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Perron's Method and Barrier Functions 
for the Viscosity Solutions of the Dirichiet Problem 
for some Non-Linear Partial Differential Equations 
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Abstract. The Dirichlet problem for some non-linear partial differential equations via Perron's 
method is studied in the viscosity set up, by considering two families of functions, instead of 
one, as considered by others before. The notion of barrier at a boundary point is introduced 
to study the regularity of boundary points. Barriers for some non-linear operators are also 
constructed. 
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1. Introduction 

In this paper, we try to adopt the classical Perron method of solutions of the Dirichlet 
problem for the Laplacian to the case of some non-linear partial differential equations 
and discuss the regularity of the boundary points using barrier functions. 

Perron's approach in the viscosity set up was studied earlier by Ishii [2] and several 
others (see the references in [5]). In these works, only one family of functions was used 
to get a solution. We follow here fully Perron's idea of introducing two families of 
functions to study the existence problem and the barrier functions for the boundary 
behaviour of the solutions. 

2. Basic definitions 

Let R be a bounded open set in 1W' and F: Cl x 11? x 1W' x M. -+ JR a map, where 
M is the space of all n x n real symmetric matrices. We study the solutions of the 
non-linear partial differential equation 

F (x, u(x), Du(x), D2 u(x)) = 0	 (2.1) 

in the viscosity sense. 
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Definition 1: An extended real-valued function u on ci is said to be a viscosity 
supersoluiwn (respectively, a viscosity subs olution) of equation F = 0 if, for all ' E 
C2 (ci), u - has a local minimum (maximum) at a point x 0 E ci implies 

F(xo,u(xo),D(xo),D2 (xo))	0 

respectively
F(xo,u(xo),D(xo),D2(xo)) > 0. 

If the function u is both a super- and subsolution of equation F = 0, then it is said to 
be a viscosity solution. All the solutions, super- and subsolutions considered here are 
only in the viscosity sense. 

Let f be a real-valued function defined on Oci. We define the Perron families of 
functions j and Wj as

v bounded below lower semi-continuous supersolu- 

Iv
	tion such that limiuf v(y) '^>_ 1(X) V X E Oci 

and
u bounded above upper semi-continuous subsolu- lu 
tion such that limsup u(y) :5 1(X) V X E Oci 

y-.X,yEfl 

Define
H1 = inf v	and	H1 = sup u vE4'j	 - 

with the convention that the infimum and supremum over a void family is +00 and -00, 
respectively. 

3. Existence of solutions 

Let F be degenerate elliptic: 

F(x,r,p,X + Y) <F(x,r,p,X)	 (3.1) 

for all (x,r,p,X) E ci x JR x 1W' x M and V > 0, symmetric. Let us assume further 
that

F(x, 0,0,0) = 0	 (3.2) 
for all x E ci and F is monotone non-decreasing in the sense that 

F(x,t,p,A)>F(z,s,p,A)	 (3.3) 

- 

for all (x,p,A) E cix Rn x Mn and i,s €111 such that t > s.
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Remark 1: Conditions (3.2) and (3.3) together imply that any positive real number 
is a positive supersolution and any negative real number is a negative subsolution of 
equation F 0. Also, it can be easily proved using condition (3.3) that if v is a 
supersolution and u a subsolution of equation F = 0, then so is v + e and u - 
respectively, for all e > 0. 

We shall assume further that the map F has properties such that the following 
comparison theorem holds: 

If u is an upper semi-continuous subsolution bounded from above and v a lower 
semi-continuous supersolufton bounded from below of equation (2.1) such that 

limsup{u(x) - V(yn)} < M 

where Zn,Yn E ljx, - y, I —+0 and dist(x,O) --+0, then 

u(x) - t(x) <M	for all x E 

Several sets of conditions on the map F under which the above comparison property 
holds, appear in [4]. 

Let us assume that f is a bounded function defined on 8. Then, by using similar 
arguments as in [2], it can be proved that both H j and jj1 are solutions of the equation 
F = 0. But, they need not be continuous. By the comparison theorem, it follows that 
every u E 'I', is less than or equal toevery v E 4 j . Hence H f <H 1 on 

Definition 2 (see [6]): The function f is said to be semi-resoluisve if H1 = H,. If 
f is seii-resolutive, then the above common value is denoted by Hj. 

Definition 3: The function f is said to be resolutive if f is semi-resolutive and H1 
is continuous. 

Theorem 1: If {f,,} is a sequence of semi-resolutive (resp. resolutive) functions 
converging to f uniformly on 3l, then this limit function f is also semi-resolutive (reip. 
resoluiive) and Hj,, -+ Hj uniformly on 

For the proof of this theorem, we need the following lemma which can be easily 
proved. 

Lemma 1: For all e > 0, the inequalities H,+ :5 H, + e and H,	1 - e are 
true.

Proof of Theorem 1: Since I,, converges to f uniformly on 81, we have, for any 
e > 0, the existence of an N(e) E 11V such that 

f(X) — e < 1(X) < f(X)+ e	forXE Of and n N(e) 

Thus H 1	:5 lli, S H, :5 H,+. Using Lemmal, it follows that 

^ H, <H, + .	 (3.4) 

Since f,, are semi-resolutive for all n, it follows that IH, -	5 2e for all e > 0. This 
implies that H1 = 114, proving that jr is semi-resolutive •
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From inequalities (3.4) we also get the estimate IH, -Hi I <C on 11 for all n N(E). 
This implies that the sequence {H1 ) converges to Hj uniformly on Q. Thus, if the 
functions f,, are resolutive for all n, so is also the function f. 

Theorem 2: Let f E C(O1). Suppose f admits a continuous extension f Q -' JR 
being a supersolution (reip. subsolution) of equation F = 0. Then f is semi-resolutive 
and H1 is upper semi-continuous (reip. lower semi-continuous). 

Proof: We shall prove the theorem assuming that the map 1 is a supersolution. 
The proof when 11 is a subsolution is analogous.	 - 

Obviously, fi € j and Hj :5 fl . As f is continuous, (H1 )' S Ii . Thus, for 
X E Ol,

	

urn sup (H,)'(x) :5 lim sup fi (x) = f(X).	(3.5) 
z-.X,zEfl	x-.X,xEfl 

This implies that (17f )* E 'I'j. Hence, ff1 ^ (H 1 )'. Thus, (Hi )' .^ H ^! 1j, ^! (He)', 
implying that )Tj = jj = (Hj )'. Hence the function f is seii-resolutive and H1 is 
upper semi-continuous I 

Corollary (see [3: Theorem 3.2]): Let the function f € C(Ol) admit two con-
tinuous extensions f and f2 such that fi is a subs olution and 12 is a supersolution 
of equation F = 0. Then f is resoluiive and Hj(x) -p 1(X) for all X € OQ as 
x - X,x €Q. 

Proof: It is immediate from Theorem 2 and the inequalities lim sup X VEO Hj(y) 
S f(X) 15 liminf_x , Hj(y) U 

Remark 2: When the function f admits a continuous extension fj  
being a supersolution (resp. subsolution) of equation F = 0, then we get an upper 
semi-continuous (resp. lower semi-continuous) solution in Il of the Dirichiet problem 

F(x,u, Du, D2 u)= 0 in 11,	u = f on Of?	 (3.6) 

by defining Hj(X) = f(X) on Ol. The upper semi-continuity of this solution at the 
boundary points follows from (3.5) and (3.6). 

Application: Consider a degenerate elliptic operator F: Q x M -' JR satisfying 
conditions (3.1) and (3.2). Then, if A is positive-definite, 

F(x,A)<0 for 
all 

x€1 

as F(x, 0) = 0. Thus, if P is a C2 convex function on N, where Cl is convex, then 
F(x,D2 4(x)) 0, implying that W is a subsolution of equation F = 0. If  = W on 
OC1, then by Theorem 2 f is semi-resolutive and H, is lower semi-continuous. 

As every convex function 'I' is a uniform limit of C2 convex functions, it follows 
from Theorem 1 that if f = 'I on OC1, then f is seii-resolutive and H1 is lower semi-
continuous.
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4. Regular points and barrier functions 

Let F be as in (2.1) and the function f be semi-resolutive. Now, we seek conditions on 
Q so that if f is continuous on an, then Hj(y) — 1(X) as y € Q —i X for all X E an 
To this end, we define the notion of a barrier at a boundary point. 

Definition 4: Let Xo € an. A pair of functions (v, u) is called a barrier at X0 if 
the following conditions are satisfied: 

(i) v 0 and Av is a lower semi-continuous supersolution of F = 0 for all A > 0. 
(ii) u 0 and Au is an upper semi-continuous subsolution of F = 0 for all A > 0. 
(iii) limvEn,y...xo v(y) = 0 = lim,_..x0 u(y) 
(iv) liminf€0,...x v(y) > 0 >	 u(y) for all X € OQ,X 0 Xo. 

Definition 5: A point X0 E aci is said to be regular if there is a barrier at X0. 

From now onwards, we shall assume that F is a mapping from Q x 1W' x M to lit 
This will ensure that if v is a super- or subsolution of equation F = 0, then so is v + c 
for every real number c. 

Theorem 3: Let a barrier exist at Xo € ÔQ and let f be a bounded function 
on OQ which is continuous at Xo. If f is semi-resolutive, then Hj(y) —+ f(Xo) as 
y - Xo,y EQ. 

Proof: The idea is to construct, for all E > 0, a supersolution wC E j and a 
subsolution w	'I' j such that 

lim sup we (y) 5 1(Xo) + e	and	liminf w, (y) ^! 1(Xo) 
V—XO,PEfl	 y—Xo,gEfl 

Since f is continuous at Xo, given e > 0, there exists a 5 > 0 such that If(X )—f(Xo)I < 

e for all X with IX — XoI <6. Let (v, u) be a barrier at X0 . The function g : an --+ JR 
defined as

g(X)= liminf v(y) 
y—.XyEfl 

is lower semi-continuous and therefore attains its minimum m 1 on the compact set 

K =OQfl{X: IX — XoI > 61. 

As g(X) >0 for X E K, m 1 > 0. Let M > supX E80 If 	Define 

= 1(X0) + e +(M— 1(X0)).

MI 

Then wC is a supersolution. 
Let us prove that wC € 4's. Let X € OQ be such that IX - Xo :5 6. Then 

liminf w e (y) > 1(X0) + e -a 1(X). v-.X,yEfl 

Let X € OQ be such that IX — XoI > 6. Then 

liminf wt(y) ^! 1(X0) + e + (M — f(X0)) 
y—X,VEO



204	M. Ramaswamy and S. Ramaswamy 

Thus, if IX - Xo I > 6, then

liminf we(y) > M+e >1(X). p–.X,yEfl 

Hence w E	Therefore, Hj	e and 

urn sup Hj(y) :5 lim sup W, (Y) = 1(X0) + C. 
y–.Xo,yEfl	y—Xo,yEfl 

As e > 0 is arbitrary,
urn sup Hj(y) :5 1(Xo). 

p–Xo,VEi1 

Let in <infZE 1(X) and m2 <0 be such that 

urn sup u(y) <m2 
p–.X,yEfl 

for all X with IX - Xo I > 6. Define 

w= f(X0)_e— --(f(Xo)—m). 
M2 

Then We is a subsolution and let us prove that w € W1. 
Let X € all be such that IX - X0 I < 6. By the choice of in and m2, 

c." ^f(Xo) — c	and	lim sup w(y):5f(Xo)—e<f(X). 

Let X € OQ be such that IX - X0 ^! 6. Let A = —1/rn2 . Then A >0 and 

lim sup	y) = 1(Xo) - e + A(f(X0 ) - m) lirn sup u(y) 
y–.X,yEO

	

	 p–.X,yEfl


< 1(Xo) - E + A(f(X0 ) - m)m2 
< 1(X0) - e + (-1/m2)(f(Xo) - m)m2 
=f(Xo)—e—f(Xo)+m 
= m - e 

<1(X). 

Hence w E W 1 and Ii, ^: w. Therefore 

liminf	(y) > liminf We(Y) = 1(X0) - e. p-.Xo,yEfl	y—Xo,yEQ 

As e >0 is arbitrary, lirninf...x0€0 H1(y) ^! 1(X0 ). Thus, 

1(Xo) 5 limiuf Hj (y) ^ lim sup H1 (y) :51(X0), v-X0,yEfl	y-.Xo,YEQ 

implying limV...x0 , VEQ H1(y) = 1(X0) U



Perron's Method and Barrier Functions	205 

5. Barrier functions for some 1l and some operators 

In this section, we shall construct barriers for some operators F and some domains Q.

Example 1: Consider the quasilinear degenerate elliptic equations of the type 

F(x, Du, D2 u) = —Tr(a(Du)D 2 u) = 0	in fj	(5.1) 
where a E C(JR", Mn ). This type is considered in [4]. We shall construt a barrier at 
every boundary point of a ball B(y; r) C 1. 

Let 11(x) = Ix - y12 - r2 and d(x) = IX - X01 2 where Xo E OB(y;r). Let 

v = d(x) - I'(x). 

Then D2 (AV) = 0 for all A > 0. Hence A  is a solution in B(y;r) of equation (5.1). 
Further, v 0 and v(Xo) = 0,v(X) >0 for points X E OB(y;r) with X i4 Xo. 

Consider u = iIs(x) - d(x) = —v. Then Au is a solution in B(y; r) of equation (5.1). 
Further u 0,u(Xo) =- 0 and u(X) <0 for points X E OB(y;r) with X 36 X0 . Hence 
(v, u) is a barrier at X0 . Thus, every point on OB(y;r) is regular. 

Example 2: Let il be an open set in IR" (n > 2). The set ci is said to satisfy an 
exterior sphere condition at Xo € Oil if there exists an R > 0 such that B(y; R) fl N = 
{X0 }. We shall construct a barrier at such a point X0 for equations of type (5.1) for 
some suitable function a. 

Without loss of generality, let us assume that y = 0. We define on il, for all a> 0, 
the function v(x) = 11Re - 1/IxI a . Then we have, for all x E il and A E IR, 

Au	 Au . - Au(o+2) B(x) D(Av4(x) =	 and	D2(Av(,)(x) 
= I x V 2	IzI4 

where In is the n x n identity matrix and B(x) is the positive definite matrix [b11 ] with 
bii = z,x1 . Let us assume that, for some 1 € 1T'J, 

a(ke) = k21a(e)	for all k > 0.	 (5.2) 

Then it is seen easily that 

F(x,D(Av),D2(Av4 -
	( Aa)2) -
 1x1 21 +2)-4-o-4 {(u + 2)((x)x,x) - IxI2Tr(a(x))} 

Let us assume further that

inf{(a(x)x,x)) =m>0.	 (5.3) 
z EQ 

This is always verified if a(x) is a positive definite matrix, as d(0, il) > 0. 
Let M = sup	Jx1 2 Tr(a(x)). Then, if A > 0, 

F (x, D(Av0 )(x), D2(Av4(x))> (Au)2+1	{(u + 2)m - M). -
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Hence, if a is such that
(a + 2)m - M > 0,	 (5.4) 

then Av, is a supersolution of equation (5.1) for all A 2 0. Further v(,(Xo) = O,v > 
0,v > 0 on Ofl\{Xo}. Similarly, —Av g,, is a subsolution of equation (5.1) for all A > 
0, —v(Xo) = 0, —v., 0 and —va <0 on &l\(X0 ). Thus, (va, —va) is a barrier at Xo. 

Now, we shall give a particular a E C(1RY',M), satisfying (5.2) and (5.3). For 
example, let a11 (e) =CiCj as considered in [1]. This equation arises as the limiting 
equation for the p-Laplacian as p —+ oo and is important in the study of plastic torsion. 
Then, relation (5.2) holds with 1 = 1. Further, 

(a(x)z,x) =	= xI > R4	on 

Thus, m = R4 in condition (5.3) and

(Aa)3	 ((,\O,) 3
(a + 

= IxI34	
1). 

	

F(x,D(Ava)(x),D2(Av4	
— 

(z)) - IxI3+8 {(o+2)IxI —	______ 

Hence, (Va — Va) is a barrier for any a > 0. 

Concluding Remark Depending on the function F and the nature of comparison 
theorems available, one can modify the families (bj and 'I'j. For example one can 
consider

	

Lip
	or	el',, J,LP) 

where

Lip	J	v a locally Lipschitz supersolution such - — V that liminf v(y) 2 1(X) V X E oci 
I.	 y-.X,yE( 

and

q,L ip	f	u a locally Lipchitz subsolution such 
that lim sup u(y):5f(X)VXEOQ 

Then, under some conditions listed in [41, the comparison result holds. Then again, we 
can prove similar results. For example, if we consider ((k", I1), then one can prove 
that if f admits a continuous extension as a supersolution, then I is semi-resolutive, 
H1 is upper semi-continuous and 

lim sup Hj(y) !^ 1(X) 
y-.X,yEt 

for all X E OQ.
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