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On Stationary Incompressible Norton Fluids
and some
Extensions of Korn’s Inequality
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Abstract. A simple mathematical model for a so-called Norton fluid is given. We study a
variational problem and make use of appropriate versions of Korn’s inequality.
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1. Introduction and statement of the results

We study a variational problem modelling incompressible Norton fluids (see [4, 6]). Let
Q denote a bounded region in JR® and suppose that on some part T’ of 9Q a function
¢ : T — IR® is given. Then we look for a minimizer u : @ — R® of F(u) = [, |E(u)? dz
subject to the side conditions u|; = ¢,divu = 0 on Q. Here £(u) = L(Vu+ (Vu)T) =
(%(3guj + aju‘))lSi'jss is the symmetric part of the velocity gradient Vi and pis a
fixed real number in (1,00). For p = 2 we have a Newtonian fluid and it is well known
(compare [2]) how to handle the above problem with the help of Korn’s mequa.hty On
the other hand the limit case p = 1 corresponds to functionals with linear growth in £(u)
(or more precisely in £P(u) = £(u) — 1 tra(‘c E(u) - 1) arising in plasticity theory and
leads to the study of variational problems in subclasses of the space BD(2) (we refer the
reader to the papers [1] and [7] where one also finds further references). The objective
of our paper now is to give the appropriate settmg for growth rates p € (1,00),p # 2,
which means to prove versions of Korn’s inequality in H!"?(Q, R?).

From now on we assume that Q is a domain of class C*® for some 0 < a < 1 and
that I is an open portion of 82 with H2(T') > 0. Suppose that ¢ € H'?(Q2, R®) is given
such that the class

C= {u € H'"(Q,R®) : u|r = ¢|r,divu = Oa.e.}

is non-empty (here we consider 1 < p < 00).

‘Theorem 1: The variational problem F(u) = [, |E(u)|P dz — min in C admits a
(unique) solution v € C.
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Remark: Of course the existence result of Theorem 1 can be extended to varia-
tional problems of the form

/W(m,g(u)(z))dz — min
Q .

in the class C provided the dissipation function W : 2x {S € R3*3 : § symmetric} — IR
is convex with respect to the second argument and of p growth for some power p € (1,00).
For example a condition of the form A|S|P < W(z,S) < A|S|? (with positive numbers
A and A) would be sufficient. If W is in addition differentiable with respect to S, then
also an analogy of the following Theorem 2 is true.

Theorem 2: There is a function f € Lfo/c(”—})(ﬂ) suck that, for the minimizer
u € C from Theorem 1, we have :

P26y T = wi - fdz
p/0|e<u)| E(w)E()d /Qd v-fd

for all 3 € C§(, R3).
The existence result Theorem 1 follows from the following

Theorem 3 (Korn’s inequality) : There is a constant ¢ = ¢(p, 2, T') with the prop-
erty that

lollarse) < cll€@) s (o)
holds for all v € H'?(Q, R®) such that v|r = 0.

In Section 2 we prove Korn'’s inequality with the help of several lemmas, the Euler
equation will be discussed in Section 3.

Accepting Theorem 3 we select a minimizing sequence {u,} C C and deduce

llun — $llarre) < c[F(un) + F(8)]'/?

so that sup,, |[ua||#1.5(q) < 0o and, for some element u, u, — u in H'?(£, R®) at least
for a subsequence. Since F is weakly lower semicontinuous F(u) < infe F. Clearly
u|r = ¢ and divu = 0 follows from ’

/divu~ndz= lim divu, -ndz =0
Q T Ja

for all n € C§°(R), hence u is minimizing. If & € C is also minimizing, then we must have
&(u) = &(2) and from Theorem 3 we infer |ju — @|| 1.5y = 0. This proves Theorem 1.
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2. Korn’s inequality in the space H'"?(Q2, IR*),1 < p < oo

We here assume that 2 C IR® is a domain satisfying the assumptions of [8: Satz 1.5.2].

Lemma 1: There ezists a positive constant c = c(p, Q) with the following property:
If f € LP() satisfies [ fdz = 0, then we find o vector field U € H''P(Q, R®) such
that divU = f on §? and ”U”Hl,p(n) < C||f”Lp(Q).

Remark: 1. The strong smoothness properties imposed on 0} enter our argu-
ments only in the proof of Lemma 1. So Theorems 1 - 3 can be extended to precisely
those class of bounded domains 2 C IR® for which Lemma 1 is true. 2. For balls
we have ¢ = ¢(p).

Proof of Lemma 1: We select a sequence of functions f, € C§°(§?) such that f, —
f in LP(R)). According to [8: Satz 1.5.2] there exists U, € C**(Q,R*) N C**(Q, R?)
such that

divUn = fn = (fn)a on 2, Unlag =0, |[I[VUallLea) < cllfa — (fa)allir)

for a constant ¢ as in Lemma 1. Hence U, € H'?(, R*) and [5: Theorems 3.6.2 and
3.6.3] imply U, € H"?(Q,R*). From the above estimate we deduce that {U,} is a

Cauchy sequence in fI’"’(Q,R:’) and for. the limit U we obtain the equation divU =
f = (f)a = f. Here and in the following (f)g = faf dz denotes the mean value B

Lemma 2: For 2 as above and 1 < ¢ < 0o consider @ distribution T : C°()) — R
with the property T,8;T € (H9(Q))* for i = 1,2,3 where * means the dual space, i.c.

3
IT(e) + Y IT@ip) < Cllelinnamy  for all ¢ € C(Q).

=1

Then T(p) = [qu-@dz for a function u E LY (Q),¢ =q/(¢g-1).

Proof: Let G denote a subregion of Q with the same regularity properties. For
€ < €9, &g = dist (G,00), wé let ®.(z) := e 3®(2) € C§°(B.(0)) for a mollifier
® € C§°(B;(0)). Then, according to [3], for ¢ € C§°(G) we have

T.(p) =T+ ) = [ pT(®ulz =)y snd BmT(&c )= T()
G el0

(clearly spt(:z: — ®,(z —y)) C Q for arbitrary y € G so that u.(y) := Tz(®.(z - y)) is
well defined). We have

‘/ Oip - ucdz
G

= |T(<Pe * a,'tp)l

= |T(8:(®e * ¢))| = |(BiT)(®e * )|
SC||®e *ollHraa) S Cllellaie) (v € C57(G)).

For the last inequality one has to observe

spt(®. * ) C G, = {z : dist (z,G) < €}
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which implies ||®. *¢||y1.9(6,) < |l@llH19(62.) by a standard property of mollifiers. But
obviously [||[t1.¢(Ga) = llellnre(a)-

By approximation
' / u, - ipdr
G

extends to all ¢ € Ioi""(G). Consider f € LY(G) such that (f)¢ = 0. Lemma 1 yields
the existence of a field ¢ € H'9(G, R?) such that divy = f and

< Cllelluree)

)16y < cllfllLecays c =¢(q,G).

’/ u, - fdz| = ‘/ u, divep dr
G G B

for all f € L9(G) with vanishing mean value or

This implies
< cliflleeer

| [we = o) e <l (1 € @)

(observe that [ (u. — (u.)g) - fdz = Joue - (f = (f)g)dz and If = (flcllesie) <

2{|fllLe¢c))- If we take the supremum over all f € LI(G) with ||f||¢(c) < 1, we have
shown :

llue — (“E»)G”Lc'(c) <¢(g,G) < @

for all small € > 0, and there exists vC € LY (G) such that
ue — (ue)g — v° inLY(G)ase | 0.

Now we fix some small ball B,(z¢) C G and pick

o1 € C(By(za),[0,1])  with ] orde = 1.
. Bo(xo0) : :

From

Ton) =i [ ve-prde =tim{ [ o1 (uc = (w)o) do + ()
el0 Jo : - el0 G
we deduce the existence of (€ := lim,)o (ue)G with value T(¢py) ~ fG vY ., dz and since
7o) =t { [ o+ e = (w)a)ds + (oo [ oz

e]0 G ) G

holds for arbitrary ¢ € C$°(G) we end up with the representation
T(p) = / u® . pdz where u® = v% +¢% € LY(G)
G

being valid on the space C$°(G). The inclusions G C G' C Q clearly imply the equality

'
u® = 4% almost everywhere on G.
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Observe next that
G ’
[lu® e 6y < ||vG||Lq'(c) + €91 £3(G)Me

< o(,G) + ca(c)'/"'{wm» + [ 11 az}
. G
< ¢(¢,G) + LGV {C HerllareB,(z0)) + ”vG”Lc’(G)”‘Pl“L‘(B,(zo))}'

Here the constant c(q,G) has the form ¢C with ¢ from Lemma 1 and C denotes the
bound for T, 8;T in (H'9(Q))".
In a final step we replace G by ‘an increasing sequence {G,} of regular domains

exhausting  and define u € L,OC(Q) through u(z) = u®~(z) if z € G,. By construction
u represents the distribution T', moreover ¢(g, G,) is bounded independent of n so that
u € LY () on account of the above estimates ®

Now we are in the position to prove versions of Korn’s inequality.
Lemma 3: For 1 < p < oo and  C IR® as in Lemma [ there ezists a constant

c(p, ) such that

sy < e(p, Q) [llulle@) + HE@)Lr o))

for allu € H'P(Q, R?).

Corollary: Consider the Banach space
. . | . -
V = {u € LP(Q,R?): &j(u) = E(B‘uj +9;u') € LP(Q) (¢,5,= 1,2,3)}
equipped with the norm

Hullv = ljullzeqay + [1E(w)|Lr(0)

where £;j(u) is defined in the sense of distributions. Then V = H'?(Q,R*) and the

norms || - ||v and || - ||41.5(q) are equivalent.

Proof: Consider the continuous embedding I : H"?(R2,IR®) 3 u +— u € V and take
v € V. Then in the weak sense

ajakvi = 8,5;k(v) + 3}5.‘,‘(1)) - 6.-8,;,(:;) (1,7, =1,2,3).

Since we assume £(v) € LP(Q, R**3) the above relation yields 9; 6kv‘ € (fil""(Q))
(where * indicates the dual space) and v € LP(, IR®) implies dv* € (AP () so
that 9yv' € LP(Q) by Lemma 2, that is v € H!'?(Q, R‘) which shows surjectivity of the
embedding I. Hence V = H l"’(Q IR®) and the desired estimate follows from the closed
graph theorem, i.e. the continiuty of I=! &

We now come to the
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Proof of Theorem 3: According to Lemma 3 it remains to show
lollLecay < cll€)|lLe(a)

for a suitable constant ¢ = ¢(p,,T) and all v € H'?(Q, R®) with v|r = 0. We
assume that the statement is wrong, hence there is a sequence {v,} in H'?(, IR®) with
vn|r = 0 such that, without loss of generality, ||va||zr(0) =1 and 1 > n HE(wa)lLr(a),
ie. &(va) — 0in LP(Q,R**?) as n — co. Quoting Lemma 3 we have v, — v in
H'?(Q, R®) (at least for a subsequence) with v satisfying ||v]|1s(n) = 1, v|r = 0 and
£(v) = 0 (by the weak lower semicontinuity of ||£(-)||s(g)). On the other hand we
know H'?(Q, R®) C BD() so that [1: Corollary 1.11} implies

[[wllLsr2¢qy < C/{; |E(w)|dz = 0,

hence w = 0 contradicting ||w|{zsg) =1 @

3. The existence of a pressure function

Suppose that u € C is the minimizer obtained in Theorem 1. For a suitable field
U € LP (2, R**3) we have :

P26y r = T
P /Q ECP e W) ds = /n UIyd

on the space I;”’”(Q, IR?), especially fn UViydz =0 if divy = 0. Consider a region G
as in the proof of Lemma 2; for ¢ < dist (G, Q) we define U, = &, * U. Then

/U,vwdx=/UV(q>,*w)dx=o
Q Q

forall ¥ € C§°(G, IR*) with divy = 0, since div (@, *+y)) = @, +divy and spt (. *y) C Q.
Let h. denote the unique element in H!?(G, IR®) representing U, with respect to the
Dirichlet scalar product, i.e.. .. L :

(k) = [ VhTwdz = /G Ui (b€ BAQRY).

Then the above calculations show that this element k. is orthogona.i to the kernel of
the operator div : H"?(G,IR®) — L?*(G), hence there exists f. € L%(G) such that
—Ah, = Vf, which means

| /U,Vz/;dz:/f,-divxpdx (% € C2(C, R®)).
G G *

Without cha.nginé the above identity we may supppse (fe)c = 0. Next we select g €
C5°(G) and choose ¢ € C1*(G, R*) n @P+(Q, Rg?such that

Ylog =0, divy =g —(9), |IV¥llLrc) < cllg — (9)allera) < cllglliro)-
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Then (f.)c = 0 yields
Lfe'gd$=Lfe'(g—(g)c)dz=/;f,~div1/)dz

- /G UeVipdz < Ul ey lolliocor

which implies ||fc|| () < ¢(p,G) < oo independent of . After passing to the limit
we find fe € LP'(G) such that f, — fc weakly in LP'(G) and

/UV¢dx=/ fo-divipdz  for all € C(G, R®). (1)
Q G

As before let {Gn} denote an increasing sequence of domains such that |J32, G, = Q.
For each n € IV we take a function f, satisfying (1) on G = G, (note that (1) fixes fg
only up to an additive constant). Then f,4+1 — f. = an on G, hence the definition

hHi(=z) for z € G,
X fo(z) — a ' for z € G,
fz)=1.
fa(z) - ZZ;: ay forzeG,
leads to a well defined function f € L (2) satisfying (1) on R, i.e. for all ¥ €

loc
C§°(9, R®). From our construction we deduce

”fn”LP’(G,,) < c(p,Gn),

¢(p,Gr) defined in Lemma 1 and bounded independent of n.
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