supporting plane II. Let u* and u™ be the graphs of S* and S, respectively.

Then .
divIut =sut+X  in |z/|<R

v -Tut = -1 on |z|=R
and .
—divTu™ = ku™ + A in a<|z|<R
v-Tu™ =1 on |z]=R
v-Tu™ =siny on |z| =a.
After the mapping .
w* = Rw* () - 2 , (3.2)
R K
we are led to the following boundary value problems where we again denote z/R by z:
divIw* = Bw* in |z|] <1 (3.3)
v-Twt = -1 on |z|]=1 (3.4)
and
divTw™ = —Bw™ in ¢g<|z|<1 (3.5)
v-Tw” =siny on |z|=gq (3.6)

v-Tw™ =1 on |z|=1. (3.7)
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Here B = xR? is the Bond number and ¢ is defined by ¢ = a/R (see Fig.3.1).

=

Fig. 3.1 Transformed drop

We split the proof of the existence of the asymptotic expansion into seven steps:
Step 1. There is an asymptotic expansion w* = w} + O(B"*!) of w* as B — 0.
Step 2. There is an approzimate solution w in the sense that

divTw,; = —Bw,_ + O(B™*") in p<iz|<1

v-Twy =1 on -|z| =1

v-Tw, =siny on |z|=p

foragivenp ,0<p<1.

Step 3. Determine a p = ¢, such that w} = w7 on |z]| = 1.
Step 4. Show that w™ =w; + O(B"*!')ong, —e<|z|] < 1forane>0.
Step 5. Prove that v-Tw™ =v-Tw,; + O(B"*')ong, —e< |z| < 1.
Step 6. Asymptotic expansion ¢ = g, + O(B™*!) of the wetted disk.

Step 7. Asymptotic expansion of V in powers of B and, finally, expansions for a
and I in powers of V!/3, :

3.1 Asymptotic expansion of w*. The following lemma was shown in the paper (6]
on the asymptotic expansion of the hight rise in a circular capillary tube.

Lemma 3.1. The solution wt of prdblem (3.3) - (3.4) satisfies
" w*(z,B) = w}(z, B) + O(B"*")

i |zf <1 as B — 0, where

2 . n
w}(z, B) =-5+ gzm(r)s‘ ,
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r = \/x? + 3. The functions P(r) are analytic in |z| < 1 and bounded on the closed
reyion.
In particular, one has
2
Yolr) = -3 1—122 and i(r) =

and. for the boundary behaviour of ¥, (I > 1),

- %ln. (1 + M)

(= Ao

sup [¢(r)] < oo
sup (1= ) 2Ji(r)]) < o
sup (1= r)*2f(r)]) < oo

where the supremum is taken over 0 < r < 1 .

wt

Ny

1
/‘Y

_q,._l

1

Fig. 3.2 Approximate drop

3.2 Approximate solution for w~. In this subsection we will show that an approx-
imate solution to the boundary value problem (3.5) - (3.6) exists in the sense of the
following definition.

Definition. A function w; is said to be an approzimate solution to w™ if w; € C>=
onp<|z|<1lforagivenpin0 < p<1,and

divTw, = —Bw;, + O(B"*")
holds uniforuly in z on p < |z] < 1as B — 0, and

lim v-Tw, =1
fz| =1

v-Tw, =siny if lzg|=p.
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By the same method as in [6] one obtains the existence of such an approximate so-
lution. The crucial point in this result is that the remainder O(B"*!) remains bounded
if r — 1. The reason for this behaviour is the strong non-linearity of the boundary value
problem (3.5) - (3.6). In contrast to Section 2 we have here an additional dependence on
p. Therefore we have to pay attention to the limits v — 7 /2 and v — 7 (see Subsection
3.3 and Section 4). ‘

Lemma 3.2. For each t, 0 <t < 1, and for each non-negetive integer n there exist
a posstive constant 1) and n + 1 functions ¢i(r,p,t), t = sinvy, { = 0,1,...,n, analytic
mt—n<r <1 and bounded on the closed snterval, such that

_ Coilpt) |~
Wy (T,p,t,B) = __]éu + Z(—l)l(p‘(r,p,t)Bl
{=0

defines an approzimate solution to w™, where

Cor(pt) = 3(11—_‘p’;—t) .

Proof. Let

v= % +Y_ ¢u(r)B'
=0

be an approximate solution. Then the functions ¢, satisfy a recurrent system of bound-
ary value problems. This follows from the expansion

. rv’ !
rdivIiv = (ﬁ)

n -1/2
4 gy (1, 20T 4B+ (S, 4B
' . (3.8)
_(_ré g ( ré, )'Bk
(m) * 2 \avern) B
£ (@1 64m)) BE + (Pans(Bodh o1 8,)) B
k=2

From this calculation we see that fy and fr4, are bounded on p—n <r <1, provided
for { =0,1,...,n the inequalities

|3

sUP(1+¢62)]/2

<o (3.9)

are satisfied, where the supremum is taken over r in p — n < r < 1. Moreover, if we
assume "
|¢7

(1 + ¢:>2)3/2

sup

‘< o0, . (3.10)
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then fy-and f} ., are also bounded. This follows from the formulas

’ [
. rv
rdiviv = (\/-T{»-_U_'z)

=v'(l +vl2)'_|/2 -Frv"(1+v'2)‘3/2

. -1/2
¥ [T aB+ (T, ¢,B")’ (3.11)
V1+ 62 1+ o2 .

n n 2\ ~3/2
+ " 1+ 249 =1 d’;Bl + (Zl:l d’;Bl)
(1 +¢62)3/2 1+ ¢62 .

The expansion (3.8) and a similar expansion for v-Tv show that v defines an approximate

solution to problem (3.5) - (3.7) if the functions ¢; (I = 0,1,...,n) satisfy (3.9) - (3.10),
sup |@i] < oo (3.12)
and if
Cer=(-1)'¢

are solutions of the following recurrent system (3.13) - (3.18) of boundary value prob-
lems: ,

e\ _ IR

on p < r < 1 with the boundary conditions

. #o(p) ; . . ¢o(r)
——————— =siny and m ————=1, (3.14)
1+ ¢y(p)? =V +gp(r)?
_ e\ | 3.15
(A+ofyr) =7 (319)
onp<r<1with
¥i(p)=0  and lim e 0 (3.186)
R r=1(L+eg)? : '
and, for 2 < k <n,
rey Y f
((1—+:9:)2)—3/2) +(rfe) = TPk—1 (3'17)
on p < r < 1 with the boundary conditions
o
i(p) = and lim k =0. (3.18)

r—1 (1 4+ )32
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From the boundary value problem (3.13) - (3.14) we conclude that

C=C_|=2(1—_I,;t), t =siny
. 1-p
and ) ,
1-p?—(1-r2)1—pt
‘Pf)(ﬁpyt) = P ( ) ) 1/2
(2= g2 = (1= p2 - (1 = 1)1 - p)))
We define '

i

falront) = = [ il s
: r
where g is given by (3.20). Then
wo = o + Co

with
|-

2
Co(p,t) = ——— [ sdo(s,p,t)ds .
1-—
r* P

219
(3.19)
(3.20)
(3:21)

(3.22)

(3.23)

This follows from the boundary value problem (3.15) - (3.16). We continue this proce-

dure and obtain from (3.15) - (3.16)

1
o= =1 o) [son(apt)ds

Set
1
&= [eispnds
Then
w1 =91+ C
with

2 N
Ci(p,t) = —m/&pl(s.p,t)ds .
P
For k > 2 we have the formulas

1 1
= =N (14 2 ( / (rfe) ds + / sw-l(s,p,t)ds)

,.
1

oo = [usptds

r

wr =@k + Ci .

1
2
Culpit) = == [ sbutsip.0)ds.
P

(3.24)

(3.25)
(3.26)

(3.27)

(3.28)

(3.29)
(3.30)

(3.31)
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The functions fix are analytic in their arguments, and

fue(Go,C1y- -+, Q) =0 (3.32)
if (m = 0 for at least one m > 1 (see the expansion (3.8)). Let to, t; be fixed positive
constants such that 0 < tp <t; < 1. We consider here all t with t; < t < ¢;. From the
formula (3.20) one concludes that there exists a constant 7 = 7(t,#,) > 0 such that,
for p with |t — p| < 5 and r from the interval t —p < r < 1,

a(l=r)"2 < pp(r,p,t) < ea(1 — r)T2 (3.33)

lpol < es(1 —r)~3/2 (3.34)

with positive constants ¢; depending only on ¢, and t;. Because of (3.33) the function

%o 1s well defined by (3.21) and (see (3.21) - (3.23)) we have with a constant depending
only on ¢y and ¢,

lpol < c. (3.35)

These and the following inequalities in this subsection hold on the interval ¢ — 7 <
r < 1. From (3.34) and (3.33) we conclude

lpil < e(1 =742 (3.36)
For the second derivative we obtain from (3.24) - (3.26) the inequality
’ | | le}) < e(1 - 7)™/ (3.37)
Equation (3.28) implies
% _o(1-r)

T+ g7
asr — 1 since f; remains bounded if r — 1. This last property follows from the formula

(3.11) and from the mequa.htles (3.33) - (3.34) and (3.36) - (3.37). Then we obtain by
induction for { = 1,...,n the inequalities

lpid <e (3.38)
lptl < e(1—r)71/2 (3.39)
lol| < e(1 —r)=3/2, (3.40)

Consequently, according to our previous discussion, the function w,, of Lemma 3.2
defines an approximate solution if the boundary condition

lim v - Tv=1 (3.41)

lz]—1
holds. The proof follows from the expa.nsion

Ty — %0 k +1
v Tv_m Z(1+ ,2)3/23 +;fk3 + fa1B® (3.42)

where the functions fi, f,,+| are bounded on the interval p — 5y < r < 1 and f,.+1 are
uniformly bounded with respect to B < B,. Thus, there exists a subsequence r; — 1
such that fk(r,) — fr. Set k=1in (3.42). Then

0= Z feB* + O(B™*")

k=2
as B — 0. Hence lim,_.; fi(r) = 0 for k = .2,...,n.  Then (3.42) implies that
lun,_.l f,.+|(r B) = 0 holds. Induction over n completes the proof of equation (3.41) 8
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We will need the next lemma for an estimate of w™ — w, in Subsection 3.4. The
first part is a direct consequence of the previous Lemma 3.2.

Lemma 3.3. There exzist positive constants rg, co, ¢ such that on rg < r < 1

co(1-r)"12 < wy, <ea(l—r)"'/? (3.43)
co(l —r)" "2 <w> <e(1—r)"12 (3.44)

Proof. The inequalities (3.43) follow from Lemma 3.2 in conjunction with the
estimates (3.33), (3.36) and (3.38) - (3.40). We derive the second inequality as follows.
From

() =ome

it follows 1

PG N (1 +B/sw_(s)ds) =G(r).

Vitr(r)): T v
Thus

wr(r) = L
’ V1-G%(r)
We have
1-G?=2G'(1)1 —r)+0o(1 — 1) (3.45)

as r — 1, and from the definition of G(r) we will see that
G'(1) =1+ O(B) (3.46)

as B —'0. Thus the inequalities hold. Concerning (3.46), we obtain from the definition
of G that G(r) + rG'(r) = —Brw™(r). This implies G'(1) = —1 — Bw™(1). Since
w~(1) = w*(1) and w*(1) = —~2/B + O(1) as B — 0 (see Lemma 3.1) we obtain
formula (3.46) &

3.3 Approximation of the wetted disk. Now we determine a p near t =sin~ such
that w} = w; on |z] = 1. According to Lemma 3.1 and Lemma 3.2 p has to be a
solution of the equation

2 . i Colp,t) . ! t !
—B+;¢:(I)B =-—5 +§(—1) ei(1,p,t)B" .
Because of the definition of Ci(p,t) (compare Subsection 3.2) we have C; = ¢i(1,p, t),

[ > 0. We recall that C_; = 2(1 — pt)(1 — p?*)~! . Set A; = (1) and

n

f(p,t,B) = 2p* — 2pt — Z(—(l - ) A+ (-1)'(1 - p*)Culp, t)) B (347)
: ’ ’ =0 .
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Since f(¢,t,0) = 0, fp(t,¢ 0) —2t and Ci(p,t) is in C* in a neighbourhood of p = ¢

we have
n+1

“p=pt,B)=t+ ) _ aft)B' + O(B™*?)
l—
as a solution of (3.47). The properties of a;(t) and of the remainder R(t, B) ast — 1
listed in the following lemma follow after some calculations by using the formulas (3.20)
- (3.31).
Lemma 3.4. For any fized constant to, 0 < to < 1, there ezist constants a;(t) such
that, for p = qa(t, B) defined by .
n+1
g =t+ Y a(t)B'+R(t,B),
=1

the equation w} = w; hold on |z| =1 as B — 0, where
ay(t) = —(1 - (140 )'12) (3.48)

ait) = O(1 —t), 1 <1 <n, and R(t,B) = O((1-t)B"*?). The functions a; are
independent of to. If
n+1

P=CQnu1=t+ Z a(t)B',
=1
then w} = w; + O(B™+').
Concerning the behaviour if ¢ — 1 we obtain from the formulas (3.19) - (3.32) after
some calculations the following

- Lemma 3.5. For any given to, 0 < to < 1, there ezists a By such that for n =
~2a,(t)B, 0 < B < By, where a, is defined by (3.48), the inequalities (3.99) - (8.40)
and therefore (9.9) - (3.10) and (3.12) hold on the interval (t — n(t),1) uniformly in t,
to<t<l.

One important consequence of this lemma is that for p = Qn4; the remainder
O(B™*!) in the definition of an approximate solution (see Subsection 3.2) is independent
of ¢t and therefore it remains bounded if ¢t — 1.

3.4 Estimate of w~ — w. On |z| = 1 we have according to Lemma 3.1
w} = wt + O(B"*)

and (see Lemma 3.4)
. =wi+0(3n+l)’
when we choose p = ¢,,, where g, is defied in Lemma 3.4. Combining these equations
with w* = w™ on |z| = 1, we find that

' w; =w™ + O(B™*") (3.49)
holds on |z| = 1. Let § = ¢(B), such that w7 (r,t,B) =0 at r = ¢ and w7 (r,t,B) > 0
if § <r < 1. According to a result of Finn (see Theorem 1.1) there exists such a § > 0,
even if t = 0. From (3.49) we obtain the following estimate, where m = maz(g,t — n).

w=

n



Small Sessile Drops 223

Lemma 3.8. There ezists a constant > 0 such that
Iw_(r1t1 B) - w;(rv Qn+l: t: B)l S CBn+l

forr €[m,1) and 0 < B < By , By small enough, where Quyy =t + 317, ai(t)B (see
Lemma 3.4).

Proof. We have divTw™ = —Bw~ on (§,1) and from Lemma 3.2 divTw; =
—Buw, + O(B™*') on (t — n,1). Thus _

divTw™ — divTw: = —B(w™ — w) + O(B™*)

( e s =rF(r), (3.50)
VI+@a)E 14 (wr,) o
where F(r) = —B(w™ — w; ) + O(B"*'). We write (3.50) as

(rp(r)z") = rF(r) (3.51)
on (m,1), where z = w™ — w; and p(r) = (1 +¢(?)7/2 with ( = w; + e(w; , — w;),
0 < € < 1. From Lemma 3.3 we obtain
| p(r) = po(r)(1 = r)*/* (3.52)
where ¢y < po(r) < ¢y on m < r <1 with positive constants ¢y and ¢;. Integration of
equation (3.51) and the boundary conditions on r = 1 yield

on (m,1), or

1

—-rp(r')iz'(r) = /sF(s) ds . (3.53)

r

on (m,1). Set
1

g(r) = /sF(s)ds.
Then we conclude from the definition of F that

1 ' :
lg(r)| < /(lew_ —w; |+ O(B™'))ds < (B maz |z| + O(B™*")) (1 - 1)

where the maximum is taken over [m,1]. From (3.53) we have

' g9(r)
“0 ==y
and since r >t —n > 0 for a given sufficiently small 7, we obtain from (3.52)
2" < ¢(1 - 1')_1/2 (B max|z| + O(B™")) .
This inequality implies
|2(r)| < I2(1)] + cB max|z| + O(B™*),
Since z(1) = O(B™*!) the assertion of Lemma 3.6 follows ®

(3.54)
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3.5 Estimate of v-Tw~ —v-Tw]. By using the maximnum estimate in the previous
lemma we have

Lemma 3.7. The estimate
v-Tw™ —v-Tw, = O(B"t!)
holds uniformly on'(m,1) as B — 0.

Proof. From divTw™ —divTw, = ~B(w~™ — w,) + O(B"*!) and Lemma 3.6 we
see that v - Tw™ — v Tw,; = r~!O(B™*!) on (m,1). Since r is bounded from below,
the lemma follows immediately. At this point we need a more careful consideration if
t = siny — 0 (see Section 4) B

3.6 Asymptotic expansion of the wetted disk. We will conclude from the previous
lemma that ¢, is an approximation of the radius ¢ of the wetted disk up to O(B"*!) .

Theorem 3.1. The radius of the wetted disk is given by
g =qn(B) + O(B™*)
where g, is defined in Lemma 3.4.

Remark. According to this result, we have ¢ = siny + O(B) for fized v, 7/2 <
v < 7. If vy = m, then (see Section 4) ¢ = \/gBl/2 + O(B).

Proof of Theorem 3.1. We will split the proof into a series of lemmas.

Lemma 3.8. Set
A(r)=(v-Tw,)(r,p,t,B) .

There ezist positive constants 1, ¢o and ¢, depending only on to, t, and By such that
< A(r)<a
holds on t —n < r < 1, uniformly in p and B, when |p—t| <7 and 0 < B < By.

Proof. The proof follows from the properties of the functions ¢(r, p,t). The crucial
point here is the special non-linearity of the problem. Set

V(r) =Y (-1'eulr,p,t)B" .

=0

Then ‘
V'(r) v

e 2 A0 = arvEn

From the properties of ¢; and an expansion analogous to (3.11) we conclude that

A(r) =

A(r) = — 2P ?) oB
O T ampap 0P

holds. The assertion of the lemma is then a consequence of the equation (]T:,ﬂ;)—yy =
0

1-pt pp—t)
1-p +r’(l—p’) .
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From a result of Finn (see Theorem 1.1), the function -

w,(r,t,B)

- \f+w,(r t,B)?

increases strictly in r , §(B) < r < 1, where (v Tw™)(¢) = 0 with a § > 0. Thus, we
have ¢(B) < q(B), where (v - Tw™)(¢) = siny. More precisely, we have §(B) < ¢(B)
since 7/2 < v < 7 is assumned in this section.

\w:(r, gn,t,B)

¢(B) ¢a(B) By 1 r

Fig. 3.3 Proof of Theorem 3.1

Lemma 3.9. There ezist positive constants n and By such that
§(B) < sinvy -7 (3.55)
for all B, 0 < B < B,.
Proof. We will prove this lemma by contradiction. Let
g(B) > siny -y ' (3.56)

for each 7, 0 < 1 < 7, and for a sequence B = B; — 0. Becausé‘ of (3.56) the number
¢(B) belongs to the interval {m, 1] where V(r) is deﬁned (see Lemma 3.7). We recall
that m = max(q(B),t — 7). Then Lemma 3.7 implies

(v-Tw; X§,gn,t,B) = O(B™*") (3.57)
and from the inonotonicity property (see Lemma3.8) we obtain
v -Twz(§,qn.t,B) 2 v -Tw,(siny — n.¢n,t,B). (3.58)
We have
v-Tw, (q,, - %n,q,.,t,B) <o(B™"tY), (3.59)

which is a consequence of (3.57) - (3.58) and of the inequality ¢, —1/2 < siny —7. From
Lemina 3.8, the mean value theorem and v - Tw;(gn, gn,t, B) = sinvy there follows

v -Tw (¢gn + €,¢n,t,B) =siny + O(e) . (3.60)

Combining (3.59) - (3.60), we obtain siny < ¢(1+ B™+!) which contradicts the assump-
tion siny. > 0 if n and B are small enough .
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Thus, we have shown that the interval siny —n < r < 1 is a subset of [m,1) for a
(small) n >0 .

Lemma 3.10. There ezists a (small) positive constant n such that

N

siny —n < ¢(B) (3.61)
holds for any B ,0< B < By .

Proof. If not, then we have for each fixed , 0 < 7 < 59, 7o > 0 small enough, the
inequality ¢(B) < sin<y — 7 for a sequence B = B; — 0. From Theorem 1.1, Lemma 3.7
and Lemma 3.8 we obtain with ¢t = siny the following sequence of inequalities:

siny =v-Tw (q,t,B)
<v-Tw (siny —n,t,B)
< v-Tw](siny —1,¢n,t, B) + O(B™*})
L va-: (qn - ')/Z‘Imt’B) + O(B"+l)
S v Tw;(‘lmfhnt, B) —an + O(B"+l)
with a positive constant ¢;. Since v - Tw}, (gn,qn,t, B) = sinv, it follows n = O(B"*!)
which is a contradiction because n > 0 is fixed ® )

Expanding (v-Tw;; ) (gn + (¢ — gn)) , we get from Lemma 3.8, Lemna 3.7 and since

q belongs to the admissible interval (see Lemma 3.10) that
siny + p(g = gn) = (v- Tw™)(¢,q,t, B) + O(B™*")
=siny + O(B™*!)

where ¢p < p < ¢; with positive constants ¢y and ¢,. Thus, we have ¢ = ¢,, + O(B™*!)
which proves Theorem 3.1. . :

3.7 Asymptotic expansion of the volume. From the asymptotic formulas for u™,
u~ and ¢ of the previous sections we derive an asymptotic formula for the volume of
the drop. Then an inverse function lemma implies asymptotic expansions for R and for
the radius a of the wetted disk in powers of V!/3 as V — 0. For the volume V7 of the
upper part of the drop defined by

Qt = {(a:,z) €ER®: z€ Bp,ut(R)<z< u+(z)}

we get from Section 2
V= ZnR - ZncR® + ia‘ (1) <'R¥* + O(RM™9) (3.62)
3 6 =2 I 2

as R — 0. For the volume of the lower pa..rt of the drop we have

R .
V- = 27r/s(u“(R,t,B) —u~(s,t,B))ds + ar(u"(R,t, B) — u”(a,t, B))

a
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or

1
V- =27R? /r (w™(1,¢,B) — w™(r,t,B)) dr
9
+ mg®

R* (w™(1,t,B) ~w (q,t,B)) . ~ (3.63)
According to Lemma 3.4 we have A
w™(1,t,B) - w™(r,t, B) = w;(1,qn,t, B) — w;(r,qn,t, B) + O(B™*')  (3.64)
ont—n<r<l, r] > 0 small enough, and from Theorem 3.1 -
g =¢a(B) + O(B"*"), (3.65)
where ¢y is defined in Lemma 3.4. From the formulas of Subsection 3.2 for w;; we obtain

1

V. = 27rR3/r (- z":(—l)'B'/go;(S,q,.,t)ds + O(B"“)) dr
g

=0 r

1 n .
4 nB [ (=116l am OB ds + O(B™) .
P =0

Integration by parts yields

= 1rR3/ ( ( 1) ga,(r q,.,t)B' + O(B"H)) dr.

From the above formulas (3.63) - (3.65) we obtain for fixed v in the interval 7/2 < v < =,
that

V™ =R ((1 —sin?y)!/% — %(1 — sin? 7)3/2)

+ Y (7)s'R*? + O(R*™*%) . (3.66)
=1

Combining (3.66) with (3.62), we finally arrive at
Y

n .
V= 7rR3. / sin® 8 d6 + z ci(y)s' R¥+3 L O(R*™%)
0 =1

as R — 0. Then we obtain an expansion of R in powers of V!/? from an inverse function
lemma for asymptotic expansions. Since the radius a of the wetted disk is given by
a = Rg and ¢ = Qu41 + O(B"*?) where Qu41 =t + Z;‘:,l a;(t)B' and B = kR?, we
obtain an asymptotic formula for a (see formula (1.3)). )
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4. Expansion near v =«

In this section we will sketch the case that the contact angle v is near =. There is a
non-uniformity in asymptotic behaviour as volume V — 0, depending on whether or not
v = 7. The proofs of the following lemmas require some elementary calculations which
we omit. The main part of the proofs consists in a careful inspection of the formulas
which define w;(r,qn,t, B) , where g, is given through (4.2). Moreover, we restrict
our considerations to the leading term in the expansion and we let the question open
whether or not there exists a complete expansion near v = = .

After some calculation we obtain (for the definition of A; and C; (I > 1) see Sub-
sections 3.2 and 3.3) that Ay = —2/3, Co(0,0) = 2/3, Co(p,t) = Cy(0,0) + O(|¢|) as
¢ =0, |Cip,t)| < cif || < €, where ( = (p,t). Thus we have for the function f
defined through formula (3.47) of Subsection 3.3 the expression

J(p,t, B) = 25" — 2pt = 5B+ O(B?) + O(IcP*) + O(1CB

Since Ci(p,t) and the remainder in the above formula for Cy are continuous in their
arguments, we conclude that

= “£+\/ﬁ+gB+O(t2-+B) (4.1)
P—qn—2 1 3 .

holds as ¢, B — 0 for the solution of f(p,t,B) = O neart = 0, B = 0 . For the next
lemma we recall that w™~ is defined on [g, 1] and it is easily seen that w is defined on

[3dn, 1), where g, is given through (3.67) (for the definition of § compare Subsection
3.4).

Lemma 4.1. Set m = max (g, 3qn). Then
max lw™(r, ¢, B) — w;(r,qn,t, B)| < ¢cB"*!,

where the mazimum is taken over r € [m,1].

Proof. We obtain this lemma analogously to Lemma 3.6. The difference here is
that we have now r > co(t + B!/2) as a lower bound for r in the formula (3.55) of
Subsection 3.4. Thus, we obtain (see Subsection 3.4)

|2'] € 5 (Bma.x|z| +0(B™))

t+Bl/

which implies
max |w”(r,t, B) — w7 (r,¢a,t, B)| = O(B™+!/?).

We replace n by n + 1. Then

w- = wn+l + O(Bn+3/2) =w] +( 1)"+l<p +1 Bn-H + O(Bn+3/2)
= wI + O(B™+")

which is the assertion of the lemma B
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Lemma 4.2. We have the formula
(v -Tw™)(r,t,B) — (v -'Tw;)(r, qn,t, B) = O(B™*!)

as B—-0.

Proof. We argue analogously to the associated Lemma 3.7 where we here use the
same lower bound for r as in the proof of the previous lemma. Thus, we obtain

v-Tw™ —v-Tw, = O(B"*'/?)
on (m,1) . Replacing n by n+ 1, we have
v -Tw™ —v-Tw,,, = O(B"**/?) .
Then the lemma is a concequence of the formula
v-Twy,, =v-Tw, + O(B")

on (m, 1) which follows from the properties of w . and ¢n+1,- near r = 1 and from the
special non-linear structure of the boundary condition :

v Tw;-H = (w:,r + ("l)n+an+l‘Pn+l,r)
‘ -1/2
(14 (@5 + OB )
= (wy, + (=)™ B ony ) (1 + (wy,)?) 2

o 20D i B 4 (B T
X .
1+ (wr)?

Thus the lemma is proved @

From these two previous lemmas we obtain the following theorem by considerations
analogous to those of Subsection 3.6.

Theorem 4.1. The radius q of the wetted disk is given by

,

q =q(t, B) = gn + O(B™*"). (4.2)

—5+\/t—2+33'+0(t2)+0(3)
1=37V3 73 ‘

A(r) = (v -Tw;)(r,qn,t,B) ,

where 0 <t <ty ,0< B < Bjyandq,/2<r <1, weobtain after some calculation the
same result as in Lemma 3.8 that there exist positive constants ¢o and ¢; such that

In particular, we have

Proof. For

co<A(r)<La. : ,(4'3)
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Moreover we need the inequality
1
san(t, B) < 4(t, B) . (4.4)

if t <ty and B < By. For the proof let (t,B) = (t;, B;) — (0,0) for a sequence such
that ¢(t,B) < 2q,,(t B). Then, because of the strict monotonicity of v - Tw (q,t, B)
with respect to ¢, we have :

O=v -Tw (q,t,B)<v-Tw™ ((ﬂ t, B) =v- -Tw,; (qn — q—",t,B) +0(B™).

2
From Lemma 4.2 and Lemma 4.4 we obtain 0 = t — 1pg, + O(B™*') and finally the
equation ¢, = O(t) + O(B™t') which is a contradiction to the definition of ¢,. This
means, we have m = g and w, w™ are defined on the interval [g,1]. Then Lemma 4.2
implies
(v-Tw™)gq,t,B)— (v-Tw, )¢, qn,t,B) = O(B"*}) .
We recall that ¢ € [m, 1] since ¢ < ¢q holds. It follows
t—(v-Tw;)gn+ (g - gn).gn.t,B) = O(Bn+l)

t=(v-Tw;)gn.gn:t, B) = plq — gn) = O(B™*')
where ¢y < p < ¢;, with positive constants (see (4.3)). We finally arrive at ¢ — ¢, =
O(R™*!) since (v - Tu_)(gn.qn.t, B) =t and the proof of Theorem 4.1 is completed R

"As in Subsection 3.7 we find for the volume of the lower part of the drop
1

= ”Rs/"‘%(r,qmt)dr + O(R®)
n
as R — 0, which implies )
{2
- =rR* (5 + O(R) + O(t)) + O(R%) .
Then the volume of the drop is given by

. V= %nR3+O(R“)+O(tR3).

This implies that

R=(2 I/31/‘/3 (1+0(t)"+0(v’/3)) V(4 5)
4 o ’

as V — 0. Combining (4.5) and (4.2), we obtain for the radius ¢ of the wetted disk of
the transformed drop

t 2 273\ 2
= - - — /3 2 2/3
q 2+\/ +n3(4”) 1% .+O(t)+O(V )

as t, V — 0. We recall that t = sin~. Since the radius of the wetted disk of the drop is
a = gR. we finally arrive at the asymptotic formula (1.4) for a.
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