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Abstract. We prove an asymptotic estimation for the spectrum of the Laplace operator for
compact hyperbolic space forms. Thereby we use estimations of the Selberg zeta function by
methods of analytic number theory.
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Introduction

First we recall the main definitions, motivations and results of Part I. Let G be a properly
discontinuous group of orientation preserving isometries of the n-dimensional hyperbolic
space H,, of constant curvature —1 without fixed points (with the exception of the identity
map id) with compact fundamental domain. We consider the related Killing-Hopf space
form V = H,./G. Let 0 be the set of non-trivial free homotopy classes of V. In every
class w € N there lies exactly one closed geodesic line. We denote by l(w) and v(w) its
length and muliplicity, respectively. The parallel displacement along a closed geodesic
line induces an isometry of the'tangent space in every point of that geodesic line with the
eigenvalues By(w),...,Pn-1(w),1 with |Bi(w)] =1 (1 =1,...,n —1). Let e,(w) be the
p** elementary symmetric function of the fi(w) (i = 1,...,n — 1), and put eo(w) = 1.
Further on, we introduce the weight

eNiw) n=1 1
H (w) — 8.
v(w) = (e Bi(w))
with N = (n —1)/2. Let S, denote the p-spectrum of the Laplace operator A = dé + 4d.

o(w) =
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Thereby we have used the differential operatord and the codifferential operator § =
(=1)P*+"~1 « dx for differential p-forms, where * denotes the Hodge dualization. Let
d:(;z) and df,(;t) denote the dimension of the eigenspaces of closed (da = 0) and coclosed
(6a = 0) eigenforms a of A with eigenvalues y, respectively. The dimension of the space
of harmonic p-eigenforms is the p** Betty number B, of the space form V.

Our results are based on the Selberg trace formula as a duality statement between

the p-eigenvalue spectrum and the geometric spectrum of V (expressed by I(w), v(w), o(w)
and ey(w)).

Theorem 1 (Selberg trace formula): Let h = k(r) be an analytic function in the
strip [Im r | < N+ 6§ with N = (n—1)/2, 0 < § < 1/2 , which is even, h(r)
h(—r), and satisfies |h(r)| < A(1 + |r|)~"~%. By the help of the Fourier transform g(u)

% 2o h(r)e™" dr of h we can state the trace formula

2 (B (r(w) = vol V(S],9) + 3 Uw)a(w)es(w)g (I(w))

BES, wef
forp=10,...,n—1 with ry(s) = \Ju — (p— N)2, where
) 2(:1;1) Zo( “‘TIT;IEM(T2 + uz))h(r) dr for n odd
57:9) = Gyl r) :f( ﬁ/ (r? +u?))h(r)r tanh(rr)dr for n even.
ui|p~N|

Thereby we have used N = 27 and

3 df,(u) for u>0
vd;(l‘)—{‘(_1.)»(3.0—31+...+(—1)PB,)+K,, for p=0

with

K. = (=1)p1=n2g=(ntD2T (24 ) 9ol V' for p > n/2 (n even)
P10 for the other cases.

Further on, vol V denotes the volume of the space form V.

For a > 0 we define E(t,a) = [ ¢**/sds. The main result of Part I was the following
theorem. ‘

Theorem A: We can estimate the sum

P,(T) = Y ew) for T = o0

wEen
cosh {w)<T
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' O(TN”mi_Tlﬁ/lnT) : for 1 S.pS n-—2

PAT) = E(t,n—1)+ ,,§ dé(u)E(t,N + VNT— )

P
0<u<N3(2n-1)/n2

+ O(TN*'Q’-?’):/II:T) ' forp=0,n-1

\

with N =251, cosh t =T, T > 1. We get the same estimation if we replace Py(T) by

P}(T) = Y &)

w€nN
cosh H(w)<T,W{w)=1

In Part I we have proved Theorem A using a Landau difference method and a solution
of an Euler-Poisson-Darboux equation (cf. Section 3 in Part I) as a special function which
we can use in the Selberg trace formula. In some cases these functions are better adapted
to the geometric situation than functions which are usually taken in trace formulas when
a Selberg zeta function is considered. S ~

In Section 6 we will introduce a Selberg zeta function in a natural way w1th respect
to our version of the Selberg trace formula. This zeta function is well known for the
case n = 2,p = 0. Gangolli [9] treats zeta functions of Selberg’s type for compact space
forms of symmetric spaces of rank one from the viewpoint of representation theory. To
see differences to our treatment one should compare the zeros and poles of the analytic
continuation of the zeta function to the whole complex plane. The Selberg trace formula
bears a striking resemblance to the explicite formulas of prime number theory. The
Selberg zeta function is analogous in many ways to the classical Riemann zeta function.
This enables us to study the asymptotic behaviour of the p-spectrum using techniques
of analytic number theory. As a consequence of the well-known Weyl type asyrnptotlc
formula (cf. [2, 28] and Section 4) we have

N(T)= Y dip) ~ n,T" for T — o0
u<r;:(?-n)3
with ,
( ’ ) vol V

= — n=1
n, = (47)o/T 12ﬂ and N =23

We will prove the following

Theorem B: The error term R,(T) defined byN(T) =n,T" + 'R,,(T) (T >1)
satisfies |Ry(T)| = O (T"'/InT).

Hejhal [14] has given this estimation in the case n = 2,p = 0. Weaker results for
more general spaces were proved by Gangolli (8] and lIvrii [17] for n > 2,p = 0. Hejhal
[14) remarked (for n = 2) that it seems hard to improve the estimation of Theorem B.
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The analogy between the Selberg and the Riemann zeta function is strongly apparent
in our proofs. If one were able to improve the T"'/InT - term in Theorem B, there
would presumably be a corresponding improvement in the estimation arg ¢(1/2 + iT) =
O(InT/InInT) for the Riemann zeta function, assuming the Riemann hypothesis is valid.
But no such improvement is known.

Section 7 deals with the analytic continuation of the Selberg zeta funktion and its
logarithmic derivative. We state funtional equations for these functions. In Section 8
we give an estimation for the Selberg zeta function based on the Weyl estimation for
the eigenvalue spectrum. We use the method of "good” and "admissible” numbers (cf.
Hejhal [14] and Ingham [16]), but a straightforward generalization to the n-dimensional
case would not be strong enought. In Section 9 we prove spectral estimations based on
estimations for the zeta functions. We use these results in Section 10 in order to derive
estimations for the logarithmic derivative of the Selberg zeta function. We essentially use -
these estimations to prove Theorem B in Section 11.

6. Definition of the Selberg zeta function and first properties

Since we have already noted that the Selberg trace formula (Theorem 1 in Part I) bears a
striking resemblance to the so-called explicit formulas of prime number theory, it is quite
natural to search for a function which is analogous to the classical Riemann zeta function.
Nowadays this function Z is commonly known as the Selberg zeta function, the original
reference is [24] (Part I). We generalize a method given by Hejhal [14] for the classical
case n = 2,p = 0. In this special case the Selberg zeta funtion is defined by

2()= T I (1-etenssm)

wEN m=0 .
Hw)=1

for Res > 1. Elementary calculations show that £1n Z(s) is the right-hand side of the
Selberg trace formula in the version of Theorem 1 (Part I) with g(u) = e=*(*-1/2)_ In'the
general case we start with the definition of a function ¥, which later on (cf. Lemma 13)
will be identified to be the logarithmic derivative of a Selberg zeta function Z,. We define

Yp(s) =, E%l(w)a(w)ep(w)e"‘“""" ) (62)
w€

for Res > 2N with N = (n—1)/2 (as in Part I), kp = 1 for n odd and &, = I'(p+1)['(n—p)

for n even.

Lemma 12: The.series (62) converges absolutely and uniformly for s in the half
space Res > 2N + ¢, €g > 0.

Proof: As a consequence of Proposition 5 we get

GoaT =| & eplw) iw) o(w)| = O(T™).

wEN
cosh i(w)<T
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Using Stieltjes integration, we immediately get the assertion #

We denote the j** power of the eigenvalues B;(w) given by the parallel displacement
along the closed geodesic line (cf. Introduction to Part I) belonging to a non-trivial free
homotopy class w € by Bi(w) = (Bi(w))’. We can write the elementary symmetric
function e, as a sum :

~1
c,,(w) Ze,' (w) with ¢= ( p ) and e,k (w) = Bi,(w). .. Bi,(w)
using ) < 12 < ... < i, and 13,13,...,1, € {1,2,...,n — 1}. Let M denote the set of
multiindices m = (my, ... ,m,,_l) with non-negative integers m;. Further on we define in
the usual way f™(w) = A1 (W) ... B (w) and [m|=my + ...+ m,_,.

Lemma 13: The zeta function

29 = T 11 I (1- eale)m(o)er o) (63)
258, 51 meM
satisfies J .
Y,(s) = d_sln Z,(s). : (64)

The product on the right-hand side of (63) is absolutely convergent for Re s > 2N. We
have Z,(3) = Z,(s), ¥p(3) = ¥,(s), where 5 denotes the compler conjugate number of s.

Proof: The product on the right-hand side of (63) is absolutely convergent, if the
series

) Z 3T lepa(w)l 1B™(w)| e ~l(w)(Re s+|m|)

wEﬂ =1 meM

Kw)=
-y zq: T e-lRertim)

€N k=
v(uu k=1 meM

—i(w) R
=q ) (H _ —l(u))e (A Res
wEN
Hw)m1
is convergent. Thereby we have used |e,x(w)| = 1, |#™(w)| = 1. It is sufficient to prove
the convergence of Ev(ue)ﬂ e~!“}Res for Res > 2N, which is a consequence of Proposition

5 (for p = 0) using Stieltjes mtegratlon Using (3) and the fact that every free homotopy
class is the power of a primitive homotopy class, we can write

n~1 l .
) lUwlis
B = 2 2’ (H l—ﬁ.’(w)e"‘””')e -

Aw)sl

Using the definitions, we get

o) = 2 alw) with €4(0) = (@)}
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and thereby it follows

Z I(U))G;*(U)) ('ﬁ _!L)m) e‘l(U)jl.

k= =1 1 - ﬂt’(w

Vp(s) =Ky 3

wEen
Hv)=1

AN

—

Applying geometric series we get

n-1 1 . 0 0o C n-1
—_— = et e~ imittma)i(w) BI™ (w).
e = 2 B mame

It follows

oo q . . ] .
V() = 8 XY T Ul (w)fm(w)e et
v(“wi)‘:l =l k=1 meM
g €p k(W) B™ (w)e ) o+ImD)
= Kp DD I(w)l = 62 (@) B (@) e

€N k=
y(“u):l k lmeM

This proves (64) a

Lemma 14: Using s = ¢° + 1T, it holds
(¥) IIn Z,(s)| < ¢" Tuenpquy=t € foro® > n—1 with ¢ = x, (";l)(l —el)™"
and Iy = infuea {I(w)} '
(#) In Zy(s) = O(e~"°") uniformly foro* >n—1+4+¢0<e<1,|s| = oo
(1) Zy(s) =1+ O(e~") uniformly foro* >n —1+4¢,0< €< 1,|s| — oo.

Proof: Definition (63) guarantees Re Z,(s) > 0 for Re:s > n — 1. We use the branch
of In Z,(s) with —x < Im In Z,(s) < 7 for Res > n — 1. The proof is a straightforward
generalization of Hejhal [14, Proposition 4.13] using Proposition A (Part I), Lemma 12
and Lemma 13. For more details cf. Schuster [35]

As a direct consequence from the definition (62) and Theorem A we get

Lemma 15: Let s = 0* +iT. Then it holds |¥,(s)| = O(1) uniformly for c* >
n—1+e¢ €>0, |s| — oco.

An other version of a Selberg zeta function is given by Christian [29, 30] (cf. also [31
- 33)). e

7. Analytic continuation of the Selberg zeta function

Theorem 1 will come in handy if we try to find an analytic continuation of the Selberg zeta
function. Till now we have only used the right-hand sidé of the Selberg trace formula for
the definition of the logarithmic derivative of that zeta funtion. We will apply standard
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analytic number theory techniques which already have been used by Hejhal [14] in the
classical case n = 2,p = 0. It is possible to carry this idea through, but we will have much
more technical problems.

Using a; # o fori #j (i, =1,...,m), m > n/2 we define

Pliys) = [L(a2-s, P*ie) =[] (] + ), (65)
- A

Qis) = Tla-s, @)=+, (66)

R(s) = ﬁ(af+s2). ‘ (67)

An empty product shall have the value 1. From now on we use the following

Assumption 16: We use m = 3 + 1 for n even and m = —t for n odd. Put
ay =s—N=o0+1iT, N =(n-1)/2. We suppose a; € Rjor1—2 .,m, and
14 N<ar<az<...<Qm. Futheronwesupposea;¢N+kfori=2,...,m, kel
and ay # a; fori=2,...,m '

We apply the Selberg trace formula with the function

W) = ’R(r) (68)

Then the assumptions of Theorem 1 are fulfilled for Res > 2N + €0, € > 0. Gangolli {9)]
takes another special function (and another version of the trace formula) using a cut-off
function. The resulting formulas are not explicite enough to use those methods of analytic
number theory which we will apply. By partial fraction expansion we get

Lemma 17: We suppose a; # a; fori# j (1,7 =1,...,m). Then we get.

1 hid 1 1

R(r) = E 00, a;)? +_a§‘. 28 .(69)

We remark, that the summands in (69) allone do not fulfill the growth assur;lption

of Theorem 1. We easily obtain the Fourier transform.
e_ail"l
)_,z—:,QJaC‘;) 20, ’ . .
of h#(r) = ﬁ% (cf. [14] for n=2, m=2). We define (cf. Part I) ry(u) = /u — (N - p)?
for u > (N — p)? and ry(4) = \/(N.=p)? — u i for p < (N — p)? with the imaginary unit

i

(70)
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Proposition 18: The logarithmic derivative

Uo(s) = &k, 3 l(w)o(w)e(w)e ™ He=N)
w€eN

of the Selberg zeta function

Z(s)= 11 ﬁ 1 (1 - er(@)B™(w)eHatimb)™

N
K“LG) k=1 meM

satisfies the equation

¥,(s) _ = P(i,s=N)¥,(a; + N)
Wo-Mr, = 2 Play  2am, (11)

Q(1,s - N)
d‘ —— )
2 SR

—(57,g")Q(1,5 — N) vol V

for o > N supposing Assumption 16.

Proof: The functions A*(r) and g*#(u) satisfy the assumptions of Theorem 1 if we
suppose Assumption 16 using %'(—';—)2 = —,Slb'—a')u The application of the Selberg trace
formula (5) and Lemma 17 proves the proposition m

We remark that we can not split up the sum ¥,¢s, in (71) using (69) as we have
done it for ¥, using (70) because of the fact that we have to guarantee the convergence
of the sum E“E s,- Next we are interested in the meromorphic continuation of that sum.
For Res > n — 1 we define

Ag)= Y ay(ue= Qs = N)
u€Sp ( (/‘))

Standard considerations (cf.[9, 14]) give

(72)

- Lemma 19:  The function A(s) has a meromorphic continuation into the whole
complez plane. The poles are s*(u) = N +ir,(u) and s~ () = N —iry(p) forp € S, and
d;(#) # 0. These are simple poles with residues d;(p) if p # (N — p)? and with residue
2ﬂ"(#) ifu=(N—-p)

In order to get the meromorphic continuation of ¥,(s) we define
W(s) = -Q(1,s — N) (S}, g*) vol V (73)

for Res > 2N. We start with the discussion of the case of n even. Using (6) and (22) we
‘also can write

+00 .
W(s) =cw / r h(r) tanh(7r)dr (74)
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with
71(") = P("z)Q(l’s — N)‘, P(S) = ﬁ (8 + u?)’ Cw = (_1)_;— X(V_) . ' (75)
R(r) wifa 2l(p+1)I(n—p)

The polynomial P is of degree n/2 —1 =m — 2.

Lemma 20: For n even the function W(s) = —Q(1,s — N)(S},g#) vol V has a
meromorphic continuation into the whole complez plane which is given by

% = P(=(s=N)) —(N——rf»)lfV +—(5|— 5K
Plis—N) 2N g
“LPCN) Gay (-t al

o 2 — N k
+E(P(—(8—N)) —(N+i)|’++(5|_N)2 "

_ B P(J, -N) -2|N+k|
INEE e i)

—P(—(s - N)’) 7 tan (w(s — N)) + ij:z P(-a}) %ﬁj)i)w tan(ma;).

The function W(s) has simple poles in the points s = N — |N — p| and s = —k (k € N)
with the residues 2cyy P( — (N — p)?) and 2cyw P( — (N + k)?), respectively. In the other
points there is holomorphic behaviour.

Proof: Clearly we obtain

P(r’) P(=a}) 1
Z 0Ga)m+al )
It follows P ) ’
h(r) = P(- al Z P(-«a 2)7,8’?; el (18)

Thereby we have used a; = s— N. In order to calculate the integral [ r k(r) tanh(xr)dr
we apply the residue theorem. The convergence of the sum Y32, in (76) is guaranteed
by the convergence of T2, (N + k)h(|N + k|i) = O( T2, k~?). Standard calculations (cf.
[9, 14]) prove the lemma. For more details cf. [35] 8

Lemma 21: UsingL = {k€ Z:k > N+ 1}U{|N — p|} we get for n even the
equation

W(S) - 2ew E ( l-*-k) z P(_a )P(J)al)) (79)

keL jo2 @it k P(j, ;)

P(-a}) & P(=a)) P(j, al))
+ - == :
w ,“,Z_N ( ay + k E:, a; + k P(3,a;)

kg |N~p|
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Proof: Lemma 21 follows by straightforward calculations starting with (76) using

1 1 1
t =— - _— o
7 tan(ma) py ogz(a‘%_k+k)

and

P(]val)
~P(=ai) EP( D BGray) =0

Next we consider (73) for n odd. Then we get

+00

W(s) = —ew / h(r) dr (80)
with
n-1 47 -n/2 . . . P . N
cw = (—’r)((n# vol V, h(r) = P(rz)%, P(s) = l'Io (s+u?). (81)

u|N-p|
The polynomial P is of degree N = m — 1. Applying (77), we conclude

P(—a,) i P(—af)P(.’aal)

h(r) = - - . 82
(r)= r2+al J.___er?+a} P, a;) (82)
Using .
+00 1 T ]
_Zo Sedr= (83)
it follows W(s) m PG, )
38 T - Jyon) w
= —P(-a})— - Y P(- - 84
TPl DL S ke (84)
Thereby we have proved
Lemma 22: For n odd the function
- ’P(J, —N)s-N :
s— N)W(s)=rmcw | -P s—N) )+ ) -P(—af 85
(s = NYW(s) w( (- ))g( P o (85)

is holomorphic in the whole complez plane.

From Proposition 18 and the definitions (72) and (73) it follows

U,(s) = iz pgi; ;j])V) s ;jN Up(a; + N) + I.C,,.A(S) + 28, (s -~ N)W(s).  (86)
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Proposition 23: The logarithmic derivative W, of the Selberg zeta function Z, has
a meromorphic continuation to the whole complez plane. The function ¥, has holomor-
phic behaviour with the ezception of the following simple poles with integer residues:

no. | point | : residue
d;(0) forn odd andp # N -
(i) |s=N-|N-p| 24;(0) forp=N ' : ’
rpd;(0) + (=1)**2[N'— p| x(V) P(=(N — p)°) for n _even
WS =NtIN—p [ %d:@0Jorp £N - )
(7] e AR L)
. st(p)=N+iry(p x or Y
(iv) ) = N =i r,(8) pdy(p) for p #0, p# (N —p) |
(v)|s=—k (keN) (=1)""?2(N + k)x(V)P(=(N + k)?) for n_even

Proof: The proposition is an immediate consequence of (22), (75), (86), Lemma 19
and Lemma 20. We have chosen x, = ['(p + 1)I'(n — p) for n even in order to guarantee
that 2x,c is an integer. We remark that «, is in general not the smallest number with
that property #

Let M, be the number of poles described above, which are real numbers. If we order
them by their value, we get s1,...,sm,. Gangolli [9] called the poles of type (i) - (iv)
spectral poles and those of type (v) topologzcal poles. The topological pol&s are determined
by the Euler-Poincaré characteristic x(V') and the numbers p and n.

As a concequece of Proposition 23 there exists a meromorphic function Z,(s) with
Z}(3)/Z,(s) = Wy(s), which is uniquely determined up to a multiplicative constant. But
thls constant is determined by our definition (63). So we have found an analytic contin-
uation of Z,(s) and we get

Theorem 24: The Selberg zeta function-Z,(s) defined by (63) has a meromorphic
continuation to the whole complez plane. We define v, = ,d;(0), ‘

a0) | " fornoddandp# N
{ 2d‘(0) . forp=N .
d;(0) + (- 1)"/22|N plx(V) P(=(N = p)?) forn even

and v¥ = (=1)"22(N + k)x(V)P(—(N + k)?) for n even. The function Z,(s) has holo-
morphzc behaviour with the exception of the following poles and we also state the zeros:
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no. pole at point v multiplicity
_ (J[s=N=IN=p[forv;<0 VS
() |s=N+|N—p|forv,<0andp# N vy
(i5) | s=—k (k€ N) forn =0 mod 4 ve
{ zero at point multiplicity
(iv)]s=N—|N—p[forv:>0 Vs
(v)|s=N+|N-p|forv,>0andp# N vy
(vi)[s=N for(N=p)’€S;, N#p |2+, d&((N - p))
(vii) | s*(u) =N+ir, for p€S,, p#0, (N—p)° XA D)
(viii) | s"(u) = N =ity for p € Sy, p#0, (N—p) Ky 4y (1)
(iz) | s=—k (k€N) forn=2 mod 4 x

It follows that the zeros of Z,(s) are in the intervall [N — |[N'— p|, N +|N —p|], at the

points s = —k, (k € N) or at the line Res = N. So we can say that the Selberg zeta
function Z,(s) satisfies a modified Riemann hypothesis.

In order to get estimations for the Selberg zeta function we will frequently use a

functional equation for Z,(s). We define A

(=1)*22sx(V)P(—s*)n tan(xs) for n even :

p(s) = { —(*5")(47)"=9/2(~$¥)[T(n]2) vol V for n odd. (87)

Proposition 25:  The logarithmic derivative ¥, of the Selbery zeta function Z,
satisfies the functional equation Wy(s) + ¥,(2N — s) = &,(s — N).

Proof: From (66) and (72) it follows A(s) + A(2N — s) = 0. Using (86) we get
Vy(s) + Yp(2N — s) = 2k,(s — N)(W(s) — W(2N - s)). By (76) we obtain for n even
W(s) — W(2N —s) = ~2cwP(— (s — N)*)r tan (7(s — N)). In view of Lemma 22 we get
for n odd the equation (s — N)(W(s) = W(2N —s)) = —2mcwP( - (s — N)?). Using (75),
(81) and the definition (87) the proposition follows at once »

Further on, the definition (87) implies

Lemma 28: The function &, is meromorphic in the whole complez plane. It satisfies
®,(s) = ®y(—s). Forn even the function ®,(s) is holomorphic with the ezception of the
simple poles s = £(N — p), s = £(N + k) (k € N) with integer residues. The residues
at the points s = (N — p) are negative for n = 2 mod 4. The residues at the points
s = £(N —p) are positive forn+2p =2 mod 4 forp < N as well as forn+2p = 0 mod 4
for p > N, in the other cases they are negative. The residues at the points s = +(N + k)
are negative for n = 2 mod 4 and positive for n =0 mod 4. For n odd the function ®,(s)
is holomorphxc in the whole complez plane.

From Lemma 26 it follows that there exists a meromorphic function B(s) with

By(s)

,(3) ( )

and B,(0) =
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As a consequence of Proposition 25 we get

Proposition 27: The Selberg zeta function Z, satisfies the functional equation
Z,(2N — 8) = By(N — 8)Z,(s).

Definition 28: We define the open domain
D, = {s€C: Res>0}
\ U (rv(l‘) t, N+ "v(l‘) i]
s$ ,

#>(N-p)?

\ U (—"p(#)'N""p(l‘)]\(O N4IN- ol

HE
u>(~-»)’

The domain D,, is simply connected. We have Z,(s) # 0 for s € D,. As a consequence
of (63) we get

wEnN
Hw)=1

InZ,(s) =xp 3 Xq: S ( _ep_k(w)ﬂm(w)e-l(u)(wlml))
k=1meM

for Res > 2N. This describes the function In Z,(s) in terms of the length spectrum.
The analytic continuation to D, is meromorphic because of the fact that D, is simply
conected and Z,(s) has no poles and zeros in that domain. Further on we get by analytic
continuation

Z,(3) = Z,(s), ¥,(3) = ¥p(s). (88)

8. An estimation for the Selberg zeta function based on the Weyl
estimation for the eigenvalue spectrum

We will apply standard methods of prime number theory and function theory. Following
Hejhal [14] and Ingham [16] we will omit those parts of the proofs which are straigtforward
generalizations, for a detailed discussion cf. Schuster [35]. The main result of this section
will be

Theorem 29: For all points s € C, which have a distance not smaller than 1/2 to
the poles of the Selberg zeta function Z,(s), we can state |Z,(s)| = exp (O(|s|")).

We remark that in the classical case n = 2, p = 0 describt in [14] there are no poles at
all. For Res > 2N+ ¢ (0 < € < 1) Theorem 29 is a simple conclusion of Lemma 14. Next
we will analyze the case Re s < ¢, then 1t remains to discuss the case —e < Res < 2N +e.
For n =2 mod 4 we define

1 1
D} ={seC: s (N =p)l >, s (N+K)> ¢ (keN)}. .
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For n =0 (mod 4) we define
1
Df={seC: [s£(N-p)> Z}'.
If n is odd we put D¥ = C. We get

Lemma 30: For Res < —¢ and s — N € D¥, we have |Z,(s)| = exp (O(|s|")).

Proof: Using B(s) = B(i)exp( [ ®,(v)dv), where the integration shall be taken
along the polygonial connecting the points ¢, T and s = ¢* + iT for Ims > 1 and the
points i, Res +1 and s for 0 < Ims < 1, a straightforward generalization of [14, pp. 75
- 76] applying the maximum modulus principle gives [By(s)| = exp (O(|s|")) for s € D¥.
The functional equation described in Proposition 27 and Lemma 14/(iii) complete the
proof &

Following [14, 16] we use the concept of “good” numbers. For that we define

= ), dyw)

H€Sp
. k-2<rp(p)<k+2
for k € N, k > 2. The equation (1) implies

2L

>z~ 42" —l)n,L" for LEN, L > o0 (89)

k=L '
with n, given by (2). We put fi, = 4(2" — 1)n,. The number k € N is said to be “good”
if zx < fi,k»! is satisfied. By a trivial generalization of [14, Proposition 4.21] we see that
for a fixed § > 0 there exists a sufficiently large number L € N such that the interval
[L, L(1 + 8)] contains “good” values.

But a straightforward generalization of the concept of “admissible” numbers used in

[14] would not be strong enough for the following considerations. Our definition will be
different also for the classical case n =2, p = 0.

Proposition 31: Let k be a .“good” number. Then there ezists T € [k — 1,k + 1]

d3(p)
T-1<rp(u)<T+1 IT = ryp(u)l

with .
=0(T*"'InT). (90)
Such a number T shall be called “admissible”.

For the proof we need the following

Lemma 32: There shall be given real numbers r;(i = 1,...,E) with -2 < r; <
r9<...<rg <2. Then there e:tists a number r, € [—1,1] with

P

e Ir. T

=O(EInE). (91)

Thereby the O-term for E — oo is independent of the position of the points r;.
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Proof: We devide the interval [—2, 2) into 10 E subintervals I; = [—2+ (1 —1)ko, —2+
iko) with ko = %, i =1,...,10E. Let I' be the union of those intervals /; in which one of
the given r; is situated. Let I"” be the union of intervals which are already included in I’
or which have neighbouring intervals (with respect to the intervals introduced above) in
I'. We denote by I* the union of the intervals /; which are contained in [—1, 1} but which
are not included in I”. By help of the usual Lebesgue measure p we get u(I”) < 6/5
and p(I*) > 4/5. We denote the midpoint of the interval I; in which the point r; is
contained by 7;. It follows |r; — 7| < kof2. For r € I* and for all r;, 7; we have
|r — ril > ko, [r — 7i] > ko. Further on, we get either r; > r, 7y > r or ri<r,r<r.
Suppose r; > r, 7; > r. From i —r; < ko/2 < ko < ri—r there follows 7 < 2|? el The
same equation follows for the other case r; > r, 7; > r using r; — 7; < ko/2 <kg<r-r;.
We get as an immediate consequence

pppe

=1

We denote by s7(: = 1,...,E") the mldpomts of those intervals I;(j = 1,...,E) for
which we have I; C I* WIth s} < 83 < ... < 8g.. The inequality p(I‘) > 4/5 1mphes
E* > 2F. We obtain

E 1 -
E —— forrel". - (92)
i=1 IT.’ — 7‘| . .

|r, - "I

2 /1 1
er.—s,l'ko(2+3+4+ +10—E) 2 1n(10E)

for: =1,2,3,..., E. We deduce that

E E* 4 o
1
—_— < —Eln 10E) = 5E? In(10E
g;lms;l B (10E) = (10E).
It follows
& 1
ping. 3 g S T 108)

The minimum shall be reached for r. = s;. Using 2 7= < 35 We get

E

gEln(IOE)

=1 |F' - r‘l
Since (92) we find that
E o1
< 5EIn(10F) = O(EInE).
1=1 |7'|' - T.l ‘ . :
_ Thereby the lemma is proved s
Proof of Proposition 31: By the definition of a “good” number, there are at most

E = A k"' values ry(p) (counted with multiplicity d%(u)) which are contained in the
interval [k — 2, k + 2]. Applying Lemma 32 there exists r, = T with T € [k— 1,k + 1] and

d
25 etk = o0 T,
k-2<rp(u)<k+2 T = rp(us)l .
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This proves Lemma 31 8

As mentioned above, we need estimates for the Selberg zeta function Z, (s) for —e <
Res < 2N + € in order to prove Theorem 29 We can state

Lemma 33: Usings =N+ 0 +iT we suppose ~3 — N <o < N+1,T>2and
that T is “admissible”. Then we have

()) 1¥,(s)] = O(ITI")
(i) [Zy(s)| = exp (O(ITI"))-

Proof: We start with the case of n even. As a consequence of (72), (79) and (86)
we get

() _ PUs ~N) ¥l + N) Q(1,s — N)
s—-N ; P4, a5) a; E;Pd'( B R R(rp(u))

(—al) & Pl=ad) P(j,n)
+ 4CW~PZ (0!1 +k _,'z=; aj+k P(j»aj))

kel
: N P(—=a?) & P(—a?)P(j,a)
2 L _ 1 : .
+ 2owry kuz-:n ( o +k ,Z=:g a; + k P(J’ aj))

hyt£|N—p|

By Proposition 23 the poles of —LU- for the supposed domain of s areat T = +r (), 0 =0
forp€ Sy, p>(N—-p)+4= pp with d;(u) # 0. We deduce

Wy(s) _2 Q(l,0 + lT)
——= CO(TI) + 2« d 93
SIN| S 0TI+ 20 5 a0 Tt (93)
»,<n
(=(e+iT)*) & P(=a?)P(j,0 +iT)
4
t CWK",‘EEL o+:T+k ]_ga,+k (],a,)‘
We break up the sum z#%fue s, into contributions
(l) rﬂ(l‘) <T- ls
(i) T-1<r(w)<T+1,
(i) T+1 <rp(p) <2T,
(V) 2T <ryu)
We recall that we suppose that T is “admissible”.
Case rp(u) < T — 1: With constants ¢; and ¢, we obtain
P(2,0 + iT)‘ c T2 1 P(2,0 +iT) ¢ T3 (94)
S10 -7 | S a el < -
APHr )T ()T () + 03 PH2rp(w) | T 7 (ra(k))

Using {T'— ro(p)] > 1, we see that

1
(ro(w))* + (o +4T)?

" (rp() + i0 — T)(rp(p) —ic+ T)| = rp(u)’
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The spectral estimate (24) implies

%W _ o S _ o 95
& w0 & Gy T )

We obtain

Q1,0 +17T)
% W R

s3<n, rp(n)<T -1

1 B 1 P(2,0 + tT)l
< X ";“‘” ((’p(#))2 FEFIE )y T az) B+ (2,7, (4))
B3<p, rp(n)<T-1

= O(T™").

Case T — 1 < rp(u) < T + 1: Here we have to use that T is “admissible”. We get

Q(l,0+:T)[ 1 1
s awlSir] - (2 awigmn)o)

BES; HESp
T-1<8rp(8)STH) . T-1<rp(u)<ST+1

O(T"*InT)
= Oo(T).

Case T + 1 < rp(p) < 2T: We get the same result as for the case rp(p) < T — 1
because of the fact that we have |T — r,(u)] > 1 again.
Case 2T < r,(p): We clearly obtain

| | o
(rp (W) + (0 +4T)2| ~ Irol) + 10 — T [ry(n) — io + 7] = (ro(w))”

The estimation (25) implies

> G = 0(T)

HESp ( P( ))
rp(u)22T
and thereby
’ Q1,0 +1T) _a
d; ——— =0(T"%).
T 4| %R - o
rp(n)23T

Summarizing the 4 cases considered a.bove, we get

2, 3 )| el = o). )

ug <p
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Next we consider the sum ¥ e in (93). We break up the sum into two parts with
k < 2T and k > 2T. Using T > 2 we get

27) —(s=N)?) & P(-a?)P(j, a4
o 51 (B M) _§ P Plia))

k=N \ SN +k =2 o Tk Pla)

+ 4 (P(—(s—N)’) & __P(=a)) P(j,m))
"\s=N+lp-N|l S a;+Ip— N|P(j,a))
L1 1 1
= n-2 O Tn 2
or ),,:VN;“(T k+1)+ ( )( T Nl+l)
=O(T*?InT) + O(T"?)
= O(T™).

It is easily seen that

P (= N)) = 3 Pl kot =

It follows t.ha-t

= (P(=(s=N)) & P(- 3)P<j,a1))
4°Wk=[§+,,( SN R 5wtk Poa)

_ [ O(km—2)Tn—2
—I;=[§7:‘+1]((3 N + k) T7La( a,+k)) (97)
= O(T™?).

This comletes the proof of the first part of Lemma 33. In order to prove (ii) we integrate

U,(s) = g 8 along the straight line from 2N +1 +:T to o + N +iT. For n odd we get
a similar estimation &

Proof of Theorem 29: The theorem is an imediate consequence of (88), Lemma
30, Lemma 33 and the maximum modulus principle 8

9. Spectral estimations based on estimations for the zeta function

In this section we prove a weaker version of Theorem B. We need this result in order to
get estimations for the logarithmic derivative of the Selberg zeta function (cf. Section 10)
as a tool for the proof of Theorem B (cf. Section 11). As we remarked in the Introduction
(Part I), this weaker version is well known in the literature. The proof is reached easily
generalizing [14]). We mainly want to point out, which tools are necessary for our approach,
and we give those details which we will need later on. For more details cf. Schuster (35].
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Proposition 34: The error term R,(T) defined by

1) vol V
,.gs:,, dé(l‘) (S )n)/2 r(2 5) T" + R,(T)
u<T24(p-N)?

satisfies |Rp(T)| = O(T?).

We will prove Proposition 34 after Proposition 38. For s €D, (cf Definition 28) we
define
arg Z,(s) = Im In Z,(s). (98)

The following proposition states a connection between arg Z,(s) and the p-eigenvalue
spectrum. .

Proposition 35: ForT > 1, T & {r,(p): p € S;} we obtain

Np(T) =n,T" + E(T) + H,(T)

with
( l)n/22x(v)fo [tP(tz)tanht-t""]dt+ jom even
H(T) = ﬂ—arﬂ( +1iT) |

Kp

with an integer m; depending only on p and the space form V.

Proof: Proposition 35 is a generalization of [14, Theorem 7.1]. For the straightfor-
ward generalization of the proof one has to use the Cauchy residue theorem, Proposition
23, Lemma 26, Proposition 27 and (88) s

An easy computation shows
Lemma 36: We observe that 8,;(T) =0(T"?).
Proposition 37: Foro® >-1andT 21 we get

|Z,(¢" +iT)| < exp (a,T*"' + O(T""?))

with »
{ (=1)*?mnx(V) forn even
ap, =

("= vol vV
T an)*-DT(n)2) forn odd.

Proof: The related proof of [14] for n = 2, p = 0 as well as the straightforward
generalization to our situation is based on the Phragmén-Lindelof principle (cf. Boas [3,
Theorem 1.4.2]) and the functional equation of Proposition 27 s
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Using an estimation of Titchmarsh (26, Lemma 9.4] and Jensens’ Theorem (Boas
[3, Theorem 1.2.1)), Proposition 37 implies the following proposition (cf. Hejhal (14] for
n=2p=0).

Proposition 38: For T 2 1,T ¢ {r,(u),u € S,}, we have larg Z,(N + iT)| =
O(T™7"), Hp(T)| = O(T").

Proof of Proposition 34: By virtue of Proposition 35, Lemma 36, Proposition 38
and a usual continuity argument we get the assertion ®

10. Estimations for the logarithmic derivative of the Selberg zeta
function using spectral estimations

As we have already remarked, we want to use Proposition 34 in order to get estimations
of ¥,(s).

Proposition 39: Supposings = N + ¢ + :T, —-3-N<s<N+1,T > 100,
T & {rp(n) : 4 € S} we get

¥y(s) Q(1,s — N)

2= = 0(IT|*?*) + 2« d:(s) . 99)
SN P PR o) (
T-1<rp(w)ST+1 '
Proof: We suppose a,, > ap_; > ... > az > n with m = 2 + 1 for n even and

m= E,‘,L‘ for n odd (as above, cf. Assumption 16). We start with the case of n even. As
a consequence of (72), (79) and (86) we get in analogy to (93) (cf. the proof of Lemma
33) the equation '

Vi(s) _ n-2 Q(1,s = N)
m = O(lTl )+2’Cy “(525;"0‘1;(#) R(rp(l‘)) (100)
. P(—(:r+iT)’) ™ P(—a?) P(j,0 +iT)\ .
+4CW"’,§_( c+iT + k -j_Z_; a;+k PG a;) )

Thereby the assumption ry(x) > 0 shall include the assumption r,(u) € R. We break up

the sum ¥ .es, in the same way as we have done it with the sum 3 uesy in the proof of
rp(s)20 .

Lemma 33.
Case ry(p) < T —1: We choose a number & with 2N <6 <2N + 1 and § ¢ {ro(n) :
p € S,}. Then we get

ugSu

S 3 AWy

rp(1)<T~1
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T-1
O(T""?) + 2,

/

T

-1

. 1 1
or) +_?"” ! (2(« +iT) [a T +7)

1 P(2,s — N)
+a +iT~r) Ty ag) P+(2,r) No(r)-
We define
_ 1 P(2,s — N)
h=7 +iT J o+i(T+r) P+(2,r) Np(r)-
It follows

T-1 T-1
1S Z1P@s =M [ G i) s o) [ L amye),
& 3

r)re-2?

The Weyl asymptotic estimate (1) states A,(r) = O(r") and thereby we get by partial
integration |I;] = O(T™-?). Next we consider

1 P(2,s —

I’=o+iT c+i(T—ry P*2,r)

M) ani, ).

Now we use Proposition 34. By help of AMy(T) = n,T" + R,(T) we break up I; into
I, = I} + I} with

T-1
) 1 P(2,s—N) n
I = o+iT 6/ s+iT -1 PH2r) d(npr™).
We obtain
= nn,r*-!
ST / e+ AT - Pz

nn,,r'l’ (2,r) + Po_3(r)
(0 + (T —r))P+(2,r)

dr

— Kp _
= —P(2,5 - N) 6/

o+

T-1
(T+ p(? 8 — )nnp(/ md?‘*‘O(l))

with a polynomial P,_3(r) of degree n — 3. Further on we use
T-1 T-1

r _ . f¥r=T)-0 iT -0
3/a+i(T—r)dr - 16/0+i(T—r)dr+ 6/0+1(T—r)

T-1

i(T—1—6)-+(iT+a)/ !
)

oy ey S L

i

(T =1-6)+ (T +0)In(oi +r-T)[ "
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It follows

T-1
1 r .
dr=-InT +0(1
a+iT[a+i(T—r) r " )
and thereby , .
I} = —kpnn,P(2,s — N)InT + O(T™?).
Further on we get for ‘ ‘

[t 7‘ 1 P(2,s—N)
2 °+iTA5- o+iT—-r) Pt2,r)

dR,(r)

the estimation

) < (P25~ N)| Z/_lmdm,(r)lv
< Zpes- Ml AEL :/—llnp(rn'("'_ e )
< oo+ yl|0(r"-‘)|'(" T )
< oo + T o= A ar)

§

and therby |I"] = O(T™"?). We conclude
I; = —kpnn,P(2,s — N)InT + O(T™"?).

For the estimation of S it remains to.consider

T-1

. P(2,s— N
13 = —2!6,, / (QT‘ZI,T)—) d./\f,(r).
8
We find that
: T-1 pn-1 T-1 1
13 = —2&,,711’1?7)(2, 8 — N) / m dr — 2&,,?(2, S — N) / m dR,,(T)
5 ’ & ’

In analogy to the estimation of I} and I we obtain
I3y = =2k,nn,P(2,s — N)InT T2 4 O(T"?).

An easy calculation shows P(2,s — N) = T2 4 O(T"-3), and we immediately obtain

51 = =3x,nn, InT T + O(T™?). (101)
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In the case T — 1 < r,(u) < T + 1 we have to do no changes for the assertion of the
proof.

Next we consider the case T + 1 < rp(u) < 2T. We then have to estimate

T+1<rp(u)<2T

If rp(p) = T + 1 or rp(p) = 2T, then Proposition 34 implies dj(u) = O(T""'). We

conclude
2T

Sy = O(T™?) + 2x, ]

T+1

Q(1,s— N)

Riryta)) )

We use the decomposition

Q(l,s——N)_( 1 ( 1 '+ 1 )_ 1 )‘P(2,3—N)
R(rp(p))  \200+iT)\o+i(T+r) o+iT-r) r24+ai/ PH2,r)

as above. First we consider

K T 1 P@2,s—N)

= - .
: +
o+ 1T1‘+1 o+i(T+r) PH2,r)

dN(r).

We get

2T
1
W < 22 P2s = )| [ == ()

T+1

and therby J; = O(T™""?). In the same way we get for

2T

P(2,s— N
J3 = 2K.p / _(Q'*‘ETT)) d./\/,,(r)
T+1

the estimation J3 = O(T""2). It remains to consider
2T
Kp 1 1

Jo = a+iT'P(2,s—N)T!l o+ T —r)P*+(2,r)

Ny(r).

According to the decomposition Np(r) = n,r™ + Ry(r), we study

n-1
7 Kp nnpr

2T
1
= P2 - N)T[_l e £

dr.

We have

T 1 Fn=1

o+i(T —r)PH(2,1)

dr
T+1
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2_7‘
= s rog))«

Tl =T)+io T -io O(1/r)
_/(a+i(Ttr) o+i(T—r) o+i(T—r))dr

T+1
2T 1
=0+ +iT) [ e
T+1

=0(T)+ (0 +iT)InT.

It follows J; = x,nn, T2 InT + O(T™~?). In analogy to the calculations above, we get

2T
nw_ Kp _ 1 1 _ 2
e Ol N)n/, o ¥ i(T =) Pr(,7) Torlr) = O(T™).
It follows
S3 = rc,,rm,,T"'2 InT + O(T""). (102)

We recall that for the case 2T < r,() we have shown in Section 8 the estimation

lQ(l,o+iT)

Sy =2k, Z (k) R(rp(p))

HESp
2T<rp(n)

= 0(T™?).

We now turn our attention to the estimation of the sum Y ket in the right-hand side of
(100) using an argument of the proof of Lemma 33. We define

P(—(0+iT)?) & P(—a?)P(j,0 +iT)
Y La L
s pkeer o+ k+:T =2 aj+k  P(,a;)

with Ly = {k € L : k < 2T'}. We apply

B

In(a+B+1)~In(a+A)< 3 —— <In(a+ B)—In(a+ A+1)
k=Aa+k

with A,B€ N, a € R, a >0 and get Tyer, 725 = InT + O(1). We immediately see
that .

i P(j, o +1iT)
Ss = dcwk ( ~-Y P(-a?) 22—~/
5 Whp FE) ( )) P(],O’])
= —4dewr,P(— (s = N)*)InT + O(T™?)
—4ewx, T2 InT + O(T™"?).

In T) +O(T™?)

Equation (97) states

o, B (P((@+iTP) & P(=a)PG,o+iT)) .,
S"""W”,,:[zz,:m( o+ k+iT) _Ea,-+k PG, ;) )‘O(T" ). (103)

=2



Speﬁtral Estimates for Compact Hyperbolic Space Forms 285

Summarizing (100) - (103) it follows

(8) = O(T™?) = 2kpnn, InT T — 4oy InT T2

s —
Using

~x(V) w2 x(V
l)n/ﬂw and o = (1) x(V)
F(n+1) 2l(p+ 1)I'(n — p)
we get the assertion of the proposition for n even.
Next we consider the case of n odd. Instead of (100) we get

n, = (-

00D _ oqipp-s Q(L,s - N)
= O(IT"?) +2 (}: ORI (104)

We use the same decomposition of the sum on the right-hand side as in the case of n even.
In contrast to this case we get

-1 -1
nn,r"

(o +i(T - r))P+(2, r)

P(2,s — N)
o+1T

I =

= m&...._,_ﬁ"i

-1

P(2,s—N)
o+:T

nn,r?P¥(2,r) + Pa_s(r)

(0 +i(T —7))P*(2,r) dr

e

with a polynomial P,_3(r) of degree n — 3 and consequently
T-1

‘ ,_nn,,'P(ﬁ,s—N) T r? . 0(1)
L= o+:T (5/ o+i(T—r)+/a+z(T—r)d)

We apply

T-1 .2 ' T-1 ' T-1 ,
I A = s . - '= 2
6/0+i(T—r)dr' :6/rdr :(0+3T)6/o_+i(T_r)dr o(T*)
and get I} = O(T™"?). In the same way we get [; = O(T""?). It follows I} = O(T""?).
A similar calculation gives S3 = O(T™~?). This completes the proof 8

Proposition 40: For — < Res <n, Ims 2100, s=N+o+iT and T ¢
{ro(p) : u € S,} we obtain

O S vt (105)

Irp(s)-TIS1

Proof: Proposition 39 implies

Uy(s) = O(T" N)+x, Y d‘(#)((s—_%—

HESp "‘P(")
Irp(s)= Tlsl
+ 1 _ 2(3-—N)) P(2,s—N)
s=N+iry(p) ri(p)+al) PH(2,,r(n))



286 R. Schuster

Using —3 < Res < n and |ry(s) — T| < 1 we conclude

P(2,s— N e 1
a - (=1)"% 4 O(F)’

As a consequence of Proposition 34 we get M,(T +2) — N,(T —2) = O(T""') and thereby

d: d:
HESp |s = N +iry(u)| " ueSp ro(u) + T
Irp(w) =TI Irp(w)-TI<1
d;(p) d3(n) -3
_ S < —2F__ oy,
HESp ("v(l‘))2 +aj uezsp (T—1)? (
Irp(s)-TIL1 Irp(s)-TI<1

This completes the proof 8

To compare the analogous considerations for the Riemann zeta fuﬁction, we refer to
Landau [19] and Titchmarsh [26], for the case n = 2, p = 0 cf. Hejhal [14]. We easily get
the following conclusion.

Proposition 41: For0<e<1, s=N+o+iT, 0 > € and T > 100, we have
¥,(s) = 0(T2).

Proof: In the case 0 < N + 1 the assertion is a consequence of m < _%, the

estimation M,(T + 1) — N,(T — 1) = O(T""') (which follows from Proposition 34) and
Proposition 40. In the case 0 > N + 1 we have ¥,(s) = O(1) by Lemma 15

We need the following Phragmén-Lindelof principle, stated in Landau [19, Satz 405].

Proposition 42: Suppose B > a, To > 0 and let the function f(s) be holomorphic
in the half strip a < 0* < B, T > Ty with s = 0* + iT. Further on, we suppose
f(s) = O(T?) for 0* = a and f(s) = O(T?) for o* = B and |f(s)| = O(T®) in the used
half strip. Then it follows

1) = 0 (T=F= %)
in the introduced half strip.

Proposition 43: Suppose 0 < e<1, s=N+0+iT, 0 > ¢ and T > 100. Then
we can state W,(s) = O(LT? mex0—o+N+d)

Proof: We use Proposition 42 with f(s) = e¥,(s + ¢) and the half strip N < Res <
2N, Ims > 100. The function f(s) is holomorphic in this half strip by Proposition 23.
As a consequense of Proposition 41 we have

f(s) = 0(%|Ims|"'l) and  f(N +4iT) = O(T™ ).

Lemma 15 implies f(2N + :T) = O(1). We get the assertion for Res < 2N. In the case
Res > 2N we only have to apply Lemma 15 again 8
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11. Proof of Theorem B

We are generalizing the proof for n = 2, p = 0 given by Hejhal [14], but we have much
more technical problems. Using the length spectrum of the considered compact space
form V we introduce

Ap(w) = l(w)o(w)ep(w)e ™. (106)
Then we can write (62) (valid for Res > 2N) in the form
Wo(s) = kp 3 Ap(w)e™ ") (107)
weN

Using a cut-off number ¢ with

t > 20 (108)
we define i
[t] T _4l-m
Wiia) = gt [ X(E5,09,(0) de (109)
with (§—a)t 2(¢ )‘) 1
(elé-2)t — 282ty
X(&s,t) = 110
(&5.1) i (110)
and .
a = max (4N,2N + Res). (111)

For Re ¢ = a we have ¥,(§) = O(1) by Lemma 15 and thereby the integral in (109) exists.
For s = 0* 4+ iT (as above) we suppose

0<o"<4N (112)
T>50, T+k¢g{r,(p): n€S,} forkeZ, |kl <15 (113)
For further considerations we use numbers_
oy € Rwith N<o) <4N/3 (114)
F = T+10, (115)
G =T-10 (116)
A € {k+1/2:ke€Z,k>N}. (117)

We denote by R(A,s) the rectangle defined by the points —A — iF, a —iF, a + ¢tF and
‘—A +1iF. We remark that F,G and « are depending on s. An interesting background of
the definition of \Ilg](w) is the fact that it will turn out to be a sum which is similar to
(107), but finite. More precisely, we get

Proposition 44: For Res > 2N we obtain

l(s) =k, 3 Ab(w) e~ (118)
wen
with et (1)t ) aet
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Thereby we use vi™! =

vl forv>0
0 forv <0.

"Proof: The definitions imply

K -n —i{w
Wis) = Je- Z/ o X (€t e™ % dg A (w) (120)
_ Kp 1o / ut 2utyn—-1_—-n _~l(w)u =l(w)s
= £t - d .
i :‘:a e uco e (e e u"e u Aj(w)e

In order to calculate the integral we use the Cauchy residue theorem. Let K? denote the
straight line from a — 6® —ip to @ — 0" + ip. We denote the right curcula.r arc of the
circle with center 0, radius p given by the chord K, 0 by K, R_ Analogously we define the
left circular arc K¥. We can state

ut 2utyn—=1 _—n __ L= [y it 1 (n—14+k)ut ., —n
(e = ™) um" =) (-1) L u™",
We consider the integrals
I = / e("—|+k)utu—ne—l(u)u du.
kl(w) Reu=a-o*

For 0 < (n—1+4 k)t < l(w) the integrand e("~!+¥)uty—ne=!w)v i5 holomorphic with respect
to n in the domain bounded by Kg and Kf. For u € Kf we obtain

|e(n—l+k)utu—ne-i(w)u| < p—n
and the arc length of K f is smaller then mp. It follows

lim e(n-1Hkluty —n=lw)u g, — (,
p—00 ]\‘l,l

Now the residue theorem implies
/ eln=1+Ruty —n —l(w)u g _
Reu=a-o*

For l(w) < (n — 1 + k)t the integrand e(n=1+K)uty—ng-lw)u is holomorphic in the domain
bounded by K7 and K! with the ‘exception of the pole in u = 0. For u € KL we can

estimate
'e(n-l+k)utu-ne-l(u)u| < t,’[(n—l«&k)t-l(w)](a—a')p-n.

The arc length of K is smaller then 27p and thereby we get

,,llﬂ,‘o - e(n-l+k)utu—ne-l(u)u du = 0.
P

The residue of the integrand in u = 0 follows from the equation

elr-14ht-llluy=n  ymn y 4 n—14+kt—lw) ut+....

1
(n—1)! I
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For l(w) < (n — 1 + k)t the application of the Cauchy residue theorem gives
2ms
(n=1+k)ut, —n —l{w)u = -1 —1 n-1 .
/ o € u e du T ((n + k)t — l(w))

Summarizing the results gives

/ e(n—l+k)utu—ne—l(w)u du
Reu=a-o* :

=S (") e - e R

k=0
Now the assertion follows from equation (120) ®

We have
Ay(w) = 0 for I(w) > 2(n — 1)t. (121)
It follows that the sum in (118) is finite in contrast to the sum in (107). We use the fact

that we have found an analytic continuation of W,(£) (cf. Proposition 23) and apply the
Cauchy integral theorem to the function X(£,s,t)¥,(£) and the domain R(A, s):

1 a+iF -
s [ X(Es00,0) &
" 1 —AHiF 1 a+iF
= / X(65,)¥,(8) d + 5— / X(E, s, )00, () de (122)
—A-iF —A%iF
1 a—-tF
_%_A[m X(£,3,t)U,(€) dE + {ego;u Res(X (€, 3,1)¥,(€))-

Thereby Pol,, denotes the set of simple poles of the function X (¢, s, t)W,(£) with respect
to the variable ¢ within the rectangle R(A,s). Because of (113), (117) and Proposition
23 there are no poles situated on the boundary of R(A,s). Our next task will be the
estimation of the terms on the right-hand side of (122).

Proposition 45: If we suppose (108) - (117) we get
—A+iF .
X(€,5,)W,(6) dE = O ([1 + (F/A)y*] emtr-1)440))

2ms )
~A-iF

Proof: We consider the integrals

—-A-i '
L= [ Yesnv(©)d
-A-iF
—A+i
L = [ Y(Es09,0d
-fA-:iF
Ly = Y(f,s,t)\l’p(f)df

—A+s
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with
Y(£,s,t) = e (123)
R ()
Using the functional equation of Proposition 25 we obtain
—A-i
Li= [ Y(Es.00-U2N - €) +0,(¢ - N)lde. (124)
—A=iF

If we suppose (117) and apply Lemma 15 we get the estimation |W, (2N — s)| = O(1) for
Res= —A, A> 3. Applying (87) we obtain

n-1 .
| = W, (2N —s) + ®,(s — N)| = { 88"_,)““(“)) g: neven (125)

Fors=k+1+iT, k€ Z, T >0 wehave

:1 + e-?tT

1 L
tan(ws) = tan (w(k + 3 +iT)) = —cot(miT) = icot(nT) = e

= 0(1)
and thereby

|~ Wp(2N =€) + &,({ - N)| = O(¢*™") (126)
for ¢ € [-A—1F,—A~1i]. It follows L; = O(L}) with

—A-i

L= [ |Y(c,s,t)||c|"-'dc=]l
-F

~A-iF

e—(Ato®)t

(A+o*)2+(n+ T)z)ﬂ/? (A*+9°)T dy.

Since f(r) = r®V/2 is a convex function for n > 3, we get (A% + n?)""V/? <
2(";3)/’(/1"" + 7). For n = 2 we use (A% + 7?)"/? < A + 5. We conclude L} = O(L")
wit .

E e-(A+a®)t

“oo /KAwa+m+Tmm

1

(A" 49" Ndy

e
L (A+oy+ @+

IN

(An—l + Fn-l)e—(zﬂ-a’)t

- n— E
Aﬂ 1 + F 1 e_(A+o.)‘/ l dy’
- A J (A+o ) +(n+T)p "

o).

In order to get the last equation, we have used [ WL(MT)’ dn = O(3%). It follows

that .,
Li=0 ([1 + (-ﬁ-) ] e-“+°‘)‘) .

"
L
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We get the same estimation for L.
It remains to estimate L,. For that purpose we apply again the functional equation
of Proposition 25 and the estimation (126):

—A+i
o ( [ Vs e ds)
—A—i

1 n=1
—  p-{Ata®)t (A% + "2)-—,—
: 0 (/, [(A+0%)2+ (n+T)* d")

= e A+) (g (A"") .

L,

An
So we have proved

—A+iF

Y(£, s,8)¥,(€) dé = 0 ([1 + (%)""],e-uwn) .

—A~iF

We use this estimation for every term of the binomial expansion of (e~ — 3(€-))»~1
to complete the proof 8

Proposition 46: If we suppose (108) - (117), we get
(6) JTINEF X (€, 5,0)W,(6)] |dE| = O (B em(N+o"X)
(i) JoEL1X (€, 5,1)0,(6)] |dE| = O (e¥n-Dle=ent),

Proof: We consider

=2N+iF

Li= [ I¥(&s,0%(0)ldgl.

—A}iF .
The functional equation of Proposition 25 implies

—=2N+iF

Li= [ V(& s0(2N - ) +0,(¢ - Nl lde].
~A+iF '

We will apply (125) and suppose —A — N <r < =3N for s =r + tF. Then we get

! 2x(ri—-F) __ 1

. . . ' €
tan(rs) = tan (x(r + iF)) = —itanh (n(ri — F)) = T e

Using (113) and (115) we obtain |tan(ws)| < 2 and thereby |®,(¢ — N)| = O(¢™?).
Because of ]

Re(2N —€) > 2N + 3

for £ € [-A+iF,—2N +iF]
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we get W, (2N —€) = O(1). It follows
. » =2N+iF

Li=0 ( |Y(Ea31t)l K'u_l Idfl) .

—A+iF

By (108) and (115) we get

-2N
Li=0 (F"“ / e<"-°')'|dr,|) and L,=0 (
-A

Fr e(-zN-aj):) .

If we use the binomial expansion of (elé=#* — e2¢=2))*~! e get the assertion (i). For
0 < 0® < 2N we have a = 4N and consequently the upper and lower bounds of the
integral in (ii) are the same. So let us suppose 2N < 0* < 4N. Then we get

akiF 7 e2n-1)in-o")r 2n-1)o-o")e
Ly = / |X({,8,t)\l’p(£)| |d€| < / TIO(])ld’I = O(C n-1)(a-c )
4N

AN$F

Thereby we have used Lemma 15 &
Assumption 47: We suppose that the cutting-off parameter t and the imaginary

part T = Im s of the considered complez parameter s satisfy the inequality et < T?.
Proposition 48: We suppose 0y = N +¢, 0 < e < 1/10, (108) - (117), 01 < o*

and Assumption 47. Then it holds
TAEE Y (65,0 0,(6)[1dg] = O (1)) 4+ 0 (Let4n==%)

(') N+etiF
() SNHE Y (€3, 0W,(6)] 1d€] = O (Ee=c=e")),
Proof: For { =9 +iF, s = 0* +iT we define
4N+iF '
Lo= [ 1¥(6s,0%,(6)l 1]
N+etiF
and get
4N
L < 107" / e8| (5 + i F)| dn.
N+4e

By using Proposition 43, it follows
|‘Ilp(7’ + 1F)| = 0(%1;‘2 mn(D.—n+2N+¢)) for n€ [N + €,4N].

We easily deduce that

4N
0 % / e(n—a')tp2mnx(0,-n+2N+c) df]
N+4e ’ y
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1 2N +¢ 1 4N
ol- / et N PNt g | L O | - / e~ dp
€ €

1l

N+e 2N +¢
1 2N +¢
=0 Ze—o‘tF2(2N+() / (et/FZ)n dY] +0 (le(4N—a‘)t) .
. €
N+

Using (115) and Assumption 47, we obtain ¢! < T? < F?, Accordingly we get

1 _,. et \ Mt 1 .
0| Le-ert pranea [ € +0 (_e(w-a ):)
€ F? €

o) (1F2Ne(01—?')l) +0 (le(4N-a')t> .
€ €

Le

This proves (i).

" In order to study
N—e4iF

Li= [ I¥(6s0%()d]
~2N+iF
we use Proposition 25 and get

—2N+iF

N-e+iF
=0 ( [ e - 2N - ) + &, - M) Idfl) :

By Proposition 41 we obtain
10, (2N — )| = 0 (%F"“) for £ € [~2N +iF,N — ¢ + iF).

Using |®,(6 — N)| = O(F™"!), it follows

Nze 2N
L7 =0 ((%F"-l + Fn-l) / e("".)' dr]) =0 (FTC(N_P‘U.)‘) .

-2N
Thus also statement (ii) is proved a

Using Proposition 48 a quick calculation shows

Proposition 49: We suppose 0y = N+¢, 0 < e < 1/10, 0y < 0°, (108) - (117)
and Assumption §7. Then it holds

() JATEEE 1X (65, )9,(€)] 1dE| = O (Eelr=o") 4 O (LetaN-o))

(i) SNNHEIX(E, 5, 8)0,(€)] |dE] = O (EZe(N-emo"t),

Proposition 50: We suppose 0,'= N +¢, 0< €< 1/10, 00 < o*, (108) - (117)
and Assumption {7. Then it holds

N+et+iF :

Y (&, 5, t)W,(€) dE = O(F*Nelr=o")t),

N~c+iF -
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Proof: ‘Proposition 40 with £ =n+iF implies

=0t T G
HESp P
Irp(a)—Flg1

forfE[N-'e+iF,N+e+iF]. We get

N+cHiF :
Ly = Y (6, 5,0)%,(6) dE
N—t4iF - :
N4edsF
= Y(& s, t)O(F*!) d¢ Co(127)
N-e+iF
‘ N-7+iF‘ , .
e D dy(w) Y(£,8,t) o dE.
lrp(:ﬁf:'lsl N—¢+iF § ‘N_ irp(u)
It holds |§ — s| > 10 and thereby we get
- A Nl+¢+iF ' .
Y(£,8,t)O(F"')dE = O(e e(vx-o‘)fpn-l)‘_ (128)
N—e4iF
In order to analyze
N+ctiF 1
L w = Y E’ S,t - AT 7
" , N—L{ii‘ ( )f -N- "'v(f“) @

we use the Cauchy integral theorem transforming the path of integration into a semi-
circular. We denote the upper semi-circular above [N — e + iF, N + ¢ + iF] by H* and
the corresponding lower semi-circular by H-. Since (113) we have r,(u) # F. Then the
function 5_);/5'.";: =y is holomorphic with respect to £ in the domain bounded by H+ and
H~ because of { # s. For rp(p) > F and rp(u) < F we use H= and H*, respectively as
the new path of integration. Using ¢ < 1/10 we get |¢ —s| > 9 and |£ ~ N — trp(p)] > e
It follows ' -

Lg, = O(el1=7", (129)
Thereby the O-term is independent of p and T. From (127) - (129) we .gét '
Ly= 0= "F1e) + 3 O(d(w)elr=). (130)
Irp(u)-FI<1

Proposition 34 implies Lirp(u)-Fi<t Gp(1) = O(F™1) and we easily obtain the assertion a

Of course, we again get the corresponding result using X (£, s,t) instead of Y(¢, s, t).
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Proposition 51: We suppose oy = N +¢, 0 < € < 1/10, 0y < 0, (108) - (117)
and Assumption 47. Then it holds

N4etiF .
X(Ey 8, t)\pp(c) d{ = O(FzNe(dx—c')t).

N—e4iF
We have described the integrals on the right-hand side of (122) and get information
about the term on the left-hand side of (122).

Proposition 82: We suppose 0y = N +¢, 0 < €< 1/10,01 L 0°, (108) - (117)
and Assumption 47. Then it holds

1 at+iF
— [ X v d
a=iF

N ’
Lo (i E] ) o (Ekemne

+O(e4N(a-a’)t) +0( 1 e‘N(‘N—a')t)

01'—N

+0-( FZNNe(ol-o.)‘) + Z Res (X(f’a’t)wv(f))'

14 B s€Pol,,,

Proof: Proposition 45 states
1 iF ;
2mi X(& s, t)¥p(£)dE =0 ([l + (Z)”’] el'zN(Aﬁ-o‘)g) '

2ms .
-A-iF

Further on, we apply Propositions 46, 49 and 51:

atiF
el BRGRDLAGEY

F’N -(aN4o°)t 4N )t
= —'t—e( o )+O(e (°-’)) . i (131)

1 AN(4N=0c* F’N .
+0 (_e (4N=-¢ )‘) +0 e(a;-o )t .
. g - N

Ul—N

There are similar calculations for 275 instead of [2}if. The propositfon is completed

by a simple application of the Cauchy integral theorem 8
Proposition 53: We suppose oy = N +¢, 0 < € < 1/10, 0y < 0°, (108) - (117)
and Assumption {7. Then it holds

1 a+iF :
st [T X (6,9, 005(6) de
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1-n

= O(tl—ne4N(a-o°)t) + O (t_

e4N(4N—o‘)t
g — N

FZNtl—n

+0(F2Nt—ne—(2N+o')t) +0 ( e{N(a]—o’)!)
o) — N

HT Y we X (—k,5,) + 070 X (sky 8, )

k=1 k=1

+H'7 Y 2, di () X (st (u), 8,t)
o<rptingr

HITN Y 2k di(p)X(sT(m),8,t) + (—1)2 W, (s).
o<rpe(lsl,),5i‘

Thereby we have used the residues of V,(s) in the poles § = ~k given by vy = (=1)*/22(N+
k)x(V)P(—(N + k)?) for n even and vy = 0 for n odd. The residues in the poles £ =
S1,...,3M, are denoted by ri (k=1,..., M,). '

Proof: We use Proposition 52 and take tﬁe limit A — co. W(; obtain
tim 0 ([1+ (3] eNAs) = g
A—oo A :

For the calculation of the residues we use Proposition 23. From the equation

[e:t _ e2zt]n—lx—n — e(n-l)ﬂll _ e:t]n-lz—n
= (14+..)(=zt+.. )" g™
(=) 'z ™ 4

we conclude Res¢=,X(¢,s,t) = (—t)*~'. We remark, that (112) and (113) ensure that
§ = s is no pole of ¥,(¢) »

Proposition 54: We suppose (108) - (117) a;ld Assumption {7. Then it holds
() 67" 2 1X (65, ) ,(0) ldg] = O(11-nelo=e"))
() 17 L2 1X (63, )W,(8)] |dE| = O(t!-metNa=o))

a—io0

Proof: Since (111) and (112) we have 4N < a < 6N and Re (-s)y=a-0">2N
for £ € [a + iF,a + ic0). It follows

T ixesonom < T won)

) 3, P -_ e 1a

a4iF atiF € = sl
- AN(a-0")t T 1 ‘ ‘
< 0 e Ty
< O(edN(a—a°)t) . '

This proves (i), the proof of (ii) is similar s
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Proposition 55: We suppose 0, = N +¢, 0 < e < 1/10,0, < 0°, (108) - (117)
and Assumption 47. Then it holds

. " .
\I’E](s) — (_l)n—l‘yp(s) + O(tl—neiN(a—a )t) + O(al — N€4N(4N-0 )t)

2N -
we("l—v‘)f)

+ O(Fmeansen) 4 o 1
—

o M,
+ S n X (ks t) + 1Y re X (sk, 8, t)

k=1 k=1
+ 70 Y 2k dp ()X (st (p),8,0)
o<rmim<F
+ 87 Y 2, dy (W) X(sT(k), 80 0)
o<rnisF

Proof: The assertion is an immediate consequence of definition (109), Proposition
53 and Proposition 54 8

Our next aim is a simplification of the estimation of Proposition 55. It will turn out
to be useful to suppose the following

" Assumption 56: From now on we suppose
(i) ¢ < Tw

(i) oo = N+1}

(i) on < o° < 4N.

We get part (ii) of Assumption 56 if we minimize ol-l-N elo1-7") with respect to ;.

Proposition 57: We suppose (108) - (117), Assumption 47 and 56. Then it holds
(=)™, (s) = WI(s) + S* + O(F*NeN =)

with
S =t Y 2d (W)X (s* (k) 8,0).

u€Sp
rp(u)-TI<10

Proof: We first want to prove the assertion of Proposition 57 with

§E=tm T 2 X (st ()8, t)
05:‘:(.355}'
instead of S*. In order to reach this goal we want to show that the O-estimates of
Proposition 55 are included in the O-estimate of Proposition 57. i
1. We consider t'~" e4N(e=o")t_ [f we have 0 < o* < 2N, then we get a = 4N by
(111) and therefore Assumption 56/(i) gives h

e(ﬂa—o‘—N)th < TQN e(N(a—a')! < e2(N-a')Nl T?N

and
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and consequently
{=2N g4N(a=0")t < TN 2N(N-o*)t

For 2N < ¢® < 4N it holds a = 2N + ¢* and thereby
eON+a ) < T o(20=20"40"=N) < 4=2N AN(a=0")t < T2N IN(N-o°)t,
It follows ¢=3N e4N(a=a")t < O(T?V ¢2N(N-")t) and thereby
$=2N 4N(a=a")t _ (TN o(N-o")t), (132)

{=2N AN(4N=o°)t

: 1
2. We consider TN

(61 — N)t = 1 and therefore -
eAN(N=0*)t < T2N 2N(N=-0")t

. According to Assumption 56/(ii) we have
L5t'" < 1. Furthermore Assumption 56/(i) implies

. Consequently we get

1

. _Ntl-n 4N(4N-o O(T2N 2N(N- a')t)

and 1
. —Ntl n 4N(4N— (T2N (N—o')t) (133)

3. We consider F2N =7 e~(N+o")t W 1mmedlately obtain
FzN " e'(2N+°..)' - O(TQN e(N-r)t). (134)

4. Assumption 56/(ii) implies e(1~?")t = ¢(N=2")t ¢ and consequently we get

1
U]fN

t1=" P3N ¢(01-9")t = O(TN o(N-0°)t), (135)

‘

5. Since vx = O(k™~!) by Proposition 23, we obtain

- Z X(-k,s.1) ( ‘ 2 e ‘) 3
» Vi s, = t" " 136
= 0 (t"" e~ (n-1)e’ 2 T-?‘e-<"-‘)“‘) (137)
. k=1
S G e (138)
We apply . o :
$H-n T-" e—(n—l)o't = O(T2N e)N(N—a‘)t)
and get | ‘
t'-"zv,,X( k,s,t) = O(T™N eWN-o") (139)
k=1
6. We consider the poles s (k'=1,...,M,) of ¥,(s) which have the imaginary pa.rt

0 (cf Proposition 23) "Then it holds 0 < Re sk < 2N and we have 0 < Res*(u) < 2N
and

. |X(3k,8,t)| < 2n-l TTn[e(zN-o’)t + e(N(?N-’a')tl.
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From Assumption 56/(i) we get : : o
T-" e(2N-a O(TQN (N-¢o* )l) and T e 4N(2N-0* O(TZN (N-v')t)
Consequently we obtain

T- "Erk

7. Further on we get

[e-(u-')c - e"(’*")‘]"’

(s —s)"

= O(T*N 2N IV="1), (140)

L = [0 T 2dX(s (0,
_ 0<rp(u)<F
0 e(N—a )t
0<v,(u)<F |3 I‘) 3‘ :

— ( Z d;(")tl-nT-ne(N—w)t) .

0<rp(w)<F

The condition 0 < r,(p) < F shall be an abbreviation for 4 € Sp, Imr,(s) = 0 and
< ry(s) < F. The Weyl asymptotic estimate (1) implies o<, (u)<F d5(8) = O(F™) =
O(T™) and thereby - .

— O(tl—n (N-a')t) = O(TZN (N—v‘)t)

In order to get this estimation we have used Ims~(u) < 0 and |s™ () — s| > T. We can
not use a snmllar conmderatnon for s*(u) instead of s~(u). We get

1Y 2e,di(p)X(sT(k), 8, t)| = O(THNN=T) (141)

0<rp(u)SF
and the theorem is proved for 5# instead of S*. We have shown

(—i)"-lw,;(s)=‘wgl(s)+‘0(T2"e(N-°’")+z'-" ) 2'c,,d'(;4)X(s+(;4)st)

0<rp(u)<F

Next we consider

L=t 'Y 2dX(s*(n)s,0).

0<rp()<G

We easily see

|Lo| =0 (t"" ) d;(,;;) C N-en-1 .m),
T eense T lom = NP (T - ()

It follows

G . )
|Lyo| = O (t""e(N"".)("'l)' [1 + / (o = N)? +1(T TR dlvp(")]) - (142)
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We apply Proposition 34. It holds N,(r) = n,r" 4+ R,(r) with IR,(r)| = O(r"~1). We
split up the integral in (142). We first consider

1
[(o" = Ny + (@ = )7

Lll = tl—n

d(n,r™)

~~a

1

I
o~

G n-1
- nnyr
n dr
. nf2"""
1/ [(o" = N)* +(T - r)?|

It follows

|Lu| = O

6 G 1

(‘"" /[(0‘—N)’+(T—'")’]"’2 dr)
G~ 1 ¢ T—r 2™

_ (,n_ | [+ =] "')

G™! 1 ? T —r\2]™"
= 0 t"'lm/[l+(0'—N)] dr)
T—

]
Qo

1

Gl _7" 1

1 (or - Ny | T¥72
e S

By Assumption 56/(ii) and (iii) we get t(c* — N) > 1 and thereby |Ly,| = O(G*?) =
O(T?M). The other term resulting from the decomposition Ny(r) = n, r™ 4+ R,(r) is

. G | :
Ly = [[(0" = NY 4 (T - r ™2 aRy ().

The integrand [(0* — N)? + (T — r)?)]™/% s monotonically encreasing for 0 < r < G. We
obtain Ly, = O(t'~" [ dR,(r)). Using partial integration, it follows L, = oG/t~ 1)
and thereby L,; = O(T?V). Using (142), we get

3 X(st(p),s,t)

0<rp(u)<G

= O(T™NelN-o1), (143)

Thereby the proof of Proposition 57 is completed
Proposition 58: We suppose (108) - (117), Assumption 47 and 56. Then it holds
V(07 +1T) = (=1)""1Wll(s) + O(T?N (N =2) 4-O(eN-o")t

YW(o, +iT))).  (144)

. Proof: It holds .
|ek(:*(u)—n)t| - ek(N—a')t < e(N—c‘)t
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with & € N. It follows

|[e(o*(u)—:)t _ e!(o’(u)—s)t]n—ll < 2n—le(N—a')t

and thereby
' Y (W) X(st(k),s,t)

Irp(u)-TI<10

. d
— tl—n2n-!1’e(N—0 )t P(#) T (145)
lrptu)-Ti<10 [(0° = N)? + (T = ry(n))?]
with [9] < 1. Assumption 56/(ii) implies
1 1 (61 — N)*?
B (om = NP2+ (T = rp(u)H™? 7 (00 = NP + (T = ()"
gy — N
[(or = NP + (T —rp(u))?]”
We apply Proposition 57 and we get with a number ¥, with |9;] < 1 the equation
(1" y(s) = Wl(s) + O(T?NeV-o") (146)
' + 2n-l'9le(N—e')t

X Z 2‘?‘1;(”)[

lrp(u)=TI<10

o, — N
(@1 = MY+ (T = ()]
for oy < o < 4N. We'remark that by Proposition 34 we can use Llrp(u)-Ti<1 as well as

2 irp(w)-TI<10 in the equations above. Further on, by Proposition 40 we obtain

1

Ulor+iT) =0 by T )

I*p(s)=-T|<10 01 = N) +i(T —ry(p))’
We get ' ' o
ReWy(o1 +iT) = O(T" ) +x, 3 di(n) o — N . (147)
Irp(u)=TI<10 (01 = N2+ (T —rp(n))?
Equation (146) implies
ReWy(o1 +iT) = Re[(=1)""9l(0, +1T)] + O(T2NelN-o1))
H(=1)rTr2n g N (148)
oy— N
P P A P e

with |¢,| < 2. Using (147) and (148) it follows
Re \I’E,'](s) = [l + (—l)"’-'2"'1191§l_c,]

d3(#) (01 — N)

x
Irp()-T|<10 (62 = N)? 4+ (T = rp(p))?

+ O(T*). (149)
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We get
.0 -N
D Py ey

lrp(u)=TI<10

;= 0(1¥8 (o, +iT)|) + O(T?).  (150)

The combination of the last equation and equation(146) proves the assertion of the theo-
rem 8

Proposition 89: We suppose (108) - (117), Assumption {7 and 56. Then it holds

)

arg ZP(N +iT) = —Im Z A;(w)me'l(““"’“n]
wefl

™! 1
+0(T=) +of}

2 A;(w)e-l(w)(ol+i7')
weN )

Proof: We have

arg Z,(N +1T)

4N
- / Im (0 +iT)do + arg Z,(4N +iT)
J | |

4N
—/Im ¥,(0 + iT) do + O(1) (151)
J .

4N

- / Im¥,(0 +iT)do — (o, — N) Im ¥, (0, +iT)
d.l . . .

+ / Im [¥,(0y +iT) — ¥, (0 +iT)|do + O(1).
J ,

We consider the terms on the right-hand side.
1) We first consider J, = :lN Im¥,(0 +iT) do. Proposition 58 gives

ho

i

4N
(-1)"-1/0 ImWY(o +iT)do

1

N
N
+ 0(|‘I’£:](al +iT)|) /e(N—o)a da+0(T2N/ L(N=o)t da)
: N 4] . . o

(=1)"Ky Im 3 AL (w) e @D | o(1)

o Im 2 Mgy
‘+0(

z A;(w)e-l(w)(vﬁi?‘)
1 : ) .
ho= (1), Im ¥ A;(w)me"(“’)("”'n +0(1) (152)

wefl
wEefN
1 ]
40 -t' +0|T ? .

%C(N—ol)t) +0 (T‘ZN%e(N-o;)t) .

It follows

' —l(w)(o1 T
E A;(w)e (W)(@1+iT)
w€EN
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2) We consider J; = —(g, — N)Im ¥,(0, + iT). By Proposition 58 we obtain
l2l = O((o1 +1iT)|¥y(e1 +iT)]) (153)
— 1 tf =l w)(o14+iT) v ]
= o(;|§A,(w)e 0|) 4+ 0(T ?).

3) We consider J; = 3} Im [\P,,(al +iT) - V¥, (0 + iT)] do. Proposition 40 yields

Im [Wy(o1 +iT) — ¥y(o +iT)| - O(T™")
T ( l - ! )
P piH S —N+iT—rp(p) o= N+i(T —ry(n))

Irp(u)-TI|<10

) (T = rylw)) )
? iiicio ) ((m By ) CIrG o o Al Py ) rp(u))’)
) [T = ry(w)li(e = NY? = (o = NY]
-7 .,,mz-:nsmd;"" (o1 = N2+ (T — ry(0))ll(e — N)? + (T — rp(1))7]
) IT — ry(w)l(os — N)?

S DA Py oy g g [Py o

trp(u)-TI<10

IA

It follows

|| < alO(T"“‘)
/
) dy(p)IT — ryp(p)l(or — N)?
iratur-Ticao [(01 = N)? + (T = rp())?l(e = N)? + (T — r,(p))’]
o(T"*(er - N))

) (1= N T-rwl
M PR Ty o —"r(#))2/ @ NPT -y

= O(T"‘l(al - N)) +0 ( Z d;(#)(al - N()a’l'f' (g)_ r,(y))’)

Ire(u)-T|<10

el UI*N
= ofr )+0(t 2 “;(")(al-N)H(T—r,(n))*)'

Irp(u)-TI<10

+ &p

IN

We apply (151) an‘d get

Js = O'(T'.'"%) +0 (%lg'lf\;(w)e"(“’)'

) . T (154)
Summarizing (152) - (155) we obtain the assertion ® - ‘

Now we can give the
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Proof of Theorem B: We first suppose (113). Proposition 59 implies

arg Z,(N +1T) -n"3 A‘(w)———~e s gin ((w)T)

weN l(w)
) (ll ) A‘(w‘)c-l(w)(owir)l) + O(Tn-n)
tl P :
0 (H Z A;(w)|e-l(w)N) + O(Tn—l)‘
wen

Equation (119) implies Aj(w) = O(A,(w)) with an O-term not depending on w € Q.
Using (122), it follows .

. n-1
~arg Z,(N +iT) =0 ( > %A,,(w)e“(‘“w) +0 (Tt ) )

wEN
Yw)€2(n-1)¢
Proposition 5 implies
z: %Ap(w)ehi(w)N — 0(6N2(n—l)t)‘

wEn
w)€2(n=1)¢

We now use ef = T'/™ (cf.Assumption 56/(i)) and get

arg Z,(N +iT) = o(TWT) + o(T"— ).
It follows - P
arg Z,(N +iT) = (lnT)
and thereby -
[Ro(T) = O(or)-

By right continuity this equation is valid for all T and Theorem B is proved 8
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