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Abstract. A simple mathematical model for a so-called Norton fluid is given. We study a 
variational problem and make use of appropriate versions of Korn's inequality. 
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1. Introduction and statement of the results 

We study a variational problem modelling incompressible Norton fluids (see [4, 6]). Let 
ci denote a bounded region in 1R. and suppose that on some part F of 9ci a function 

F - JR3 is given. Then we look for a minimizer U: ci -* JR3 of F(u) = f 1()1P dx 
subject to the side conditions u I,' = q5,divu = 0 on Q. Here 1(u) = I (Vu + (Vu)T) = 

((ôu) + Ou')) 1<<3 is the symmetric part of the velocity gradient Vu and p is a 
fixed real number in (1, oo). For p = 2 we have a Newtonian fluid and it is well known 
(compare [2]) how to handle the above problem with the help of Korn's inequality. On 
the other hand the limit case p 1 corresponds to functionals with linear growth iii 1(u) 
(or more precisely in 1'(u) = 1(u) - 1 trace 1(u) . 1) arising in plasticity theory and 
leads to the study of variational problems in subclasses of the space BD(Q) (we refer the 
reader to the papers [1] and [7] where one also finds further references). The objective 
of our paper now is to give the appropriate setting for growth rates p E (l,00),p 2, 
which means to prove versions of Korn's inequality in H' P (cz, JR3). 

From now on we assume that ci is a domain of class C3 '° for some 0 < a < 1 and 
that 1' is an open portion of ôci with fl2 (17) > 0. Suppose that 0 E H"(ci, li?3 ) is given 
such that the class

C = { I E H"(ci,JR3 ) : uli = Ir,divu = Oa.e.} 

is non-empty (here we consider 1 <p < no). 

Theorem 1: The variational problem F(u) = fn JE(u)1 P dx - min in C admits a 
(unique) solution u E C. 
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Remark: Of course the existence result of Theorem 1 can be extended to varia-
tional problems of the form

jW(x,E(u)(x))dx - mm 

in the class C provided the dissipation function W : Q x IS E JR 3 : S symmetric) - JR 
is convex with respect to the second argument and of p growth for some power p E (1, co). 
For example a condition of the form A I S I P < W(x, S) 5 A I S I P (with positive numbers 
A and A) would be sufficient. If W is in addition differentiable with respect to 5, then 
also an analogy of the following Theorem 2 is true. 

Theorem 2: There :3 a function f E L" 1 (Q) such that, for the minimizer 
u E C from Theorem 1, we have 

j I((u)V'2((u)E()dx =10 divb . 1 dx 

for all çb E C0°°(1?, 1R3) 

The existence result Theorem 1 follows from the following 

Theorem 3 (Korn's inequality) : There is a constant c = c(p, ft ) with the prop-
erty that

	

IIVIIHI.v(Q)	cIIE(v)If,p(ç) 

holds for all v E H"(,iR3 ) such that vjr 0. 

In Section 2 we prove Korn's inequality with the help of several lemmas, the Euler 
equation will be discussed in Section 3. 

Accepting Theorem 3 we select a minimizing sequence {u} C C and deduce 

	

U- -011H1-1(n)	C [F(u,) + F()]'/P 

so that sup ll U nhlH l p() < oc and, for some element u, u,,	u in H"(Q, 1R3 ) at least 
for a subsequence. Since F is weakly lower semicontinuous F(u)	infc F. Clearly

ulr = 0 and divu = 0 follows from 

fu divuidx= urn fdivu•i1dx=0 

for all i E Co—( Q), hence it is minimizing. If ü E C is also minimizing, then we must have 
1(u) = 1(ü) and from Theorem 3 we infer H it - Ü II fl 1.p (ft) = 0. This proves Theorem 1.
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2. Korn's inequality in the space H"P (cZ, 1W), 1 <p < 00 

We here assume that ci c W is a domain satisfying the assumptions of [8: Satz 1.5.2]. 

Lemma 1: There exists a positive constant c = c(p, ci) with the following properly: 
If 1 € LP(Q) satisfies f f dx = 0, then we find a vector field U € H"(ci, 1R3 ) such 
that divU = f on ci and IIUIIHI,P(Q) < CIIf[ILP(fI). 

Remark: 1. The strong smoothness properties imposed on Oil enter our argu-
ments only in the proof of Lemma 1. So Theorems 1 - 3 can be extended to precisely 
those class of bounded domains ci C JR3 for which Lemma 1 is true. 2. For balls ci 
we have c = c(p). 

Proof of Lemma 1: We select a sequence of functions f, € C°(Q) such that In 
f in LP(ci). According to [8: Satz 1.5.2] there exists Un € C 1 '°(ci, 111) fl C°'°(ci, Jfl3) 
such that 

div U,, = f, — (f)ri on ci, Unlacz = 0, II VUnIILP(n)	cflf, — (fn)nhILP(ci) 

for a constant c as in Lemma 1. Hence U, E H'P(ci, JR3 ) and [5: Theorems 3.6.2 and 
3.6.3] imply U € H 1,P (ci,1R3 ). From the above estimate we deduce that {U} is a 
Cauchy sequence in 11 1 ' P (ci,1R3 ) and for the limit U we obtain the equation divU = 
f — (f)ç = f . Here and in the following (f)ci = fcif dx denotes the mean value U 

Lemma 2: For ci as above and 1 < q < oo consider a distribution T: C000(Q) —+ lii 
with the property T,i91 T E (ft I (ci))* for i = 1,2,3 where * means the dual space, i.e. 

T((p)I +	IT()l 5 C lI(pIIH'.e()	for all (p € C(ci). 

Then T(ço) = fs, u	dx for a function u E L'(ci), q' = q/(q — 1). 
Proof: Let G denote a subregion of ci with the same regularity properties. For 

e < Eo, eo = dist (G,Oci), we let 4)(z) := e 3 4)() E C'°(Be(0)) for a mollifier 
4) E C°(B 1 (0)). Then, according to [ 31, for € C°(G) we have 

T((p) : T((D * (p) = J (p(y)T((b(x — y))dy and limT(4) * ,) = T() 

(clearly spt(x —+ 4)(x — y)) C ci for arbitrary y E G so that ue(y) : T(4'(x — y)) is 
well defined). We have 

IG O(p . udx' =T(4)e*Oo)I 
 I 

= IT(O(4)e * (p))I = I(OiT)(4)e * 
:5 C 11 4) * P II K I.q 1)	C M p II,i,q	(p € Cg'°(G)). 

For the last inequality one has to observe 

spt(4) * (p) C Ge = {x : dist(x,G) < e}
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which implies Il CI'e * P 11 HI . q(G)	PIH1,q(G2) by a standard property of mollifiers. But 
obviously I(11ff1q(G2)	II'IIH'.e(G)• 

By approximation

G	
<CIIIIH1.e(G) 

extends to all y E HI(G). Consider f E L(G) such that (f)G = 0. Lemma 1 yields 
the existence of a field (' E H t (G , 1R3 ) such that div 0 = land 

I'lIH'.(G)	C IIfIILq(G),	c = c(q, G).


This implies

G	I = VG 

for all I E L(G) with vanishing mean value or 

IG
(Ue -(tz)G) fdx	C IlfIILq(G)	(1 E L(G)) 

(observe that fG(Ue - ( U,-)G) . 1 dx = JG UC (1— (f)G) dx and Ilf - (f)GIILq(G) 
2 IIfIILq(G ) ) . If we take the supremum over all f E L(G) with I IfIIL(G)	1, we have

shown

IILe - (Ue ) G II Lq(G)	c(q,G) < °° 

for all small e > 0, and there exists vG E LQ'(G) such that 

- (u)	V 	in L' (G) as	0.


Now we fix some small ball B(xo) C G and pick 

E C°(BQ (xo), [0,1])	with	JV, dx = 1. 
Q(zo) 

From

	UG T(i)=lim[ue.idx=flm 	1(uE—(ue)G)dx+(ue)G 
ejO JG	 eO  

we deduce the existence of	limejo ( t^, )G with value T(WI) - JG v' p i dx and since 

T() = limTf	(ue—(u)G)dx+(ue)GI
G
 dxl

e10 I. G 	J


holds for arbitrary W E C000 (G) we end up with the representation 

T(o)=Jucdx	where UG=VGL(G) 

being valid on the space C000(G). The inclusions G C G' C Q clearly imply the equality 
uG = u' almost everywhere on G.
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Observe next that 

ivGiijq	+ 1G1 £(G)"' 

c(q,G) + 3(G)1/' { i T 1) + IG	
dx} 

c(q, G) +,C3 (G)' lq'  {c ii 1IH I (B,( z 0 )) +	 iiL(B(xo)) }. 

Here the constant c(q, G) has the form c  with c from Lemma 1 and C denotes the 
bound for T, AT in (ft lQ(Q))*. 

In a final step we replace C by an increasing sequence { G,, } of regular domains 
exhausting Q and define u E L ( l ) through u(x) = u G .(x) if x E G. By construction 
u represents the distribution T, moreover c(q. G) is bounded independent of n so that 
it E L' (Q) on account of the above estimates U 

Now we are in the position to prove versions of Korn's inequality. 

Lemma 3: For 1 < p < oo and Q C 1R3 as in Lemma 1 there exist., a constant 
c(p, l) such that

ikIlH'P(fl)	c(m l ) [il u llL P (Q) + 11E(1)llLP01 

for all  E H"P(,IR3) 

Corollary: Consider the Banach space 

ju EL(1l,1R3 ) : Ejj (u) = (au +8u 1 ) € LP (Q) (i,j,= 123)} 

equipped with the norm

li u ilv = il U ilLP(fZ) + 1lE(u)I1LP(n) 

where 11j (u) is defined in the sense of distributions. Then V = H' ,P (1,1R3 ) and the 
norms ii	liv and	ilH'.'(Il) are equivalent. 

Proof: Consider the continuous embedding I: H"(1, 1R3) u i- u E V and take 
v E V. Then in the weak sense 

t3j49kV& = aEk(V) + ôkE,j(V) - 9Ejk(v)	(i,j,k = 1,2,3). 

Since we assume 1(v) E L(Q , IR3x3 ) the above relation yields ôfOkv E (11P'(cl))* 

(where * indicates the dual space) and v E LP (,1R3 ) implies Ok V' E (H"P'(Il))' so 
that ôkV E LP (Q) by Lemma 2, that is v E H"P (, 1R3 ) which shows surjectivity of the 
embedding Jr . Hence V = H'P(l, 3) and the desired estimate follows from the closed 
graph theorem, i.e. the continiuty of I	• 

We now come to the



196	M. Fuchs 

Proof of Theorem 3: According to Lemma 3 it remains to show 

I V IILP(Il) !^ cIIE(v)IILp() 

for a suitable constant c = c(p,Q,r) and all v E H"(Q,IR3 ) with vir = 0. We 
assume that the statement is wrong, hence there is a sequence {v} in H' P (c?, iN3 ) with 

= 0 such that, without loss of generality, Il VnhIL p (1l) 1 and 1 > n IIE(vn)IILp(Q), 
i.e. e(v) -* 0 in L(Q,iR3x3) as n - oo. Quoting Lemma 3 we have v, -, v in 
H'P(, iN3 ) (at least for a subsequence) with v satisfying II V IILP(cI) = 1, vlr = 0 and 
E(v) = 0 (by the weak lower semicontinuity of II(•)IILP()). On the other hand we 
know H"(Il, iN3 ) C BD(1Z) so that [1: Corollary 1.111 implies 

I W IIL 3 / 2 (fl) 5 cf Ie(w)Idx = 0, 

hence w 0 contradicting II W IILP(SI) = 1 U 

3. The existence of a pressure function 
Suppose that U E C is the minimizer obtained in Theorem 1. For a suitable field 
U E LP'(1 , iR3x3 ) we have 

PL IE(u)I2E(u)(()dx j UVi,bdx 

on the space !I"P(c,iR), especially fn UVt4'dx = 0 if divb = 0. Consider a region G 
as in the proof of Lemma 2; for e < dist (G, O) we define U = * U. Then 

in 
UVbdx 

= f UV((D, * )dx = 0 

for all & E C0°°(G,iR3 ) with div ' =0, since div(*b)= Q. 
Let h denote the unique element in f11,2 (G, iRs ) representing U with respect to the 
Dirichlet scalar product, i.e. 

: IG Vh,Vodx 
= JG U

,^ Vk dx	(VI €	(cHR)) 

Then the above calculations show that this element h is orthogonal to the kernel of 
the operator div : H"2 (G, in3 ) -  V(G), hence there exists f E L2 (G) such that 
—h = Vf, which means 

jUV,bdx 
= IG f . div'dx	(' E C000(G,iR3)). 

Without changing the above identity we may suppse (f )G = 0. Next we select g E 
Cr(G) and choose t' E Cl'o(G,iR3)npPa(r,jn9 such that 

= 0, dIv' = g - (g), IVI LP(G) 15 C 11 - (9)G j1P(G) CP(7).
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Then (f)c 0 yields 

IG JG JG 

= fG	
CU	igllLP(G) 

which implies life IIL'(G) :5 c(p, G) < co independent of e. After passing to the limit 
we find fG E LP'(G) such that f —'ic weakly in LP'(G) and 

ifI 

UVbdx = 
JG	

divdx	for all 0 E C°(G,li?3).	 (1) 

As before let {G} denote an increasing sequence of domains such that U00 I G = ci. 
For each n E .W we take a function f,, satisfying (1) on G = Gn (note that (1) fixes Ic 
only up to an additive constant). Then f, -	an on Gn, hence the definition 

f1 (x)	 for xEGi 
12(x) — al	for xEG2 

f(x)=
—I f(x) - n ak for x E G 

leads to a well defined function I € LP JQ) satisfying (1) on ci, i.e. for all	E

C&'°( Il , 1R3 ). From our construction we deduce 

lIfnhlLP' ( c ) 5 c(p,G,,), 

c(p, Gn) defined in Lemma 1 and bounded independent of n. 
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