On Stationary Incompressible Norton Fluids and some Extensions of Korn's Inequality

M. Fuchs

Abstract. A simple mathematical model for a so-called Norton fluid is given. We study a variational problem and make use of appropriate versions of Korn's inequality.

Keywords: Non-Newtonian fluids, Korn's inequality AMS subject classification: 49805, 76A05

1. Introduction and statement of the results

We study a variational problem modelling incompressible Norton fluids (see [4, 6]). Let Ω denote a bounded region in \mathbb{R}^3 and suppose that on some part Γ of $\partial\Omega$ a function $\phi: \Gamma \to \mathbb{R}^3$ is given. Then we look for a minimizer $u: \Omega \to \mathbb{R}^3$ of $F(u) = \int_{\Omega} |\mathcal{E}(u)|^p dx$ subject to the side conditions $u|_{\Gamma} = \phi$, div u = 0 on Ω . Here $\mathcal{E}(u) = \frac{1}{2}(\nabla u + (\nabla u)^T) = (\frac{1}{2}(\partial_i u^j + \partial_j u^i))_{1 \leq i, j \leq 3}$ is the symmetric part of the velocity gradient ∇u and p is a fixed real number in $(1, \infty)$. For p = 2 we have a Newtonian fluid and it is well known (compare [2]) how to handle the above problem with the help of Korn's inequality. On the other hand the limit case p = 1 corresponds to functionals with linear growth in $\mathcal{E}(u)$ (or more precisely in $\mathcal{E}^D(u) = \mathcal{E}(u) - \frac{1}{3} \operatorname{trace} \mathcal{E}(u) \cdot 1$) arising in plasticity theory and leads to the study of variational problems in subclasses of the space $BD(\Omega)$ (we refer the reader to the papers [1] and [7] where one also finds further references). The objective of our paper now is to give the appropriate setting for growth rates $p \in (1, \infty), p \neq 2$, which means to prove versions of Korn's inequality in $H^{1,p}(\Omega, \mathbb{R}^3)$.

From now on we assume that Ω is a domain of class $C^{3,\alpha}$ for some $0 < \alpha < 1$ and that Γ is an open portion of $\partial\Omega$ with $\mathcal{H}^2(\Gamma) > 0$. Suppose that $\phi \in H^{1,p}(\Omega, \mathbb{R}^3)$ is given such that the class

$$\mathcal{C} = \left\{ u \in H^{1,p}(\Omega, I\!\!R^3) : u|_{\Gamma} = \phi|_{\Gamma}, \operatorname{div} u = 0 \operatorname{a.e.} \right\}$$

is non-empty (here we consider 1).

Theorem 1: The variational problem $F(u) = \int_{\Omega} |\mathcal{E}(u)|^p dx \to \min$ in C admits a (unique) solution $u \in C$.

ISSN 0232-2064 / \$ 2.50 © Heldermann Verlag Berlin

M. Fuchs: Universität des Saarlandes, FB 9 Mathematik, Bau 27, D - 66041 Saarbrücken

192 M. Fuchs

Remark: Of course the existence result of Theorem 1 can be extended to variational problems of the form

$$\int_{\Omega} W(x,\mathcal{E}(u)(x)) \, dx \ \to \ \min$$

in the class C provided the dissipation function $W: \Omega \times \{S \in \mathbb{R}^{3 \times 3} : S \text{ symmetric}\} \to \mathbb{R}$ is convex with respect to the second argument and of p growth for some power $p \in (1, \infty)$. For example a condition of the form $\lambda |S|^p \leq W(x, S) \leq \Lambda |S|^p$ (with positive numbers λ and Λ) would be sufficient. If W is in addition differentiable with respect to S, then also an analogy of the following Theorem 2 is true.

Theorem 2: There is a function $f \in L^{p/(p-1)}_{loc}(\Omega)$ such that, for the minimizer $u \in C$ from Theorem 1, we have

$$p\int_{\Omega}|\mathcal{E}(u)|^{p-2}\mathcal{E}(u)\mathcal{E}(\psi)\,dx=\int_{\Omega}div\,\psi\cdot f\,dx$$

for all $\psi \in C_0^{\infty}(\Omega, \mathbb{R}^3)$.

The existence result Theorem 1 follows from the following

Theorem 3 (Korn's inequality): There is a constant $c = c(p, \Omega, \Gamma)$ with the property that

 $||v||_{H^{1,p}(\Omega)} \leq c ||\mathcal{E}(v)||_{L^{p}(\Omega)}$

holds for all $v \in H^{1,p}(\Omega, \mathbb{R}^3)$ such that $v|_{\Gamma} = 0$.

In Section 2 we prove Korn's inequality with the help of several lemmas, the Euler equation will be discussed in Section 3.

Accepting Theorem 3 we select a minimizing sequence $\{u_n\} \subset C$ and deduce

$$||u_n - \phi||_{H^{1,p}(\Omega)} \le c [F(u_n) + F(\phi)]^{1/p}$$

so that $\sup_n ||u_n||_{H^{1,p}(\Omega)} < \infty$ and, for some element $u, u_n \to u$ in $H^{1,p}(\Omega, \mathbb{R}^3)$ at least for a subsequence. Since F is weakly lower semicontinuous $F(u) \leq \inf_{\mathcal{C}} F$. Clearly $u|_{\Gamma} = \phi$ and div u = 0 follows from

$$\int_{\Omega} \operatorname{div} u \cdot \eta \, dx = \lim_{n \to \infty} \int_{\Omega} \operatorname{div} u_n \cdot \eta \, dx = 0$$

for all $\eta \in C_0^{\infty}(\Omega)$, hence u is minimizing. If $\tilde{u} \in C$ is also minimizing, then we must have $\mathcal{E}(u) = \mathcal{E}(\tilde{u})$ and from Theorem 3 we infer $||u - \tilde{u}||_{H^{1,p}(\Omega)} = 0$. This proves Theorem 1.

2. Korn's inequality in the space $H^{1,p}(\Omega, \mathbb{R}^3), 1$

We here assume that $\Omega \subset \mathbb{R}^3$ is a domain satisfying the assumptions of [8: Satz I.5.2].

Lemma 1: There exists a positive constant $c = c(p, \Omega)$ with the following property: If $f \in L^p(\Omega)$ satisfies $\int_{\Omega} f \, dx = 0$, then we find a vector field $U \in \mathring{H}^{1,p}(\Omega, \mathbb{R}^3)$ such that div U = f on Ω and $||U||_{H^{1,p}(\Omega)} \leq c ||f||_{L^{p}(\Omega)}$.

Remark: 1. The strong smoothness properties imposed on $\partial\Omega$ enter our arguments only in the proof of Lemma 1. So Theorems 1 - 3 can be extended to precisely those class of bounded domains $\Omega \subset \mathbb{R}^3$ for which Lemma 1 is true. 2. For balls Ω we have c = c(p).

Proof of Lemma 1: We select a sequence of functions $f_n \in C_0^{\infty}(\Omega)$ such that $f_n \to$ f in $L^p(\Omega)$. According to [8: Satz I.5.2] there exists $U_n \in C^{1,\alpha}(\Omega, \mathbb{R}^3) \cap C^{0,\alpha}(\overline{\Omega}, \mathbb{R}^3)$ such that

$$\operatorname{div} U_n = f_n - (f_n)_{\Omega} \quad \text{on } \Omega, \quad U_n|_{\partial\Omega} = 0, \quad ||\nabla U_n||_{L^p(\Omega)} \le c \, ||f_n - (f_n)_{\Omega}||_{L^p(\Omega)}$$

for a constant c as in Lemma 1. Hence $U_n \in H^{1,p}(\Omega, \mathbb{R}^3)$ and [5: Theorems 3.6.2 and 3.6.3] imply $U_n \in \mathring{H}^{1,p}(\Omega, \mathbb{R}^3)$. From the above estimate we deduce that $\{U_n\}$ is a Cauchy sequence in $\mathring{H}^{1,p}(\Omega, \mathbb{R}^3)$ and for the limit U we obtain the equation div U = $f - (f)_{\Omega} = f$. Here and in the following $(f)_{\Omega} = f_{\Omega} f dx$ denotes the mean value

Lemma 2: For Ω as above and $1 < q < \infty$ consider a distribution $T: C_0^{\infty}(\Omega) \to \mathbb{R}$ with the property $T, \partial_i T \in (\mathring{H}^{1,q}(\Omega))^*$ for i = 1, 2, 3 where * means the dual space, i.e.

$$|T(\varphi)| + \sum_{i=1}^{3} |T(\partial_{i}\varphi)| \leq C \, ||\varphi||_{H^{1,q}(\Omega)} \quad \text{for all } \varphi \in C_{0}^{\infty}(\Omega).$$

Then $T(\varphi) = \int_{\Omega} u \cdot \varphi \, dx$ for a function $u \in L^{q'}(\Omega), q' = q/(q-1)$.

Proof: Let G denote a subregion of Ω with the same regularity properties. For $\varepsilon < \varepsilon_0, \ \varepsilon_0 = \text{dist} (G, \partial \Omega), \text{ we let } \Phi_{\varepsilon}(z) := \varepsilon^{-3} \Phi(\frac{z}{\varepsilon}) \in C_0^{\infty}(B_{\varepsilon}(0)) \text{ for a mollifier}$ $\Phi \in C_0^{\infty}(B_1(0))$. Then, according to [3], for $\varphi \in C_0^{\infty}(\check{G})$ we have

$$T_{\epsilon}(\varphi) := T(\Phi_{\epsilon} * \varphi) = \int_{G} \varphi(y) T_{x}(\Phi_{\epsilon}(x-y)) dy \quad \text{and} \quad \lim_{\epsilon \downarrow 0} T(\Phi_{\epsilon} * \varphi) = T(\varphi)$$

(clearly spt $(x \mapsto \Phi_{\ell}(x-y)) \subset \Omega$ for arbitrary $y \in G$ so that $u_{\ell}(y) := T_{\ell}(\Phi_{\ell}(x-y))$ is well defined). We have

$$\begin{aligned} \left| \int_{G} \partial_{i} \varphi \cdot u_{\epsilon} \, dx \right| &= \left| T(\Phi_{\epsilon} * \partial_{i} \varphi) \right| \\ &= \left| T(\partial_{i}(\Phi_{\epsilon} * \varphi)) \right| = \left| (\partial_{i} T)(\Phi_{\epsilon} * \varphi) \right| \\ &\leq C \left| |\Phi_{\epsilon} * \varphi| \right|_{H^{1,q}(\Omega)} \leq C \left| |\varphi| \right|_{H^{1,q}(G)} \qquad (\varphi \in C_{0}^{\infty}(G)). \end{aligned}$$

For the last inequality one has to observe

$$\operatorname{spt}(\Phi_{\varepsilon} * \varphi) \subset G_{\varepsilon} = \{x : \operatorname{dist}(x, G) < \varepsilon\}$$

193

194 M. Fuchs

which implies $||\Phi_{\epsilon} * \varphi||_{H^{1,q}(G_{\epsilon})} \leq ||\varphi||_{H^{1,q}(G_{2\epsilon})}$ by a standard property of mollifiers. But obviously $||\varphi||_{H^{1,q}(G_{2\epsilon})} = ||\varphi||_{H^{1,q}(G)}$.

By approximation

$$\left|\int_{G} u_{\varepsilon} \cdot \partial_{i} \varphi \, dx\right| \leq C \, ||\varphi||_{H^{1,q}(G)}$$

extends to all $\varphi \in \mathring{H}^{1,q}(G)$. Consider $f \in L^q(G)$ such that $(f)_G = 0$. Lemma 1 yields the existence of a field $\psi \in \mathring{H}^{1,q}(G, \mathbb{R}^3)$ such that div $\psi = f$ and

$$||\psi||_{H^{1,q}(G)} \leq c ||f||_{L^q(G)}, \qquad c = c(q,G).$$

This implies

$$\left|\int_{G} u_{\epsilon} \cdot f \, dx\right| = \left|\int_{G} u_{\epsilon} \operatorname{div} \psi \, dx\right| \le c \, ||f||_{L^{q}(G)}$$

for all $f \in L^q(G)$ with vanishing mean value or

$$\left|\int_{G} (u_{\varepsilon} - (u_{\varepsilon})_{G}) \cdot f \, dx\right| \leq c \, ||f||_{L^{q}(G)} \qquad (f \in L^{q}(G))$$

(observe that $\int_G (u_{\epsilon} - (u_{\epsilon})_G) \cdot f \, dx = \int_G u_{\epsilon} \cdot (f - (f)_G) \, dx$ and $||f - (f)_G||_{L^q(G)} \leq 2||f||_{L^q(G)}$). If we take the supremum over all $f \in L^q(G)$ with $||f||_{L^q(G)} \leq 1$, we have shown

 $||u_{\varepsilon}-(u_{\varepsilon})_G||_{L^{q'}(G)} \leq c(q,G) < \infty$

for all small $\varepsilon > 0$, and there exists $v^G \in L^{q'}(G)$ such that

$$u_{\varepsilon} - (u_{\varepsilon})_G \to v^G$$
 in $L^{q'}(G)$ as $\varepsilon \downarrow 0$.

Now we fix some small ball $B_{\varrho}(x_0) \subset G$ and pick

$$\varphi_1 \in C_0^\infty(B_{\varrho}(x_0), [0, 1])$$
 with $\int_{B_{\varrho}(x_0)} \varphi_1 dx = 1.$

From

$$T(\varphi_1) = \lim_{\epsilon \downarrow 0} \int_G u_{\epsilon} \cdot \varphi_1 \, dx = \lim_{\epsilon \downarrow 0} \left\{ \int_G \varphi_1 \cdot (u_{\epsilon} - (u_{\epsilon})_G) \, dx + (u_{\epsilon})_G \right\}$$

we deduce the existence of $\xi^G := \lim_{e \downarrow 0} (u_e)_G$ with value $T(\varphi_1) - \int_G v^G \cdot \varphi_1 \, dx$ and since

$$T(\varphi) = \lim_{\epsilon \downarrow 0} \left\{ \int_G \varphi \cdot (u_{\epsilon} - (u_{\epsilon})_G) dx + (u_{\epsilon})_G \int_G \varphi dx \right\}$$

holds for arbitrary $\varphi \in C_0^\infty(G)$ we end up with the representation

$$T(\varphi) = \int_G u^G \cdot \varphi \, dx$$
 where $u^G = v^G + \xi^G \in L^{q'}(G)$

being valid on the space $C_0^{\infty}(G)$. The inclusions $G \subset G' \subset \Omega$ clearly imply the equality $u^G = u^{G'}$ almost everywhere on G.

Observe next that

$$\begin{aligned} ||u^{G}||_{L^{q'}(G)} &\leq ||v^{G}||_{L^{q'}(G)} + |\xi^{G}| \mathcal{L}^{3}(G)^{1/q'} \\ &\leq c(q,G) + \mathcal{L}^{3}(G)^{1/q'} \left\{ |T(\varphi_{1})| + \int_{G} |v^{G}| \cdot \varphi_{1} \, dx \right\} \\ &\leq c(q,G) + \mathcal{L}^{3}(G)^{1/q'} \left\{ C \, ||\varphi_{1}||_{H^{1,q}(B_{\theta}(z_{0}))} + ||v^{G}||_{L^{q'}(G)} ||\varphi_{1}||_{L^{q}(B_{\theta}(z_{0}))} \right\}. \end{aligned}$$

Here the constant c(q,G) has the form cC with c from Lemma 1 and C denotes the bound for $T, \partial_i T$ in $(\mathring{H}^{1,q}(\Omega))^*$.

In a final step we replace G by an increasing sequence $\{G_n\}$ of regular domains exhausting Ω and define $u \in L^{q'}_{loc}(\Omega)$ through $u(x) = u^{G_n}(x)$ if $x \in G_n$. By construction u represents the distribution T, moreover $c(q, G_n)$ is bounded independent of n so that $u \in L^{q'}(\Omega)$ on account of the above estimates

Now we are in the position to prove versions of Korn's inequality.

Lemma 3: For $1 and <math>\Omega \subset \mathbb{R}^3$ as in Lemma 1 there exists a constant $c(p,\Omega)$ such that

$$||u||_{H^{1,p}(\Omega)} \leq c(p,\Omega) \left[||u||_{L^{p}(\Omega)} + ||\mathcal{E}(u)||_{L^{p}(\Omega)} \right]$$

for all $u \in H^{1,p}(\Omega, \mathbb{R}^3)$.

Corollary: Consider the Banach space

$$V = \left\{ u \in L^p(\Omega, I\!\!R^3) : \mathcal{E}_{ij}(u) = \frac{1}{2} \left(\partial_i u^j + \partial_j u^i \right) \in L^p(\Omega) \ (i, j, = 1, 2, 3) \right\}$$

equipped with the norm

$$||u||_V = ||u||_{L^p(\Omega)} + ||\mathcal{E}(u)||_{L^p(\Omega)}$$

where $\mathcal{E}_{ij}(u)$ is defined in the sense of distributions. Then $V = H^{1,p}(\Omega, \mathbb{R}^3)$ and the norms $|| \cdot ||_V$ and $|| \cdot ||_{H^{1,p}(\Omega)}$ are equivalent.

Proof: Consider the continuous embedding $I: H^{1,p}(\Omega, \mathbb{R}^3) \ni u \mapsto u \in V$ and take $v \in V$. Then in the weak sense

$$\partial_j \partial_k v^i = \partial_j \mathcal{E}_{ik}(v) + \partial_k \mathcal{E}_{ij}(v) - \partial_i \mathcal{E}_{jk}(v) \qquad (i, j, k = 1, 2, 3).$$

Since we assume $\mathcal{E}(v) \in L^p(\Omega, \mathbb{R}^{3\times 3})$ the above relation yields $\partial_j \partial_k v^i \in (\mathring{H}^{1,p'}(\Omega))^*$ (where * indicates the dual space) and $v \in L^p(\Omega, \mathbb{R}^3)$ implies $\partial_k v^i \in (\mathring{H}^{1,p'}(\Omega))^*$ so that $\partial_k v^i \in L^p(\Omega)$ by Lemma 2, that is $v \in H^{1,p}(\Omega, \mathbb{R}^3)$ which shows surjectivity of the embedding *I*. Hence $V = H^{1,p}(\Omega, \mathbb{R}^3)$ and the desired estimate follows from the closed graph theorem, i.e. the continuity of I^{-1}

We now come to the

Proof of Theorem 3: According to Lemma 3 it remains to show

$$||v||_{L^{p}(\Omega)} \leq c \, ||\mathcal{E}(v)||_{L^{p}(\Omega)}$$

for a suitable constant $c = c(p, \Omega, \Gamma)$ and all $v \in H^{1,p}(\Omega, \mathbb{R}^3)$ with $v|_{\Gamma} = 0$. We assume that the statement is wrong, hence there is a sequence $\{v_n\}$ in $H^{1,p}(\Omega, \mathbb{R}^3)$ with $v_n|_{\Gamma} = 0$ such that, without loss of generality, $||v_n||_{L^p(\Omega)} = 1$ and $1 > n ||\mathcal{E}(v_n)||_{L^p(\Omega)}$, i.e. $\mathcal{E}(v_n) \to 0$ in $L^p(\Omega, \mathbb{R}^{3\times 3})$ as $n \to \infty$. Quoting Lemma 3 we have $v_n \to v$ in $H^{1,p}(\Omega, \mathbb{R}^3)$ (at least for a subsequence) with v satisfying $||v||_{L^p(\Omega)} = 1$, $v|_{\Gamma} = 0$ and $\mathcal{E}(v) = 0$ (by the weak lower semicontinuity of $||\mathcal{E}(\cdot)||_{L^p(\Omega)}$). On the other hand we know $H^{1,p}(\Omega, \mathbb{R}^3) \subset BD(\Omega)$ so that [1: Corollary 1.11] implies

$$||w||_{L^{3/2}(\Omega)} \leq c \int_{\Omega} |\mathcal{E}(w)| \, dx = 0,$$

hence w = 0 contradicting $||w||_{L^p(\Omega)} = 1$

3. The existence of a pressure function

Suppose that $u \in C$ is the minimizer obtained in Theorem 1. For a suitable field $U \in L^{p'}(\Omega, \mathbb{R}^{3\times 3})$ we have

$$p\int_{\Omega} |\mathcal{E}(u)|^{p-2} \mathcal{E}(u) \mathcal{E}(\psi) \, dx = \int_{\Omega} U \nabla \psi \, dx$$

on the space $\mathring{H}^{1,p}(\Omega, \mathbb{R}^3)$, especially $\int_{\Omega} U \nabla \psi \, dx = 0$ if div $\psi = 0$. Consider a region G as in the proof of Lemma 2; for $\varepsilon < \operatorname{dist}(G, \partial \Omega)$ we define $U_{\varepsilon} = \Phi_{\varepsilon} * U$. Then

$$\int_{\Omega} U_{\varepsilon} \nabla \psi \, dx = \int_{\Omega} U \nabla (\Phi_{\varepsilon} * \psi) \, dx = 0$$

for all $\psi \in C_0^{\infty}(G, \mathbb{R}^3)$ with div $\psi = 0$, since div $(\Phi_{\varepsilon} * \psi) = \Phi_{\varepsilon} * \operatorname{div} \psi$ and spt $(\Phi_{\varepsilon} * \psi) \subset \Omega$. Let h_{ε} denote the unique element in $\mathring{H}^{1,2}(G, \mathbb{R}^3)$ representing U_{ε} with respect to the Dirichlet scalar product, i.e.

$$\langle h_{\boldsymbol{\ell}},\psi\rangle := \int_{G} \nabla h_{\boldsymbol{\ell}} \nabla \psi \, dx = \int_{G} U_{\boldsymbol{\ell}} \nabla \psi \, dx \qquad (\psi \in \mathring{H}^{1,2}(\Omega, I\!\!R^3)).$$

Then the above calculations show that this element h_{ε} is orthogonal to the kernel of the operator div : $\mathring{H}^{1,2}(G,\mathbb{R}^3) \to L^2(G)$, hence there exists $f_{\varepsilon} \in L^2(G)$ such that $-\Delta h_{\varepsilon} = \nabla f_{\varepsilon}$ which means

$$\int_G U_{\varepsilon} \nabla \psi \, dx = \int_G f_{\varepsilon} \cdot \operatorname{div} \psi \, dx \qquad (\psi \in C_0^{\infty}(G, \mathbb{R}^3))$$

Without changing the above identity we may suppose $(f_{\varepsilon})_G = 0$. Next we select $g \in C_0^{\infty}(G)$ and choose $\psi \in C^{1,\alpha}(G, \mathbb{R}^3) \cap \Omega^{\rho,\alpha}(\overline{\Omega}, \mathbb{R}^3)$ such that

$$\psi|_{\partial G} = 0, \quad \operatorname{div} \psi = g - (g)_G, \quad ||\nabla \psi||_{L^p(G)} \le c \, ||g - (g)_G||_{L^p(G)} \le c \, ||g||_{L^p(G)}.$$

Then $(f_{\epsilon})_G = 0$ yields

$$\int_G f_{\epsilon} \cdot g \, dx = \int_G f_{\epsilon} \cdot (g - (g)_G) \, dx = \int_G f_{\epsilon} \cdot \operatorname{div} \psi \, dx$$
$$= \int_G U_{\epsilon} \nabla \psi \, dx \le c \, ||U||_{L^{p'}(\Omega)} \, ||g||_{L^p(G)}$$

which implies $||f_{\epsilon}||_{L^{p'}(G)} \leq c(p,G) < \infty$ independent of ϵ . After passing to the limit we find $f_G \in L^{p'}(G)$ such that $f_{\epsilon} \to f_G$ weakly in $L^{p'}(G)$ and

$$\int_{\Omega} U\nabla\psi \, dx = \int_{G} f_{G} \cdot \operatorname{div}\psi \, dx \quad \text{for all } \psi \in C_{0}^{\infty}(G, \mathbb{R}^{3}).$$
(1)

As before let $\{G_n\}$ denote an increasing sequence of domains such that $\bigcup_{n=1}^{\infty} G_n = \Omega$. For each $n \in \mathbb{N}$ we take a function f_n satisfying (1) on $G = G_n$ (note that (1) fixes f_G only up to an additive constant). Then $f_{n+1} - f_n \equiv a_n$ on G_n , hence the definition

$$f(x) = \begin{cases} f_1(x) & \text{for } x \in G_1 \\ f_2(x) - a_1 & \text{for } x \in G_2 \\ \vdots \\ f_n(x) - \sum_{k=1}^{n-1} a_k & \text{for } x \in G_n \end{cases}$$

leads to a well defined function $f \in L^{p'}_{loc}(\Omega)$ satisfying (1) on Ω , i.e. for all $\psi \in C_0^{\infty}(\Omega, \mathbb{R}^3)$. From our construction we deduce

$$||f_n||_{L^{p'}(G_n)} \leq c(p,G_n),$$

 $c(p, G_n)$ defined in Lemma 1 and bounded independent of n.

References

- Anzellotti, G. and M. Giaquinta: Existence of the displacement field for an elasto-plastic body subject to Hencky's law and Von Mises yield condition. Manus. Math. 32 (1980), 101 - 136.
- [2] Duvaut, G. and J. L. Lions: Inequalities in Mechanics and Physics (Springer Grundlehren: Vol. 219). Berlin - Heidelberg - New York: Springer-Verlag 1976.
- Federer, H.: Geometric Measure Theory (Springer Grundlehren: Vol. 153). Berlin -Heidelberg - New York: Springer-Verlag 1969.
- [4] Tallec, L.: Numerical Analysis of Viscoplastic Problems. Masson: Springer-Verlag 1990.
- [5] Morrey jr., C. B.: Multiple Integrals in the Calculus of Variations (Springer Grundlehren: Vol. 130). Berlin - Heidelberg - New York: Springer-Verlag 1966.
- [6] Norton, M.: The Creep of Steel at High Temperature. New York: Mac-Graw Hill 1929.
- [7] Temam, M. and G. Strang: Functions of bounded deformation. Ann. Rat. Mech. Anal. 75 (1980), 7 - 21.
- [8] Wahl, W. von: Vorlesung über das Außenraumproblem für die instationären Gleichungen von Navier Stokes. Vorlesungsreihe SFB 256 Bonn No. 11 (1989), 1 - 371.

Received 18.05.1993