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A Schur Type Analysis
of the Minimal Unitary Hilbert Space Extensions
of a Krein Space Isometry
whose Defect Subspaces are Hilbert Spaces

A. Dijksma, S. A. M. Marcantognini and H. S. V. de Snoo

Abstract. We consider a Kreln space isometry whose defect subspaces are Hilbert spaces and
we show that its minimal unitary Hilbert space extensions are related to one-step isometric
Hilbert space extensions and Schur parameters. These unitary extensions give rise to moments
and scattering matrices defined on a scale subspace. By means of these notions we solve the

labeling problem for the contractive intertwining liftings in the commutant lifting theorem for
Kreln space contractions.
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Introduction |

Let V be an isometry in a Krein space §) with domain D and range R such that the
defect subspaces M = H O D and WM = §H O R are Hilbert subspaces of §. In this paper
we describe the class U(V) of all minimal unitary Hilbert space extensions of V. A pair
(U, ) consisting of a Kreln space $ and a unitary operator U € L($)i is called a unitary
Hilbert space eztension of V if §) is a regular subspace of ﬁ such that 15 e % is a Hilbert
space, and U is an extension of V, and it is called minimal if S’j coincides with the closed
linear span of all subspaces U"$),n =---,—-1,0,1,---.

The study of the set U(V) is carried out by means of a Schur type analysis. The
approach leads to the set V(V) of all one-step isometric Hilbert space eztensions (W4, &)
of V. In Section 1 we show that there is a one-to-one correspondence between V(V) and
the set of contractions in L(91, ). Each (U, ) € U(V) yields a sequence of ‘continuous
isometries {V;,} acting in nested Krein spaces &m such that, for all m > 1, (Vir, &) €
V(Vin-1), Vo =V, and a sequence of contractions {ym}, with 71 € L(91, M), the so called
Schur parameters. The “degrees of freedom” in the construction of each (U ﬁ) € U(V)
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are given by its Schur parameters, in the sense that the construction can be carried out
step by step starting from a contraction y; € L(9M,9M) and choosing in the m-th step a
contraction 7,,. In Section 2 we describe this stepwise construction and we show that the
pair (U, 5) € U(V) is, up to isomorphisms, uniquely determined by its Schur parameters.
A subspace & C §) is called a scale subspace for V if it is regular and D+ ® and R+ & are
dense subspaces of §). In Section 3 we associate to each (U, f)) € U(V) the sequence of

‘moments {Pf’U"Io} relative to the scale subspace ®, where Pf’ is the projection from 9
onto &. We describe a Schur type algorithm which determmts if a sequence of operators
on a scale subspace ® is the sequence of moments relative to & of a pair (U, H) € U(V). "
In Section 4 the notion of a scattering matrix with scale subspace is extended to the Krein
space situation. A model due to D.Z. Arov and I.Z. Grossman ([5] , [6]) for the Hilbert
space setting is generalized to the Krein space case. Finally, in Section 5, the methods
discussed in the paper are applied to the study of the contractive intertwining liftings in
the commutant lifting theorem for Krein space contractions. The data in the commutant
lifting theorem determine a Krein space isometry V with the adequate properties such
that there is a one-to-one correspondence between U(V) and the set of all contractive
intertwining liftings.

In the Hilbert space case these methods were developed by R. Arocena ([2],
[3]) in connection with a lifting problem for a class of translation invariant forms (see
also [4]). For a detailed account on commutant lifting theorems in Hilbert spaces we refer
to [14]. .

Familiarity with operator theory on Krein spaces is assumed. We refer the reader to
(1),(7),[8],(13] and [15] for more details about indefinite inner product spaces and to [13]
for the Krein space extensions of the Hilbert space notions of defect operators, minimal
isometric dilations and minimal unitary dilations. We refer to [12] for various preliminary
results.

In the sequel the standard Hllbert space notation is reserved for Krein spaces and
operators on them. So all notions are to be taken in their Krein space versions, unless
otherwise mentioned. We use the following notations: Z and C stand for the set of all
integers and for the set of all complex numbers, respectively, while N = {0,1,2,---} and
D = {z€ C||z] < 1}. If H, are linear subspaces of a Krein space §, A € A, their linear
span is indicated by Ls. {5 | A € A}. The symbol c.l.s. denotes closed linear span.

We recall that a weak isomorphism from a Krein space §) into a Krein space £ is a
densely defined linear mapping from §) onto a dense subspace of £ that preserves the
scalar products. A weak isomorphism does not necessarily have a continuous extension
to all of . We will however frequently use the fact that an isometric linear mapping,
densely defined in a closed subspace D of a Krein space § with values in a Krein space
&, can be extended by continuity to all of D if either the orthogonal complement of its
domain or the orthogonal complement of its range is a Hilbert space.

A Krein space colligation is a quadruple A = {$), 8, ;T,F,G,H}, where $, §, ® are
Krein spaces and the operator matrix ’

(6 1):(3)~(3)

called the connecting operator, belongs to L(H © F, 9 & &). A colligation is said to be
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unitary if the connecting operator is unitary. The characteristic function of 4 is the
L(3, ®)-valued holomorphic function O4(z) = H + 2G(I — zT)™'F defined for those
z € C for which (I — zT)™! € L(£)). Two colligations A = {9,§,8;T,F,G,H} and
A = {9,3,8; T, F',G', H'} are said to be weakly isomorphic if H = H' and if there
exists a weak isomorphism o from $ to $' such that . ‘

(poO 7'1"_TIF' chO
0 IJ\G H) \G& HJ\0 I

on domyo @ F. If wo can be extended by continuity to a unitary operator from $ onto
5y, then A and A’ are called isomorphic.

1 One-step isometric Hilbert space extensions

We assume that V is a continuous isometric operator acting in a Krein space ) whose do-
main D and range R are regular subspaces of §) and that the defect subspaces N = HOD
and MM = $H O R of V are Hilbert subspaces of §. In this section we label all one-step
isometric Hilbert space extensions of V in terms of contractions from the Hilbert space
N into the Hilbert space M. : ' ;

A pair (W, f) is called a one-step isometric Hilbert space extension of the isometry
Vif ' ’

(a) & is a Krein space which contains §) as regular subspace such that & © ) is a
Hilbert space,

(b) V; is a continuous isometric operator in &, with dom V; = §) such that V C Vi,
(c) & =cls. {H,ran W }. .

We denote by M, = & © domV; and M; = K, © ran V] the defect spaces of the isom-
etry V;. Then M, = K; © H, N, and M, are Hilbert spaces, and N L R, so that
VIM C (R, 6 H) & M. Hence ' '

(L1) PRVila= P Vil
The condition (c).is a minimality condition. Obviously, we have
Ls. {9, ran V;} = Ls. {9, VD, ViN} = Ls. {H, ViN}
and - 4
Ls.{$,ran V;} = Ls. {9, R,ran ¥} } = Ls. {M,ran Vi }.
Therefore

(1.2) & = cls. {H, N} =cls {Mran K }.
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The class of all one-step isometric Hilbert space extensions of V is denoted by V(V).
With each (V1,£:1) € V(V) we associate an operator 1, € L(0,9M) defined by

nmy = PgViy = Pf'Viy, y e,
where the equality is due to (1.1). For all y € M,

My, = (Pe'Viy, P Viy)a,
(Vig, Vinda, — (PR Viv, PR Vivds, < (1,0) 4,

since V; is an isometry and & © ) is a Hilbert space. This shows that v, € L(M, M) is
a contraction, and we have

PHVi = PRVI(P2 + PR) = VPR + mP2.

There is a connection between the defect spaces M; and M, of V, and the defect spaces
of m. We recall (see [17] and also [13]) that by a_defect operator for the contraction
71 we mean an operator D, € L(D,,,M), where D,, is a Hilbert space, called a de-
fect space, such that Dn,l has zero kernel, or equivalently, ran D' is dense in ’i).,,, and

I—vim= D.,, D,, We denote by D,, € L(D,,,MM) a defect operator for the contraction
71 € L(M,N). These defect operators are unique up to isomorphisms.

Proposition 1.1 Let (V), ) belong to V,(V) and let v, € L(N, M) be the corresponding
contraction. The defect spaces of the isometry V; are given by

(a) M=K eH= (Vl _71)‘n)
(6) My = (I - Viy7)Mm.

Let D € L(D.,,,‘JI) and D, € L(®,, ,!DI) be defect operators for 1, and 71, respectively.
Then the mappings

(c) Vi—m)y— DLy, yeMm,
(d) (I -Virg)z— Dz, zeM,

can be eztended by conlinuity to unitary operators from M, onto ’.D.,, and from M, onto
D,,, respectively. In particular, M, = {0} if and only f1in =1, and My = {0} if and
only if ym* = I.

Proof. By (1.2), (a) follows from
V=m0 = (1 - PPV = PR ViRt = PR (5 + V).
To prove (b) we observe that
(1 = Vin? )9O, VD) g, = (M, R) — (Viy; M, ViD)g, = {0},
since M and N are orthogonal to N and D, respectively. Also, on account of (a),

((l - Vl7l‘)m7 Vlm)ﬂx = (wI’(VI - 7l)m)31 = {0}
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These equalities show that (I — V;47)I is contained in (ran Vi)t = 9M,. To see that it is
dense in M, we let 2 € M, be orthogonal to (I — V;77)M. Then, for all z € M,

(z,2) = ((I - Yi7})z, 2)8, =0, '

that is, z is orthogonal to 9M, which by (1.2) implies that z = 0. Hence (b) holds. It
is easily verified that the mappings in (c) and (d) are isometric. By (a) and (b), these
mappings are weak isomorphisms, and, since all spaces involved are Hilbert spaces, they
can actually be extended by continuity to unitary operators. This completes the proof of
the proposition. O

The following result shows that each contraction in L(91,9%) can be obtained in the
way described above. We say that (V, &), (W, R)) € V(V) are isomorphic if there exists
a unitary operator ¢ : & — f] such that p|s = I and V) = Vfp.

Theorem 1.2 The formula
(Vi, %) € V(V) = m = P Vi | € L(, M)

establishes, up to isomorphisms, a one-to-one correspondence between V(V)

and-the set of all contractions in L(M,9M). The inverse is given by 7 — (V1, R) with

ey

VPR + 71P,,’?h) » hen,

&= HoD,, v,h=(

where D, € L(D.,,MN) is the defect operator for the contraction v, € L(N,M). As to the
defect subspaces of V; we have M, = D, and M, is isomorphic to the defect space D, of
7. In fact,

M, = {{z,u} € MO D,, | 17z + Dyyu =0},
and the mapping
{z,u} €My~ D}z - nu €Dy,
where D.,, € L(D.,, M) is the defect operator for 47, is unitary.

Proof. If (V4,8,) is a one-step isometric Hilbert space extension of V, we have shown
before that the operator 7, is a contraction. Suppose that (W, &), (V{, R]) € V(V) are

such that vy, = Pg’;“VI |m and 4] = P;,‘ V!’ | o are equal. Since V| and V{ are isometric
operators and v, = 7;,

(h+Vig,h+ Vig)g, = (h+ VVy,h+ Viy)a;, hE€H, yeN
It follows from (1.2) and the corresponding version for (V/, f)) that the mapping
eolh+Viy)=h+Vy, heH, yeN,

is a well defined weak isorﬁorphism from £, into K. Since $ C domy, and &, © H is a
Hilbert space, ¢ = g is a unitary operator, and (V;, f), (V/, R}) are isomorphic under
@. : :
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If v € L(NM, M) is a contraction then the pair (W}, R) defined in the statement is
an isometric extension of V and it is minimal since the defect operator has zero kernel.
Moreover, v, = P Vi|m. Hence the second assertion holds. Clearly, M = D.,, and the
defining formula for V; implies that 9, coincides with the kernel of the operator

(5 0.):(2) -

That 9, and D.,, are isomorphic follows from the fact that the operator

%))~
D‘n _.‘71‘A ' D‘Yl . D‘n

is unitary (see [17]). This completes the proof. 0 _

2 Schur parameters

As in Section 1 we assume that V' is a continuous isometric operator acting in a Krein
space §) such that ® = dom V and R = ran V are regular subspaces of §) and the defect
subspaces N=HOD and M = §H SR are Hilbert subspaces of f H. We recall that a pair
(U, f)) is said to be a unitary Hilbert space extension of V if $ is a Krein space_which
contains §) as regular subspace such that £ © § is a Hilbert space, and U € L(f)) is a
unitary operator such that V C U. The symbol U(V') denotes the family of all mini-
mal unitary Hilbert space extensions of V, that is, the unitary Hilbert space extensions
(U,9) of V_for which $ = cls.{U"$H | n € Z} (minimality property). We say that
(U, 9),(U",$') € U(V) are 1somorphzc if there exists a unitary operator ¢ : §§ — $' such
that p|g = 1 and U = U’y :

Let (U,?)) belong to U(V) and set, for m € N,
Am =cls {U"H]0<n<m}.
Then {&,} is a sequence of nested Krein spaces between $ and :
H=RoCHC CRRCAnn C---CH.
Since $ © £ is a Hilbert space, it follows that, for all m > 1, & © f,._, is a Hilbert

space. Set
f,=9, W=V

For m > 1, an operator V,, acting in £, is defined by setting
domV,, = &y, Vin = Ulg,,._,-

It turns out that, for all m > 1, V,, is an isometric extension of V,,_; to all of &,,_;, such
that o

R = cls. {fRm-1,ran V,,} = cls. {H,ran V;,-- - ,ran V,, }.
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The above discussion shows that a sequence {(Vi.,fn)} can be associated to each
(U,g) € U(V) in such a way that, for all m > 1, (V,,, &=) belongs to V(V,,_,).

For m € N, let NM,, and 9M,, denote the defect spaces of V,. That is, M = N,
Mo = M, and, for m > 1,N,,, = K © Ry, M = Ky © URp—y. Clearly, M, and 9N,
are Hilbert spaces, and V,,M,._1 L Vin_1Rm_2, so that

Va1 C (B © fincr) © DMy
Define v € L(Mm-1,Mn_1) by
Y = PR Voo [Ny = P Voo [Ny, m 21,
where the equality is due to the above inclusion. Then, for all m > 1 and y € M.y,

(Y YW R = (PE™ Vi, PR Viny) &
(me, me)ﬂm - (P::egm_l mes P;:e_ﬂ,"_l me)ﬁm

Since V,, is an isometry and R,, © &,,-; is a Hilbert space, v,, is a contraction. Further-
more,

PEr Vi = Ve y PR7Y 4y Py
The defect spaces M,,, and M,,, of V,, m > 1, satisfy
(2.1) N = B © By = (Vi — Ym) Ny, M = (1 - Vm'f:n)m"-l

We adopt the same terminology as in [2] and we say that {yn} is the sequence of Schur
parameters of (U, f)) € U(V).

Now we consider the converse process. Let 1, € L(91,91) be a contraction. According
to Theorem 1.2, a one-step isometric Hilbert space extension (V),£;) of V is uniquely
determined by 7, up to isomorphisms. Denote by M, and M, the defect subspaces of
Wi and choose a contraction v, € L(M,,9M,). Another application of Theorem 1.2 leads
to a one-step isometric Hilbert space extension (V2,R;) of V;. We proceed inductively:
assume that, for some m > 1, (Via, &) € V(Vin1) is defined. Let N, and M, be the
defect subspaces of V,,. Choose a contraction Ym41 € L(9,,M,,). Then there exists a
one-step isometric Hilbert space extension (Vin41,8m+1) of Vin. In this way a repeated
application of Theorem 1.2 leads to a sequence of contractions {¥.,}. The main result of
this section is contained in the following theorem.

Theorem 2.1 For any choice of contractions {ym} there ezists, up to zsomorphtsms a
umque pair (U, f_)) € U(V) whose Schur parameters are {yn}.

Before proving Theorem 2.1, we consider some special cases of sequences {m} Itis
straightforward to show that VP,f;j is a bicontractive isometric operator on ). Therefore
its minimal unitary dilation (Uv,ﬁv) is unique, up to isomorphisms, and hence can be
identified with the canonical one (see [12}). Clearly, (Uv,$v) belongs to U(V).
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Proposition 2.2 The minimal unitary dilation (Uy, 51/) of VP is, up to isomorphisms,
the unique element in U(V') whose Schur parameters are equal to zero.

Proof. The Krein space Hy is given by
00 . [ o]
= (@m) ®HD (@m) ,
1 1
and the operator Uy is of the form

(..

100 000
070 0 000

Uy = 00 & (vr2| o o0 o0 ,
000 P 000
000 0 700
000 0 010

EEALEN! -

where zg' is the inclusion mapping from 9 into §. Note that, for all m € N,
.ﬁm(Uv) =c.ls. {U&ﬁ | 0<n< m} =H (@‘n) ,
“\ 1

N1 (Uy) = Foms1 (Uv) © Fin(Uv) = Uy (Uv)
and

Mn41(Uv) = Bm1(Uv) © Uy R (Uv) = M (Uy).
Hence we have that, for all m > 1,

Pﬂ',"n(lﬁuv)uﬂmm_,(uv) = P MU o = 0.

This completes the proof. O

The pair (Uv,fjv) is, up to isomorphisms, the unique element in U(V) if either
= {0} or M = {0}. If, for some m > 1 either N,,_; = {0} or M,._; = {0}, then, by
ProRosmon 1.1, either v, vm = I or 4,7, = I, respectively. In both cases the element
(U, ) in U(V) that is obtained by means of the step by step construction is isomorphic
to the canonical minimal unitary dilation of V,,_, P ", - Its first m Schur parameters are
{m,72,"-*,¥m}, and, for all n > m, v, = 0. By Theorem 1.2, any other pair in U( )
with the same Schur parameters is isomorphic to (U, f_)) and, in this sense, (U, f)) is the
unique element in U(V') with this (finite) sequence of Schur parameters. For m = 1 the
above discussion is summarized in the following result.

Proposition 2.3 Let v € L(M,M) be a contraction such that either mn =1 or
MY = I. Then there ezists, up to isomorphisms, a unique element (U,$) in 19/4%)
with first Schur parameter equal to ¥, and such that, for alln > 2, v, = 0.
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The proof of Theorem 2.1 will be given in the following series of lemmas. Assume that
a sequence of pairs {(Vin, )} is defined, starting from the contraction v; € L(91,M).
Each V;, is a one-step isometric Hilbert space extension of V;,_; to all of

a1 =DONOM D -- B MNim,s
which acts in &, = Rm-1 ® M. and satisfies
B = cls. {fn_1,ran V} = cls. {H,ran Vy,-- -, ran V. }.

Moreover, each V,, was obtained from V,,_, via a contraction ym € L(Tm_1,Mm_1) in
such a way that v, = P;;':,_,th and M,,,, M,, are isomorphic to the defect spaces

m—113

55.,,,,, D,,,, respectively. Consider the Krein space
A=H (EB m,) :
=1

“The following result is an immediate consequence of the construction.
Lemma 2.4 We have & = c.ls. {&, | m € N}.

From Lemma 2.4 it is easily shown that a densely defined isometry Wy in the Krein
space R is obtained by setting

(22) Wolﬁm = Vm41, M € N.

Since Y)_ C dom W, and R6$) is a Hilbert space, it follows that Wy is continuous. Therefore
W = W, is a continuous isometry defined on all of K.

Lemma 2.5 W € L(R) is an isometric extension of V, it is a bicontraction and
R =cls. {H,ranW}

Proof. Since R CranV, C ran W and R © R is a Hilbert space, we have that R S ran W
is a Hilbert space. For all k € R,

(WW"k, ba = (PR, k. k)a
<k1 k)ﬁ - (P:ermwkv P.Rxermwk)ﬁ S <k7 k)-ﬂ

This shows that W* is a contraction. Since

(W*k, W*k)g

An =cls. {H,ranV, |0 <n <m}, meN,
Lemma 2.4 implies that .
A=cls. {HranV, |n €N} =cls {HranW}

This completes the proof. O
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Since dom W = £, the minimal unitary Hilbert space extension of W is unique up
to isomorphisms and hence can be identified with the canonical minimal unitary dilation

(U, H) of W given by

(23) H=R (é(ﬁ O ran w)) ;

1

and
RKSran W

W g 0 0 00
0 o I 0 00
(2.4) U = 0 0 0 I 00
where Lﬁe"‘”w denotes the inclusion operator from £ & ran W into K.
Lemma 2.6 For allm € N,
ran V41 C cls. {ran V,,, U™'H,U™9H, -, UH}.
Proof. The lemma is easily checked for m = 0. For m > 1 we notice that

ran Vg1 = Vo fm = Vgt (Vnfmoy @ M)

= Vm+lvmﬁm—l @ Vm*Hmm

Vm+1 Vm Tt Vlﬁ @ (@ vm+lvm tee Vn+lmn)

n=1

Umt6 ® (@ Vi1 Vin -+ Vn+19nn) .
n=1
From (2.1) it follows that, for each n, 1 < n < m,
Vins1Vin -+ Vasrtn € Vong1 Vin -+ Va1 (] — Vg2 )0y
Since , C Vo C -+ C Vi C Vipyr and My C Ry =dom Vi, k=1,2,---, we get
VottVin - - Vo Moy = Voo Vipoy - VM, Cran 'V,
Also, since Y;M,—1 € Ny C Ka-1, the inclusion )
Vi1V - Var1 VaraMasy € Vg1 Vi -+ Vaga Vaflna
holds true. As R,_; = c.l.s. {§),ran W, ---,ran V,_, }, this inclusion implies that
Vit Vim - Vad Vari M,y Cels. U™ H,U™H,- -, U™ "2 5H).
Consequently we have that, for 1 <n < m, ‘_
Vin41Vin =+ Va1 M, C cls. {ran Vi, , U™ 5, U™H, - - - , U™ "1 5},

and the lemma follows. O
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Lemma 2.7 Foralln e N, &, = cls. {U™H |0 < m < n}.
Proof. Since 8, = c.l.s. {H,ran V} and ran V| = U$, the result holds for n = 1. Now

assume that
Rn=cls{U'H|0<j<m}, 0<m<n

We show that the result also holds for m = n+ 1. Let k € R,41 be such that (k, U’f))x =
{0}, 0 < 7 < n+ 1. Then the induction hypothesis implies that (k,&;)a = {0},
0 < j < n, where & = 9. Consequently, (k,9H)gs = {0} and (k,ranV;)g = {0},
1 £ j € n. Hence (k,R,)g = {0} and (k,ran V,)g = {0}. From these equalities, the
equality Rny1 = c.l.s. {fq,ran V41 } and Lemma 2.6, we conclude that k= 0. O

Lemma 2.8 We have § = c.ls. {U"$ | n € Z}.

Proof. Suppose that k € § is such that, foralln € Z, (H U"f))~ = {0}. By Lemma 2.7, we

get that, for all n € N, (h £}z = {0}. Hence, accordmg to Lemma 2.4, (h, Rz = {0}

From this relation and the definition of (U, f)) given in (2.3), (2.4), we conclude that

he @(ﬁeran W). That is, h= {0, z1, 22, - -}, where {z,} C K6 ran W. We claim that,
1

foralln > 1, z, = 0. According to Lemma 2.5, R6ranW = Pferm w9 So, to prove the
claim, it is enough to show that each z, is orthogonal to Pfem\wf). Since

w- 0 0 O
P;emnw 0 0 0 -

ut=1 o I 0 0 - ,
0 o I 0.

we have that, for all A € 8, (2, P;ermwh'>5 = (7;, U“h);J = 0. In a similar way it can
be seen that, for all n >'1 and k € §, (z,, P,{(emm,h);J =0. Hence h=0. O )

The following lemma provides the proof of Theorem 2.1.

Lemma 2.9 The pair (U, $) is, up to isomorphisms, the umque eIement in U(V) whose
Schur parameters are given by the sequence {ym}.

Proof. The Krein space f) contains f) as regular subspace and
HOH=(HOR)®RON),
where
HOR= @(Rergn w), fe9=PMN,
. et

are Hilbert spaces. The operator U € L(f)) is a unitary extension of V, since, for all
h €D, Uh = Wh = Vh. By Lemma 2.8, (U, §) is minimal. _Hence (U, .f')) belongs to
U(V). Clearly, {ym} is the sequence of Schur parameters of (U, f)) The uniqueness easily
follows from the construction. O
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3 On a Schur type algorithm

We still assume that V is a continuous isometric operator acting in a Krein space § such
that © = dom V and R = ran V are regular subspaces of §) whose orthogonal complements
N and M, respectively, are Hilbert subspaces of §. A subspace & of § is called a scale
subspace of V if it is regular and if

(3.1) H=cls. {D,B} =cls. {R,6}.

In the sequel we fix a scale sp-a.ce and denote it by &. The minimality of (U, 5) e U(v)
can be expressed in terms of & in the following way.

Lemma 3.1 We have § =c.ls.{D,U"® |n€ I} =cls. {R UG |n¢€ 7}.

Proof. From (3.1), it follows that, for all n > 1,
U$H Cecls. {H,U8,---,U"8}

and
UTHCcls. {H,U'S,..., U8}
Since § = c.l.s. {U$ | n € 2}, these inclusions imply the lemma. O
If (U, $) € U(V), then the sequence {G,} C L(®) defined by
(32) Gn = PEU™lo, m 21,
is called the sequence of moments of U relative to the scale space &.

Proposition 3.2 The mapping (U,$H) € U(V) — {Gn} C L(B) is one-to-one, up to
isomorphisms.

Proof. Let (U, $), (U', ') € U(V) be such that
Gm = P3U™ g = PYU™|g =Gy, m> 1.
Then we have that, for all g, € ® and n,m € Z,n > m,

(Umg,U™g)z, = (U™™"9,9') = (Gr_ng:9)n
(Gn—mgv g’>ﬁ = (Ung’ U"‘g')g.

From this and (3.1) it can be seen that, for all h € 9, g€EBandnel,
(Umgx h)g, = (Ungs h)g

Hence the linear mapping o defined by

po(h+U"9)=h+U™g, h€H, g€B, neL,
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is well defined and isometric, and, by Lemma 3.1, o is a weak isomorphism from H into
%' Since HC Hand HOHisa Hilbert space, it fo]Iows that (o is continuous and hence
@ = Po is a unitary operator from f) onto $'. By construction U, ﬁ) and (U’, 5’)’) are
isomorphic under ¢. 0O

In general, the mapping in Proposition 3.2 will not be surjective: not every sequence
{Gm} € L(®) can be “realised” as the sequence of moments of some (U, $) € U(V) with
scale subspace . This gives rise to the following problems..

The moment problem with scale subspace of the M- problem:
Given a sequence {Gm} C L(®), determine if it is the sequence of moments of some
(U,9) € U(V) relative to &. If this is the case, find all solutions (U, H) € U(V).

The truncated moment problem with scale subspace or the M,-problem:

Given {G1,G3,--+,Gn} C L(®), determine if there exists a pair (U, $) € U(V) such that
Gu=P2U" s, 1<n<m.
If this is the case, find all solutions (U, §) € U(V).

Proposition 3.2 implies that the M-problem either has no solution or, up to isomor-
phisms, a unique solution.

The above problems can be treated by means of a Schur type algonthm which is the
same as the one given in (2] for the corresponding problems in the Hilbert space setting.
We reproduce it here to make our treatment selfcontained.

To relate the moments of (U, $) € U(V) to the associated Schur parameters v,;, we
recall the following definitions:

fa=D, fo=H V=V, N=9N DMo=9m,

fn=cls{UH|0<n<m}, Vpo=Ulg,_,, m21,

N = Rim © fmcty, My = K O Uy, m 2 1,
(3.3) Ym = Po_ Vil = PR Vaalov,o,, m 21

We consider V,, as an isometry actmg in the space &,,. The following properties are easily
checked:

(Vim, fm) € V(Vina),
R =cls. {B,ranV,,} = cls. {Rn-1, Vi B},

(3.4) N = PRmVn®, M, = Por 6.
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Lemma 3.3 Let (U,S?J) belong to U(V). Then the associated isometries Vy,---,Vy, and
Schur parameters Moy Ym are, up to tsomorphisms, uniquely determined by its moments
G, -+ ,Gm. Moreover, for j =0,---,m—1,
G v,ph vig. o) < (PR Vg PRV
(a)j+l ( i+ = V; Ry Jg’g) —( n; j97 n, ]g)x
R, 1+ pfi s ' .
| (P g Py g'). 9.9 €8,
and {
R £ Ry

(8)i+1 Giwr = P’ (ViPg | + 7501 Pyl )V le.
Proof. The uniqueness of the pairs (Vj, &;), up to an isomorphism, can be proved in a
similar way as Proposition 3.2, and by (3.3) these pairs determine the v;'s. The formula

(a)j41 follows from (b);31 and the Cauchy-Schwartz inequality. Finally, ();4+, follows
from the definitions of Vj and ~;. O

Suppose the operators Gy, +,Gm,Gm41,- -+ in L(B) are given. To describe the

(m + 1)-step of the algorithm we assume that the M,,-problem is solvable. By Lem-
ma 3.3 the data give rise to the isometries V), --,V,, and Schur parameters v;, -, ¥m.

There are two possibilities:
(a) the defect-subspaces of V,, are nontrivial, or
(b) at least one of them is trivial.

In case (b) the algorithm terminates after the m-th step: the M,,-problem has, up to
isomorphisms, a unique solution; this is also the only solution of the M, ;-problems and
the M-problem if and onlyif its moments match the data Gmy1,- -+, Gmyj, - -

In case (a) the M,,;,-problem is solvable if and only if (a)m41 holds. The necessity
follows from Lemna 3.3. If (a)m4+1 holds then, by property (3.4) above, the formula

{PRmVTg, Phr g’} = (Grirg — Vi PR V.0V 5.,

Am—'m

defines a bounded sesquilinear form e;,41 : My O M,n — C, and there exists a contraction

Tm+1 € L(Min, M, ) such that

Em4 {y"lax"l} = (7m+lym1xm)ﬁm, Ym € mm; Im € g-nm)

and (b6)m41 is valid. From ym41 € L(M,, M) and Theorem 1.2 we obtain a pair
(Vns1, Rms1) € V(V,,) such that (3.3) is valid with m replaced by m + 1. It is unique up
to isomorphisms. Again by (b),4+; and Theorem 1.2, we get

(Vo' 9,90 8mss = (Gm119.9")5, 9.9 € O,
and the M,,,,-problem is solvable.

Proposition 3.4 Assume that the M, -problem 1is solvable and that the isometry V,, has
nontrivial defect subspaces. Then the M, -problem is solvable if and only if (a)m4,
holds. In this case the solutions are given by the pairs (U, $)) € U(V) with first m Schur
paramelers equal to {y1,72, -+, Ym} and (m + 1)-Schur parameter ym4, determined by
Gm41 by means of (b)yy1-
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Proposition 3.5 Ify},vm = I and ym7;, = I never hold, every M,,,-problem has infinitely
many solutions and the M-problem has ezactly one solution, namely, the pair (U, f))
U(V) with Schur parameters {y,} determined by {G,m} via (b)m.

4 Scattering matrices with scale subspace

In this section we introduce scattering maltrices for isometries and their unitary exten-
sions. We present a parametrization for the scattering matrices associated with unitary
extensions. This parametrization is due to [5] (see also [6]) for the Hilbert space case.
Here we treat the Krein space case. We assume that the isometry V has the same prop-
erties as in the forgoing sections and that & is a scale space for V.

Corresponding to the defect spaces 9 and M of V we introduce the Hilbert spaces
9 and M and the output and input isometries I, ‘N — Hand I} : m — ) with the
properties ran I, = N, ran I; = M, so that ker I = D, ker I’ = R. Then {$H, !DT ‘ﬂ W}

with
= VP2 I ) )
W= 2 ). (2 2
( r;o ) (sm) - (m
is a unitary colligation, whose characteristic function is usually called the characteristic
function of the isometric operator V. '
Corresponding to the scale space & we introduce the Krein space ®. and the isometry
I, : &, — $) with the property ran I, = ®, so that ker I, = H S ®. Rewnte Wasadx3
block matrix with respect to the decompositions

HoM=(Ho6)eGoM, HON=(Hod)e6aMN.

With W we associate the unitary operator defined by

: I 0o 0\ (/I 00 HOoo Heeo
We=|(0 I 0O)W |0 T. 0]: ®, — B, .
0 0 I 0 0 I m n
For Wy we introduce the following block decomposition
Te Fo HOoo ( noesé
W = : — ~
° (Ge Ho) (esceamt “\e.0f)’

where

(a) To = PPogV PR lne0 : HOB » HO G,

(b) Fg = (P,,,eGVPQF P,,,eo ( ) - HOBG,

- 35 .
(c) Ga:(rcvf"obeo) ﬁe@—’( )
I7 |00

e
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_(T:vPir. i | (®. eg)
(d) He—( r:r. 0 )(m — &)

Observe that {6 8,8, @{ﬁi B, 69‘?1 We} is a unitary colligation of operators on Krein
spaces. Its characteristic function Ove is the scattering matriz of V with respect to the

scale subspace ®. It is an L(®, EBQR e,@‘n) valued function defined and holomorphnc for
those z € C for which (I — 2Tg)™! € L($) ©&). For each z in the domain of holomorphy,
Ov.e(2) can be represented as a 2 x 2 block matrix

(911(2) ‘ 912(2)) . (?\6) N (Qie)
92](2) 922(2) ) m ‘.n
Write T = V PJ. We obtain the following expressions for the 6;;’s:

(4 1) 9_!1(2 1 8, _’éea
) Onl(z) = FT(I—zPﬁeo )y MWe=rr(I - ZTPf?eo) ITr.,

(4 2) { 912(2) 35)‘\‘ — @e,
’ 9]2(2) = F;(I - ZTP?GO)_ln,

(43) On(z): ®, - N,
) 921(2) = [‘0‘(1 zP,?eoT)“l},

(44) 922(2)26.’\1—)‘5}
' On(z) = 2I;(1 — 2PR g T) ' PR o[\ = 21} P)oo(l — 2TPD o) 'I.

Next we consider a pair (U, f)) € U(V). Since, by definition, Hc f) is a regular
subspace, we may interpret [, I; and I, as isometries [, ‘JI — 5"), i i . f) and
le:8%, — 5’), so that I';, I'7 and I; aré bounded linear mappings from H to ‘.YI Mt and
&., respectively. The operators I,[;, I;I7 and I.I'? are the projections from $ onto n,
9 and &, respectively. Also, with these interpretations, we have

(4.5) U-TPP = I'I;U.

The unitary operator U € L(E)) can be regarded ‘as an isometric operator with zero
defect subspaces. Consequently, also for U a scattering matrix relative to &-is well defined.
More precisely, set Hy = f) Ofand Hue =HNHSB=Hy0(HO 6) Then U admits a
2 x 2 block matrix representation with respect to the decomposition 9= Hue ®B. Let
Xu,e be the unitary operator in Hy,¢ @ &, obtained from U by

1 0 I 0
=5 202 2)

that is,

) %
Xve = (Pf)li_oulf)u,o P;,&,Ure : (ﬁé}.o) . (ﬁg,o)‘
reulﬁu,o Ieurg e e.



A Schur Type-Analysis 249

Then {Hu.e,B.,B.; Xue} is a unitary colligation and its characteristic function Byg is
the scattering matriz of (U, H) € U(V) with respect to the scale subspace ®. A straight-
forward computation gives

(4.6) Oue(z) = ITU(I - ZP,,?M(/)-‘Pe = I;(I-2UPR, )'UL.,

for those z € C such that (1 - zP;’ oUlnue) ™' € L(Hue). This formula implies that the

scattering matrix determines (U, 5’)) € U(V), up to isomorphisms.
We associate another operator-valued holomorphic function to the pair (U, f)) € U(v).
The unitary operator U € L(§)) admits the 3 x 3 block matrix representation

Ty Fy O\ [($Hv\ [$u
U= GU HU 0 : mn — m y
0 0 Vv D Pat

and {$Hy,N,M; Ty, Fy,Gu, Hy} is a unitary colligation of operators in Hilbert spaces.
Its characteristic function Gy (z) = Hy + 2Gy(I — 21y)~! Fy belongs to the Schur class
S(N, M) of all L(9N, M)-valued functions &€ which are defined and holomorphic on.D and
such that, for each z € D, £(z) is a contraction. The function Gy has the following
representation: ‘

Ou(z) = Pﬁ I—zUPﬁU) ‘Ulm_Pf’U(l—sz’U g, 2€D.

The operator block

Tv Fo_(1 0\ (Tv Fo\ (I O\ ($w)_ (%
Gy Hy ~\0 Iy Gy Hy 0 I,/ ' \7N m
defines a unitary colligation {fju,‘.ﬁ,gﬁ; Tu,ﬁu,éu,ﬁu} with characteristic function

eu(z) = I76y(z)],, = € D. The main result of this section is the following theorem.
In the Hilbert space case it can be found in [5], Theorem 2; for proofs see [6].

Theorem 4.1 There exists a neighborhood Vo C D of 0 such that the formula
(47) GU'Q(Z) = 9]1(2) + 912(2)6(2)(1 - 922(2)6(2))—]921(2), 2z G_Vo,

with £(z) = eu(2), z € D, sets up a bijection between S(‘ﬁ,ﬁ) and the set of all scattering
matrices {Gue | (U,H) € U(V)}.

The proof of Theorem 4.1 is given after the following lemmas. In the remaining part of
this section, we freely use the notations introduced above.

Lemma 4.2 If (U, $) € U(V), then
(4.8) I —2PB U = (I — 2Ty — 2PR [\Gu)PS,+

+(I = 2P3,g T)PEPD + (I, — 2Py — PR [LAU)I;, z€C.



250 A. Dijksma, S.A.M. Marcantognini and H.S5.V. de Snoo

Proof. Let (U, ) € U(V). The 3 x 3 block decomposition of U gives

(4.9) U = TyP2 + FyPR+GuP2, + HuPj + VPSPY
= TyP3 +Fyl; + LGyPS, + LHuI; + TPD.
Hence

PRyoU =TuPg, + Ful] + PRoe [\Gu Py, + Plog [N Hu IS + Pioo TP

and this implies (4.8). O

Lergma 4.3 There ezists a neighborhood Vo C D of 0 such that, for all z € Vo and
(U,9) € U(V),

(I - On(2)eu(2))™" € L(N).

Proof. By (4.4), we have ©5,(0) = 0. Therefore, given 0 < r < 1, there exists a 6 > 0
such that, for z with |z| < §, we have ||@,2(z)]|| < +/r. For all (U, $) € U(V) and 2z with
|z| < 6, it follows that

(On(2)eu(2)F, On(2)ev(2)P)g < r(F. )5, ¥ € N.

This means that, for all (U, ;)) € U(V) and 2 with |z| < 8, O(2)ey(2) is a strict con-
traction in the Hilbert space M. Clearly, Vo = {z € B | |z| < 6} verifies the claim. O

We may suppose that Oy, is holomorphic in Vg and that, for all z € V,, (1 —2Ts) ™} €
L($H© ®). We also have, for z € V,, (I — zTy)™' € L(Hy).

Lemma 4.4 For all z € V, and (U, H) € U(V),
(I =2P3,,Ulse)™" € L(fue).
Therefore, for all (U,?)) e U(V), Oue is deﬁﬁed and holomorphic in V,.

Proof. First we show that, for cach z € Vy, I — éP,?;oU is an injective operator on Hy e.

Assume that, for some & € Hue, (I — Zl’g’uoU)Z = 0. Since Hue = Hu & (H O B), we
obtain from (4.8) and our assumption that

(41000 = P2 (1 — 2P Uk = (I - 2Ty)PD k- 2FyI}h
and
(4.11) 0 = PR (I — 2PR, U)h = —2PS o Gy P2 h+

+PPoe(l — 2Pi g T)PRPEh + PD (I, — P2 o IiHy) I k.

From (4.10) we obtain

(4.12) P2 & = 2(1 ~ 2Ty)" Ry 2.
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In (4.11) we observe that, since & € Hu.0,
PEPSR + ILI3h = POk = P gk, TPSPSE = TPPh = TPloh.
Hence, by (4.12) and (4.11),
(I - 2PfseT) Piooh = 2Pfe Nl Hu + 2Gu(l — 2T0) " Fu) Ik
Thus we get .. A
(4.13) PBogk = 2(I = 2P0ugT) ™ Py Ticu(2) I H.
As $Hy C ker I'7, this equality and (4.4) imply F;Z = QQQ(Z)GU(Z)I‘;":, Lh;;.t is,
(I - Ona(2)ew(2)) 2k = 0.

By Lemma 4.3, 1‘,;71 = 0. From (4.12) and (4.13) it follows that k= Pg’uz + PP

Therefore { — sz’;’UOU is injective on Hy.s.

‘Next we show that, for z € Vo, the operator I — sz’ .U maps onto Hue-

HOS
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=0.

Let

he Hue. Then h = hy + h with hy € Hy, h € HO B. We Lreat the elements hy and A
separately. First we consider the element h € $H © &. Since ranI - ‘)’I by Lemma 4. 3

there exists an element ¥ € 9 such that
(1 — 2PPseT) ' h = (I = On(2)eu(2))7.
It follows from (4.4) that ¥ = I} f, where
f=0=2PgT) " (h+ 2P)elicu(2)F) € HOB.
We also define
fu==z2(1- qu)—lf’uie Hu, 7= f+fu€Hue.
As Hy C ker I}, we have I} f =y. From (4.8) we obtain

(1 —2P2 U)f = (I - 2Ty) fu — 2PEsel'Cu fu+

Au.e

+(I = 2P2oT)f — 2Fyl; [~ 2PRoo LAY T f,
which after substitution of f, fy and Fo‘f leads to the equality

(4.14) (1 - zPS, _U)f = h.

We now consider the element hy € $§y. Again, since ran [, C ‘ﬁ, by Lemma 4.3, there

exists an element @ € N such that
231 = 2P2 o T)™! ;,eofcv(’ —2Ty) " hy = (I = On(2)eu(2))i.
It follows from (4.4) that @ = I';g, where ' '

g=2(I — 2P2geT)” P,f,’eel‘[Gul—zTu) Yhy-+ eu(z)B) € H O B.
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We also define
gu=- Z?U)_l(hu +2Fyd) e Hy, §=g+gu € Hue.
As Hy C ker I';, we have ;g = @. From (4.8) we obtain
(I - 2P}, U)5 = (I — 2Ty)gu — 2Pfoe lGugu+
+(I = 2P2 o T)g - 2FyT}§ — 2P2 o [H IS,
which after substitution of g,gy and 177§ leads to the equality
(4.18) (I - zP}, | U)§ = hy.

Finally, if we define the element ke Hu.e by k= f+g, then (4.14) and (4.15) imply that ~

(I - zPﬁ U)k = h. Hence the operator I - zP U 1s surjective. This completes the
proof. . Cl

We recall the following resuit; see [9], Theorem 5 and [10], Theorem 1, and see also
{11], Theorem 1.1.

Lemma 4.5 The mapping (U,;)) € U(V) — Oy € S(N,M) establishes, up to isomor-
phisms, a bijection between U(V) and S(N, M).

Proof of Theorem 4.1. First we show that the scattering matrix Oy, of any (U, ?)) e U(v)
can be obtained via (4.7) by setting £(z) = ey(z). So let (U, $) belong to U(V). According
to (4.6) and (4.1), we have, for all z € V,,

Buel(z) — Ou(z) = (I - zUP5 o) UL — IIT(I - 2P2,T) ' T,
= [T -2UP;, )" (U-TYI - 2P2T)'I...
From (U —T) |g= Ul - Pﬁ) lg= U Pf’ | and Pmb = I,I7}, in view of (4.3), we get
(4.16) Bua(z) — Ou(z) = I*(I- zUP,.’;’U_o)"UI’OGQ,(z)
= rrud- zP,-f’U_oU)_ll’oen(z).
Now consider the term ITU(1 — zP}?U_oU)"I"o. Since TP I's = 0 and TP bel =
TPRPD U, we have
(4.17) ITU(I - 2P§, U)™'T,
= [7U(I - 2P§, UY™I, = I}(1 - :TP2.,)'TP3I,
=I7(1 - 2TPJ4) " (U - TP};’)(I - zP;;’NU)- r,.
From (4.5), (4.2), (4.16) and (4.17) we conclude that

Bue(2) = Ou(2) + Oua(2)[TU(I - 2PJ, U)'I,6(2).
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To show that Oy g is given by the formula (4.7) with €(z) = ey(z) it remains to establish
that, for all z € Vy,

(4.18) [TU(I = =P8, U)™'T, = eu(z)(I — On(2)eu(2))™.
Forz€ Vpand y € N, we define kb = (I- zP?UOU)"["of]G $ and we set

hu= PSR, h=PIP3E, y=Pgh
We claim that
(4.19) 7 = (I — On(2)eu(2))1,y.
Indeed, on account of (4.8), we have
rg=(-zP2 Uk =(I- 2Ty - 2PRseiGu)hu+
+(I = 2PP. g T)h + (I, — 2Fy — 2P2 o i HY) I y.
Projecting onto $Hy and onto §H we obtain
0= (I — zTy)hy — zFy Iy
and
g = —2PPol\Guhy + (I — 2PE g T)h + (I — 2Pfeg [iHu) LSy,
respectively. The first equation implies that
(4.20) hy = 2(1 — zTy)  Fy Ty,
and substituting this in the second equation and using I,y = y, we get
(I = 2PDoT)h = I + 2P g Nieu(2) Iy — v.
Therefore

h=(1—-2PlyeT) ' ILg+ 4
+2(I — 2PR o T) ' PRog Nieu(2) oy — (1 — 2PR o T)™'y.

Since T'T, = 0 and, for y € N, Ty = 0, we find that the first and third summands are
equal to

(I = 2PRoT) ' NG =I,§, (I —2P2seT) 'y =y.
Thus we obtain

h= g+ 2(1 — 2PfeaT) " Peolicu(z) oy — v. !
Projecting onto M and using (4.4), we get

0=rg+ .00(2)eu(2)y —y = [.(§+ On(z)ey(z)Ty — Iy),
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which proves our claim (4.19). From (4.9), (4.20) and (4.19) we obtain

(4.21) rru(I - ng’”U)-‘rog =TI7UR
=I7[Th+ (TU + [‘i@U)hU + (ﬁu + ﬂﬁU)P;y]
= [T LAuTy + Guhy) = Hu Ly + Guhy
= Hylry + 2Gy(I - 2Ty) " Fylly = eu(2) Ty
= eu(2)(I — On(2)eu(2))7'7,

which establishes (4.18).

Now let ¢ belong to S(91,9M). Set O(z) = le(z)l;. Since © belongs to S(9, M),
by applying Lemma 4.5, we obtain a pair (U, $) € U(V), uniquely determined by ©, up
to isomorphisms, such that O(z) = Oy(z) for all z € D. Since €(z) = I'7O(2)T, for all
z € D, we have €(2) = ey(z) for all 2z € D. Hence the formula (4.7) applied to ¢(z) yields
the scattering matrix Opg of (U, $) relative to &. :

To complete the proof it remains to show that Oy g is uniquely determined by the
function €. Assume that e,&’ € S(M, M) are such that, for all z € V,,

(4.22) O11(2) + Bh2(2)e(2)(I — On(2)e(2)) 'Oy (2) _
= On1(2) + O12(2)e'(2)(1 = Og2(2)€'(2)) 'O (2).
In particular, since ©2,(0) = 0, we have
012(0)£(0)B21(0) = O12(0)’(0)©5,(0).
Then, according to (4.2) and (4.3), we get
I ri(e(0) =€), r. =0.

This means that ran [i(e(0) — €'(0)) ;I C $ © &. Since [;(e(0) = €'(0)) ;1. € M and,
by definition, M N (H © &) = {0}, it follows that (¢(0) — ¢'(0))[:1. = 0. Note that
5 = cls. {D, B}, so that (¢(0) — £'(0))/; = 0 on 5. We conclude that £(0) = '(0). B
taking derivatives in (4.22) we get

612(0) 3£ (0)821(0) = 61 (0) & (0)021(0).

The argument used before to prove that £(0) = €'(0) now shows that

d"e d"e

0= 2 (0);

for n =1, and, inductively, for n € N. Therefore £(z) and €'(z) coincide in all of D. Th]s
completes the proof of the theorem. O
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5 On a parametrization of LIF(A)

In this section we give a complete labeling of all contractive intertwining liftings in the
commutant lifting theorem for Krein space contractions. With the data of the commutant
lifting theorem, we associate an isometric operator in a Krein space and a scale space of
the type we met in Section 3. Qur description is then obtained via the theory of scattering
matrices in Section 4. In the Hilbert space case this procedure is due to Arocena ([2],[3]).

In order to solve the above labeling problem, we first carry the analysis of Section 4 a
little further. We assume that V is a continuous isometric operator in the Krein space §),
whose domain ® and range R are regular subspaces of §), and whose defect subspaces M
and 9 are Hilbert subspaces of . We also assume that  C §) is a scale subspace of V.
Corresponding to ® we introduce a Krein space ®, and an isometry I, : 8. — $) with
the property that ran I, = &, so that ker I, = © @. Let (U, f)) belong to U(V), and
let {Gm} be the sequence of moments of (U, H) relative to ®. The operators G, m > 1,
are the Fourier coefficients of the function

(5.1) Gue(z) = P3(I - 2U)™"Ule € L(®),
defined and holomorphic in a neighborhood Vy C D of 0.

Lemma 5.1 Let Vo be the neighborhood of 0 in D given by Lemma 4.3. Then we have
that, for every (U, $H) € U(V) and z € Yy NV,

(52) 9(1_9(2) = (I + ZF:GU,Q)(Z)IL)_l lj:GU'g(z)F,
and
_(5-3) I.(I - 26y,6(2)) "' Oue(z) I = Guel(2).

Proof. We recall that I', is an isometry, and that I.I} is the orthogonal projection from
$H onto B. Since H = Hye OB, we have [ I, =1 — P};’Ub. It follows from the definition
(5.1) that, for z € Vy,

(5.4) 1 +2I7Guelz)le. =1+ 217(1 - U)W =17(1 — zU)7'T,
and that, for z € Vy N Vg,

(1 + zl"GU g(z)l' )QU'@(Z) - I'C.Gu_g(z)re

= I7(1 = 2U) ' LISU( = 2PB UY' I = I2(1 = 2U) U

= I7(1 - 2U)PRU(I - 2P}, U)-l ~UJI, -
=TI -2U) ’[P”’U U(I—z oo U — nguoU) T,
=IT(I =20 (U~ 1) ,,MU(J zP,?”U) r.=0.

Now (5.2) follows, since we claim that, for each z € Vy N Vy, the operator on the right
hand side of (5.4) is invertible. First we show that this operator is injective. Assume
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that, for some g. € &, I'*(1 — zU)™'I.g. = 0. Then h = (I — 2U)™'I.g. belongs to
Hue. Hence Iige = (I ~ zU)h and 0 = (I — 2P) U)h. Lemma 4.4 implies b = 0.
Consequently, g. = 0. This proves that I'7(/ — zU)~!T, is injective. Next we show that
it is surjective. For g, € &,, we define '

6. =g~ 2I7U(I — 2P}, U)'I.g..
Then we obtain
I;(1-2U)""Iyg,
= I} = 2U)" Lge ~ 2I7(1 = 2U) LITU(I = 2PB, U) Fg,
= I7(I - 2U) ' Lg. - 2I2(1 = 2U)'U(I — 2P, U)™'I.g.
+2I7(1 = 2U) " P, U(I - 2PB, \U)™'I.g.
= I2( = 2U) " Lge = I2(1 = 2U)™ (I = 2PS, U)'Ig.
—I2(1 = 2U) M ge + 171 = 2U) (1 = 2P§, U)™' I,
+I7(I - 2PR U) ' Ig.
=TI - 2P5 _U)'.q..

fu.e

If we set (I — zPﬁ;’uoU)_lrege = h, then h € $Hy e and

ge = I lge = I(I = 2PR U)h = I7h.
This leads to the equality
(5.5) IT(1 — 2U)"'I.g. = g..

Thus the operator I'7(I — zU)™'T, is surjective. This completes the proof of our claim.
Finally, it follows from (5.2) that

(I + 2I7Gye(2)l) ™" = 1 — 20p6(2), z€ VyN V.

Therefore (I — 20y,6(2))~" belongs to L(®,) for all z € Vy N Vg, and (5.3) is clear. O

Now we briefly recall the main facts about the commutant lifting theorem, as presented
in [12]. We consider two Krein spaces $; and )2, two contractions T € L($,) and
T; € L(%2) with minimal isometric dilations (W;,®,) and (W2, ®,), respectively, and
a contraction A € L()1,;) such that ATy = TA. The set LIF(A) of all contractive
intertwining liftings of A is defined by

LIF(A) = {4 € L(®,,8,) | 4 is a contraction, AW, = W, 4, P,A = AP},

where P, and P, denote the orthogonal projections from &, onto $ and from &, onto

$)2, respectively. The operator A can be factorized as follows; see {12], Lemmas 1.1 and
1.2. '
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Proposition 5.2 There ezist a Krein space ® and two continuous isometries
71 :9H — 6 and 13 : Hy — B such that & = cl.s. {111,292} and A= 171y.

Let (V2,%2) be the canonical minimal isometric dilation of T;. Consider the Krein
space H = B @ (B, © H:) D (F2 © H2). We define two continuous isometries 0y : &) —
and p; : §2 — H by setting

Ullf)l =T, Ul|0;efn =1, P;:'f); = T2, p2|326f)2 =1

Set D = c.ls. {018, p2VoF,} and R = c.ls. {01 W18, p2F2}. Let V; be the linear mapping
determined by the relation

Vo(org1 + p2Vafo) = onWhgr + p2f2, 1 €1, f2 € 2.

Proposition 5.3 The spaces D and R are regular subspaces of § and Vy can be eztended
to a continuous isometry V with domV =D and ran V = R. Furthermore, M= HOD
and M = H O R are Hilbert spaces, and & is a scale subspace for V.

Thus the data of the commutant lifting theorem give rise to an isometry V with a
scale space ® of the type considered in the previous sections.
Let (U, $) be a unitary Hilbert space extension of V. Put

62 = C.l.S. {U"Tgﬁz I n € N}

Then &, is a regular U-invariant subspace of $ and (UIE'),’é?) is a minimal isometric

dilation of T;. Consequently , there exists a unitary operator o2 : ®; — ®, such that
02|5, = 72 and 0, W, = Uo,.

Theorem 5.4 Let (U,?’)) belong to U(V). Then the operator A = 050, belongs to
LIF(®,,8;), and the mapping (U,H) — A is, up to isomorphisms, a bijection between
U(V) and LIF(A).

The fact that LIF(A) is nonempty was first proved by M. Dritschel in his doctoral
dissertation (University of Virginia, May, 1989); a simplified version is given in [13]. The
above results concerning the commutant lifting theorem can be found in [12], where ref-
erences to the relevant literature arc given. Another proof can be found in [16).

At _this point we are ready to consider the problem of labeling the set LIF(A). To
each A € LIF(A) we associate a formal power series P by

oo
Piz) =Y 2" Am, - An=PW;™Alg,, m>1.
m=1
For an operator-valued function ¢, defined and holomorphic in a neighborhood V,, € D
of 0, which is symmetric with respect to the real axis, it is convenient to introduce the
notation p#(z) = p(3)", z € V,.
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Proposition 5.5 The mapping

A € LIF(A) = {An} C L(%1,%2)
is one-to-one, up to isomorphisms. Moreover, if A e LIF(A) and (U,E) € U(V) are
related via Theorem 5.4, then Py is defined and holomorphic on Vy and

(5.6) Pylz) = 21, P2, Gf o(2)11, 2 € Vu.
U,e

™5

Proof. From the definition of the set LIF(A) it follows that, for all h, € $;, k2 € H2,
n,m € N,

Y ~ (AT "™ hy, ho)g,, n>m,
(AW h), Wi ha)e, = (W3 Ahy Wi ha)e, = -~
(Am=nhi, h2)s,, n<m.

Suppose that A, A’ € LIF(A) satisfy
Am = PW;™Alp, = PW;™ A'lp, = AL, m> 1.
Then, clearly, for all A, 6‘51, hy € 9, n,m € N,
(AWPhy W hs)e, = (A'Wrhy, Wi hy)e,.

Since ®; = c.ls. {WrH, | n € N} and &, = c.l.s. (W5, | n € N}, it follows that A = A’,
so that the indicated mapping is injective.

To prove the last part of the proposition we observe that, for all h; € §,, h; € Hg,
m2>1,

(Amhiyho)sy = (Ahy, Wiho)e, = (rihy, Umnsha);
= (rih, PPU™rhy)e = (ri k1, GmToha)e,
so that
;f,,. = T{IPSﬁQG,‘nn, m->1.

This shows that the function P;is defined and holomorphic in Vy, and is related to the
function Gye in the indicated way. O

The connection between the sequences {An} and {Gn.} and the Schur algorithm
described in Section 3 can be used to determine if the elements of a given sequence
{A } € L($1, H2) are of the form A = BbW; ™A |#,, m 2> 1, for some A€ LIF(A). We

will not pursue this avenue, but concentrate on the labeling problem.

Theorem 5.6 Let A € LIF(A) and (U,?)) € U(V) be related via Theorem 5.4. Then the
function P; is given by

(5.7) Py(z) = o757 POy Lo (2)(I — 29*(2)) ' ITm, 2 € Vu Ve,

where

(5-8) ¢(2) = Bu(z) + Ora(2)e(2)(I — Oz2(2)e(2)) ' Ou(2), z € Vo,

and £(z) = ey(z) = I7Oy(z)Io,2 € D. The mapping € — Pz determined by the formulas
(5.7) and (5.8) ytelds a bijection between S(‘.’fl, 9/37() and the class {P; | A € LIF(A)}.
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Proof. The first part of the theorem follows from (5.6), (5.3) and Theorem 4.1. Since
every € € S(‘fl, S,D\I) is of the form ¢ = ey for some pair (U, 5) € U(V) (see Lemma 4.5
and the observation halfway the proof of Theorem 4.1), the range of the map € — Py is
contained in and coincides with the class { P | A € LIF(A)}. By Theorem 4.1, the fact
that an element in U(V) is, up to isomorphisms, uniquely determined by its scattering
matrix, Theorem 5.4 and Proposition 5.5, we have that the mappings

EHGU‘QH(U,B)F;D Ars P;

are all one-to-one (up to isomorphisms as far as (U, §) € U(V) is concerned). This implies
that the mapping € — P is injective, This completes the proof. O

Finally, we note that (5.7) can be written as a Schur like formula:
P3(2) = a(2) + b(2)p*(2)(I - c(2)p*(2))7'd(2), z€V NV,
where

a(z) =0, b(z) = n{'PSmI’,, c(2) =2, d(z)=TI'n.
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