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On the Nakano Individual Convergence 

R. Zaharopol 

Abstract. We have recently defined the notion of individual convergence for a sequence of 
positive elements of an Archimedean Riesz space E. In the note we complete the definition 
(i.e., we define the individual convergence for sequences of not necessarily positive elements 
of E), and we prove that our notion of individual convergence is a.natural extension of the 
individual convergence as defined by Nakano: we will prove that if a sequence of elements of 
E has an individual limit in the Nakano sense, then it converges individually with respect to 
our definition. 
Keywords: Archimedean Riesz spaces, Dedekind completion, projection bands, Nakano indi-

vidual convergence 
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1. Introduction 

In [8] we defined a notion of individual convergence of a sequence of positive elements 
of an Archimedean Riesz space in order to extend the ergodic theorem of Hopf [3] (see 
also Krengel's book [4]): 

Let E be an Archimedean Riesz space, and let (u)€iv be a sequence of (not 
necessarily positive) elements of E. We say that (U0)nEJfi converges individually if both 
sequences (u)nEjv and (tç)liV converge individually. 

In 1948 in his pioneering work [6], Nakano also defined a notion of individual con-
vergence for sequences of elements of . a countably order complete Riesz space in order 
to extend an ergodic theorem of Birkhoff [2]. Our goal in this paper is to show that 
our definition , of individual convergence of a sequence of elements of an Archimedeàn 
Riesz space is a natural extenion of Nakano's notion of convergence of [6]. More pre-
cisely, we will extend Nakano's individual convergence to sequences of elements of an 
Archimedean Riesz space, and we will show that given an Archimedean Riesz space E 
and a sequence (Ufl)flEj!V of elements of E, then (un)nEt.J converges individually in our 
sense whenever it converges in Nakano's sense. 

Unless explicitly stated otherwise, the terminology used in this paper can be found 
in the books of Aliprantis and Burkinshaw [1], Luxemburg and Zaanen [5], Schaefer [7], 
and in our papers [8, 9]. 

In the next section we will recall several notions and results of [6] and [9] .which 
will be needed throughout the paper; thus, we will review the definitions of the Nakano 
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individual convergence and the Nakano individual limit in the more general setting 
of Archimedean Riesz spaces (rather than countably order complete Riesz spaces in 
which Nakano originally stated his definitions), and we will describe briefly the notion 
of individual convergence of [9], as well as the results which make our definition possible. 
In Section 3 we will define the individual limit of a sequence ( u ' )^E BV of elements of an 
Archimedean Riesz space, and we will show that if there exists an individual limit of 
(un) E p.J, theii converges individually. Finally, in the last section (Section 4) we 
will show that the individual limit as defined in Section 3 is nothing but a reformulation 
of the definition of the Nakano individual limit, as stated in Section 2. 

2. Preliminaries 

Let E he an Archimedean Riesz space, and let E he the Dedekind completion of E. 
Let (ufl)nEJp., be a sequence of elements of E. and let u E E. We say that the sequence 
( u fl)flEv N-converges individually to u (converges individually to u in the sense of 
Nakano) if

limsup((u A c 1 ) V c2 ) = liminf ((Un A c1) V c2) = (u A c1) V c2 
n	 n 

for every c 1 .c2 E E, c2 < c 1 (naturally, the linisup and the liminf are taken in E). If 
a sequence (u)€ N-converges individually to u, we call u the individual N-limit of 
(u n)flEj . By Lemma 1.3 of Nakano (6] (note that although the lemma was stated for 
countably order complete Riesz spaces, it is clearly true for elements of any Riesz space), 
it follows that the individual N-limit of a sequence is unique whenever it exists. Using 
Theorem 32.2 of [5], we obtain that if E is a countably order complete Riesz space, then 
the individual N-convergence is exactly the individual convergence defined by Nakano 
in [6]. 

Now let (u)€jN be a sequence of elements of Esuch that u, > 0 for every n E IN. 
As in [9], let B,((u fl ) fl jp,,) he the largest hand in E on which (un)njpj is unbounded. 
Set (see [9]) 

B((n)n€v) = 
u = 0. or u 54 0 and, for every v E E with 0 < v < Jul, v 0 there exist 

u E wEE with 0<w<v,w0 and a,/3EJR with 0 <fi< a such that


(
limsuW(u n _w) - )Aw)) A (limsuP(((un _w)+)Aw)) 

and
BNOS((ufl)fl E ,v) = 

{UEE
 (linlsUP(((u fl - 13s) - ) A 3)) A (limIlsuP(((u - s)) A s)) = 0 

u=0, oru0and,foreveryveEwith0<v<(u, v0 

there exists w E E with 0 < w <v,w 54 0 such that 

for every s E E with 0 s wand a,,3 E JR with 0< 3
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By Proposition 2 of [9), Bos((ufl)flE,v) and BNos((u)flE,r) are projection bands in 
E, and E is the order direct sum of Bos((u fl ) flE tq) and BNos((u)eJ). As in [9), let 
Ba((u )€,v) be the projection band in E generated by BoO((un)nEflv)UB0s((un)nEIv). 
We say (see [91) that (un)nE IV , converges individually on E if Bd((u)EJrv) —0. 

As we mentioned in Introduction, if (Un) fl Egv is a sequence of (not necessarily pos-
itive) elements of E, then we say that the sequence (Ull)"EBV converges individually if 
both sequences (u,,Uv and ( u ;)nEJN converge individually. 

3. The Individual Limit of a Sequence 

As in the previous section, we assume to be given an Archimedean Riesz space E and 
its Dedekind completion E. Let (un)fl€v be a sequence of positive elements of E. We 
say that (u)NV converges individually to zero if limsup(u Au) = 0 for every v E E, 
V 0 (urn sup(u Av) is evaluated in E, and it exists always since E is order complete). 
Now let (u fl)flEJp,l be a sequence of (not necessarily positive) elements of E. We say that 
( U n)nEl'V converges individually to zero if the sequences (u)v and (U)nEffV converge 
individually to zero. Given a sequence ( u fl)flEIv of elements of E and u E E, we say that 
(u)jp,r converges individually to u if the sequences ( u _U+ ) fl ESV and (u; —U)flEIV 
converge individually to zero. 

Proposition 1. Let ( U n)nESV be a sequence of elements of E, and let u E E. If the 
sequence (ufl)fl E v converges individually to u, then (u n )n gv converges individually. 

Proof. We have to prove that (u)-E, and (u ;)flEEV converge individually; that 
is, we have to prove that Bd((u)flE,v) =0 and Bd((u;)EV) = 0. 

Clearly, in order to show Bd((u)fl E ff) = 0, we have to prove that B((u),v) 
0, and that Bos((u)€,.) = 0. Assume that B((u)y) 0. Taking into consider- 
ation that B((u),v) is a band in E, we obtain that there exists  E B((u)€iv), 
v > 0, v 0 0. Let B(v) be the principal (projection) band in E generated by the 
singleton {v}. Then, the sequence ( U )EJpV is unbounded on B(v). By Lemma 3 
of [9], the sequence ((ut - U + )+ ) fl Et,I is also unbounded on B(v). By Lemma 4 
of [8], it follows that the sequence ((ut - u+ ) + ) n >k is unbounded on B(v) for ev- 
ery k E We obtain that sup fl>(((u - u)) A v) = v for every k E IV; 
hence, liin sup. (((u - u+ )+ ) A v) = v 54 0. We have obtained a contradiction since 
((ut - u+)+)fl.q converges individually to zero. It follows that Boo((u) n ,q) = 0. 

Assume now that BoS((u)flEv) 0, and let 0 s E Bos((u )flE,v) . Then there 
exist wEE, 0 5 w I s I, w 3t 0 and ci,/3 E 1,0< /3< o such that 

(limsuP(((u - /3w)) A w)) A (Urn sup(((u - ow)) A w)) o. 

Using a consequence of the decomposition property in Riesz spaces (see [7: Corollary 
on p. 53)), and taking into consideration that ( U n)EIV converges individually to u, we
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obtain

O< (1imsuP(((u - /3w)) A w)) A (limsuP(((ut - cw)) A 

<(limsuP(((w - z	+ (u - u) Aw)) 

A (liInsuP(((u - u	+ (u - ow)) A w)) 

(lim'Upwow - u) A w) + ((u - u	A w))) 

•	A (lim sup(((u - u	A w) + ((ut - aw) A w))) 

(((u + - fiw) A w) + (1iInsuP((u -	A w))) 

A (((u + - aw)A w) + (linisup((U n+ -	A w))) 

= (+_ 13w) A w A (+ - 

< (u - w) A w A (u+ - 

= 0. 

It follows that 

(lirnsuP(((u - /9w)) A w)) A (1imsuP(((u._ w)) A w)) =0; 

that is, we have obtained a contradiction. Accordingly. BOS((u)flE,f.r) = 0. We have 
therefore proved that Bd((u) E JN) = 0. 

Clearly, in order to prove Bd(( u JflE) = i, we have to prove that B((u;)flE,V) = 
o and BOS((u;)fl E ,V) = 

Assume that B,((u;)env) 0. Then there exists v E B((u;)6,v). v 0,v 
0. Let B(v) be the principal (projection) band in E generated by the singleton {v}. 
Taking into consideration that (u)fl E nv is unbounded on B(v), and using Lemma 3 
of [9] and Lemma 4 of [8) (like in the proof of the fact that B((u)v) = 0), we 
obtain that supfl > k (((u; - u)+) A v) = v for every k E f. Thus, it follows that 
limsup(((u; - u)+) A v) = v 54 0; hence, we have obtained a contradiction. 

Assume that Bos((u)fl E JN) 54 0. Then there exists .s E BOS((u;)EJN), .s 96 0. We 
obtain that there exist w E E, 0 <w s, w 0 0 and a,,3 E 111, 0 < fi	such that 

(limsup(((u - nw)) A w)) A (limsup(((u; - w)) A w)) o. 

It follows (by arguments similar to the ones used in order to prove that Bos((u)n€jpj)
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0) that

o (lim "P((( U — ,3w) - ) A w)) A (limsu(((u; - aw)) A w)) 

(iimsupw -	A w) + ((u —	A w))) 

A (limsU(((u; -	A w) + ((u - aw) A w))) 

(((w - u	A w) +(Iimsu((u — u	A w))) 

A (((u_ - ow) A w) +(limsuP((u - u) A w))) 

= ((3u1_tr)+)AwA((u__cu,)+) 
< ((U- -cw))AwA((u -yw)) 
= 0. 

We have obtained a contradiction; accordingly. BOS(( Lc)flEV) = 0 U 

4. Individual convergence and N-convergence 

As mentioned in Introduction, our goal in this section is to discuss the relationships 
among the various types of individual convergence described earlier. As always in this 
note, E is a given Archimedean Riesz space, and E is the Dedekind completion of E. 

Proposition 2. Let (U fl)flE!V be a sequence of elements of E such 'that u, > 0 for 
every n E ITV . Then, ( U n)nEBV converges individually to zero if and only if (ufl)flE,v 
N-converges individually to zero. 

Proof. Assume first that ( U fl)flEIV converges individually to zero. Let c 1 ,c2'E E be 
such that c 1 c2. The sequence (u n AcI)fl E ffv is order bounded since -c uAc1 ci 
for every n € 1T; hence, limsu(u A c i ) exists in E. Let B(I c ii), B(cfl, B(c) be 
the principal projection bands in E generated by the singletons (cii }, {c }, {c }, 
and let P1, 1 , 1 '	be the band projections associated with B(Ic i j ), B(c), B(c), 
respectively. Since 0 < Pu	u,, for every n € RV, and since (ufl)€jv converges

individually to zero, it follows that 

0 <limsup(( Pc+un) A c) <limsup(u A c) =0. 

Therefore,	 S	 S	 - 

	

limsup((P +u)Ac)=O.	 (2.1)
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Taking into consideration P 1 =	+ P_ and using (2. 1), we obtain 

limsup(u,. Ac i ) = limsup(P111 (u Aci)) 

= urn sup ((P + + P - ) ( u A (ct - cr))) 

= urn sup (P '(u n A (c - cr)) + P'- ( uA (c - cr))) 

= urn sup (((P+u) A ct) + (F- (u A (_c)))) 

= (limsuP((F + u ) A ct)) - c 

= —Cl 

It follows that 

limsup((u A c i ) V c2 ) = ( liinsup(u A c 1 )) V c2 = (—cr) V c2 = (0 A ci) V c2. 

Note that u, Ac 1 > —c for every n E IN; hence, liminf(u A ci) 2 —cr. Taking into 
consideration limsup(u A c i ) = — cr. we obtain liminf(u A c 1 ) = —cr. 

Accordingly, 

lirninf((u Ac 1 ) V c2 ) = ( lirninf(u Ac 1 )) V c2 = ( —C l ) V C2 = (0 A c i ) V c2. 

It follows that (ufl)fl E ,v N-converges individually to 0. Conversely, assume that (ufl)flEJN 
N-converges individually to zero. Then 

Jim sup (u A v) = liinsup((u A v) V 0) = (0 A v) V 0 = 0 

for every v E E, v	0. Let .vE E, v 2 0. Clearly, limsup(u Av) = 0 whenever 
= 0. If v 54 0, then by [5: Theorem 32.6/p. 1951 there exists w E E, v w. Thus, 

0 lirnsup(u,1 A v) <limsup(u A w) = 0. We conclude that lirnsup(u A v) 0 
for every v E E, v 0. Accordingly, the sequence (ufl) E ,v converges individually to 
zero U 

Lemma 3. Let (ufl)flEnj be a sequence of element., of E, and let u E E. Then 
( U fl)flEg%J as a sequence of elements of E converges individually to u if and only if 
( U n)nEV, thought of as a sequence of elements of E, converges individually to u. 

Proof. The proof is obvious in view of the definition of individual convergence to 
a given element, and in view of the fact that the Dedekind completion of E coincides 
with E. 

Lemma 4. Lemma 3 remains true if we replace the individual convergence by the 
individual N -convergence. 

Proof. Let (Un)nEJV be a sequence of elements of E, and let u E E. Clearly, if 
(u)€,v, thought of as a sequence of elements of E, N-converges individually to U, 
then the same is true of ( U n ) " EIV as a sequence of elements of E.
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Conversely, assume that (Un)pEj)v N-converges individually to u as a sequence of 
elements of E. Thus, 

limsup((uAcI)Vc2)=1iminf((uAcl)Vc2)=(uAcI)Vc2 
n	 n 

for every C 1, C2 E E, c2 c 1 . We have to prove that 

lim sup ((u n Ax) V y) = liminf((u Ax) V y) = (u Ax) V y 
n	 n 

for every x,y E E, y 5 x. To this end, let x,y E E, y x. Clearly. 

sup{(u Ac i ) Vc2 c 1 ,c2 E E, c 1 <x. c2 < Ui c2	c1} 

< sup {(u A c 1 ) V c2 c1,c2 E E, c  :5 z, C2 

	

(naturally, the suprema are taken in E). Now, let r i , r2 E E. r 1 < x and r2	y. Set

= r 1 V r2 . Then r', < x, so it follows 

(uAr i )Vr2 < (uAr')Vr2 

< sup {(u A c i ) V c2 c 1 , c2 E E, c 1	X, C2	y, C2	C1 

We conclude that 

sup {(uAc i )vc2 c 1 , c2 e E, c 1 5 x, c2 

< sup {(u A c1) V c2 c 1 , c2 E E, c1	x. c2 < y, c2 < 
c1 }. 

Accordingly,

sup {(uAC i )Vc2 c i ,c2 E E, c	x, c2

(4.1) 

= sup {(u A c 1 ) V C2 C 1, C2 E E, c 1	x, c2 < y, c2 

For every r 1 , r2 E E. r 1 2 x and r2 y, it follows that 

inf{(u A d1 )Vd2  d i , d2 EL, d 1 2 x, d2 2 y, d2 <d1} 

< (uAri)V(ri Ar2) 

< (u Ar 1 ) V r2. 

Therefore,

inf{(uAdi)Vd2 d i , d2EE,di^!x,d22yd2!^di}


<inf {(u A d 1 ) V d2 di , d2 E E, d 1 2 .r, d2 ^!
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Since the converse inequality is obviously true, we obtain 

inf{(u A d 1 )V d2 d 1 ,d2 E E, d1	x, d2 ^! y, d2 d1} 

= inf {(u Ad 1 )Vd2  d i , d2 E E, d1	x, d2 ^! Y	

(4.2) 

Set

L(a, b) = liminf((u A a) V b)	and	L(a, b) = lim sup ((un A a) V b) 
TI	 n 

for every a, b E E, b a. Then, using (4.1) and (4.2), we obtain 

(u Ax) v y = sup {(u A c i ) V c2 C 1, C2 E E, c 1 <x, C2 :^ 

= sup {(u A c 1 ) V c2 c 1 ,c2 E E, c 1 < x, c2 < y, c2 C  } 

sup {L(c i ,c2) CI,C2 E E, c 1	x, c2	y, C2 

<lirninf((u A x) V y) 

lim SUP ((u, Ar) V y) 

<inf{(d i ,d2 ) di , d2 E E, d1	x, d2	y, d2 5 d} 

= inf{(u A d1) V d2 di, d2 E E, d1	x, d2 y, d2 d1} 

=inf{(uA d i ) Vd2  di , d2 EE,di <x, d2y} 

=(uAx)Vy. 

Thus the statement is proved U 

The results discussed in this section enable us to show that the definition of the 
individual convergence to a given element is just a reformulation of the definition of 
individual N-convergence. 

Theorem 5. Let ( u fl)TIE,,..j be a sequence of elements of E, and let u E E. Then 
(u )nEV converges individually to u if and only if (tin )neiv N-converges individually to 
U.

Proof. In view of Lemma 3 ayi Lemma 4, it is clear that we may assume E to be 
an order complete Riesz space (that is, we may assume E coinciding with its Dedekind 
completion E). The sequence ( U n)nEF., converges individually to u if and only if the 
sequences

((ut — n i)E,v,	((ut	
(5.1) 

((u -	+),	((u - U))TIEIV 
converge individually to zero. By Proposition 2, the four sequences (5.1) converge 
individually to zero if and only if they N-converge individually to zero. By Theorem 
1.4 of [6], the sequences (5.1) N-converge individually to zero if and only if (un)nar.,,
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N-converges individually to u. Indeed, if all the sequences (5.1) converge individually 
to zero, then

(u -	E,V = ((ut - u+)+ - (u - 

(u -	= ( (tç - u) - (u - 

N-converge individually to zero. Therefore, 

(U fl ) flEly = ((tz - u+) - (u - u) + i),jrq 

N-converges individually to u. Conversely, if ( U fl)flE IN converges individually to u, then 
( U )flEJTy and (U)nEIN N-converge individually to u+ and u, respectively. Hence, the 
sequences (5.1) N-converge individually to zero U 

Theorem 5 and Proposition 1 have the following obvious consequence. 

Corollary 6. Let (u)EIN be a sequence of elements of E, and let u E E. If 
(Ufl)flESV N-converges individually to u, then (tL)EIN converges individually. 
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