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Introduction 

First we recall the main definitions, motivations and results of Part I. Let Q be a properly 
discontinuous group of orientation preserving isometries of the n-dimensional hyperbolic 
space H of constant curvature —1 without fixed points (with the exception of the identity 
map id) with compact fundamental domain. We consider the related Killing .Hopf space 
form V = H/g. Let 11 be the set of non-trivial free homotopy classes of V. In every 
class w E Cl there lies exactly one closed geodesic line. We denote by 1(w) and v(w) its 
length and muliplicity, respectively. The parallel displacement along a closed geodesic 
line induces an isometry of thetangent space in every point of that geodesic line with the 
eigenvalues i(w),...,_i(w),1 with ,(w)J = 1 (i = 1,...,n - 1); Let e,(w) be the 
p 

th elementary symmetric function of the ,(w) (i = l. . . , n - 1), and put eo(w) = 1. 
Further on, we introduce the weight

NI(w) n—i 

() =	(e'(") - 

with N = (n - 1)/2. Let S, denote the p-spectrum of the Laplace operator A = do + bd. 
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Thereby we have used the differential operatord and the codifferential operator 6 = 
(-1)'' * d* for differential p-forms, where * denotes the Hodge dualization. Let 
d,,d( ii ) and d() denote the dimension of the eigenspaces of closed (da = 0) and coclosed 
bor = 0) eigenforms a of A with eigenvalues i, respectively. The dimension of the space 

of harmonic p-eigenforms is the th Betty number B,, of the space form V. 
Our results are based on the Selberg trace formula as a duality statement between 

the p-eigenvalue spectrum and the geometric spectrum of V (expressed by l(), v(), o(w) 
and e,,(w)). 

Theorem 1 (Selberg trace formula): Let h = h(r) be an analytic function in the 
strip urn r I < N + 6 with N = (n - 1)/2, 0 < 6 < 1/2 , which is even, h(r) = 
h(—r), and satisfies Ih(r)I 5 A(1 + I r I)

-
" 6. By the help of the Fourier transform g(u) = 

h(r)e-"u dr of h we can state the trace formula 

d(j)h(r,,(j)) = vol V(S',g) + E l(w)a(w)e,,(w)g(l()) 
oESp	 wEt) 

for p=0,...,n_1 with rp(,)=,Jp_(p_N)2,where 

I 7( f'j (r2+u2))h(r)dr	for n odd 2(;1)	o	
I,-NI (S, g) = (4 )n/2F(/2) 

I 7(	(r2 + u 2 ))h(r)r tanh(r)dr for n even. 
0	=I/2 

;0Ip-NI 

Thereby we have used N =	and 

d	
fd(,)	 for z>0 (1) - 

(-1)(B0 - B1 + . . . + (-1)P B,,) + K,, for	= 0 

with

K,, - { 
(_1)P+ I /2 Hfl+1)/2 F( !i. -L )vol V for  ^! n/2 (n even)


- 0	 for the other cases. 

Further on, vol V denotes the volume of the space form V. 

For a > 0 we define E(t, a) = f e''/s ds. The main result of Part I was the following 
theorem. 

Theorem A: We can estimate the sum 

Pp(T) =	 e,,(w)	for T — oo



by

PP(T)=j
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O(TN	/inT)	 for I <p:5n-2 

E(t,n—l)+	E	du)E(t,N+N2—p) 
ESp 

+ O(TN P/lnT)
	

for p = O,n —1 

with N =	cosh t = T, T> 1. We get the same estimation if we replace P(T) by 

P(T)=
o.b l()<T.(..)I 

In Part I we have proved Theorem A using a Landau difference method and a solution 
of an Euler-Poisson-Darboux equation (cf. Section 3 in Part I) as a special function which 
we can use in the Selberg trace formula. In some cases these functions are better adapted 
to the geometric situation than functions which are usually taken in trace formulas when 
a Selberg zeta function is considered. 

In Section 6 we will introduce a Selberg zeta function in a natural way with respect 
to our version of the Selberg trace formula. This zeta function is well known for the 
case n = 2,p = 0. Gangolli [9] treats zeta functions of Selberg's type for compact space 
forms of symmetric spaces of rank one from the viewpoint of representation theory.' To 
see differences to our treatment one should compare the zeros and poles of the analytic 
continuation of the zeta function to the whole complex plane. The Selberg trace formula 
bears a striking resemblance to the explicite formulas of prime number theory. The 
Selberg zeta function is analogous in many ways to the classical Riemann zeta function. 
This enables us to study the asymptotic behaviour of the p-spectrum using techniques 
of analytic number theory. As a consequence of the well-known Weyl , type asymptotic 
formula (cf. [2, 28] and Section 4) we , have 

=	d(1u)	n, T'	for T —' 00 
1EsP 

with (n_i vol V 
n =P	 and	N=. (4.)n/2f (n±a) 

We will prove the following 

Theorem B: The error term R,(T) defined by .M,,(T) = npT n + 1Z(T) (T > 1) 
satisfies I1Z(T)I = 0 (T' 1 11nT).	. 

Hejhal [14] has given this estimation in the case n = 2,p = 0. Weaker results for 
more general spaces were proved by Gangolli [8) and Ivrii [17] for n 2,p = 0. Hejhal 
[14] remarked (for n = 2) that it seems hard to improve the estimation of Theorem B.
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The analogy between the Selberg and the Riemann zeta function is strongly apparent 
in our proofs. If one were able to improve the T"/lnT - term in Theorem B, there 
would presumably be a corresponding improvement in the estimation arg ((1 /2 + iT) = 
O(ln T/ in in T) for the Riemann zeta function, assuming the Riemann hypothesis is valid. 
But no such improvement is known. 

Section 7 deals with the analytic continuation of the Selberg zeta funktion and its 
logarithmic derivative. We state funtional equations for these functions. In Section 8 
we give an estimation for the Selberg zeta function based on the Weyl estimation for 
the eigenvalue spectrum. We use the method of "good" and "admissible" numbers (cf. 
Hejhal [14] and Ingham [16]), but a straightforward generalization to the n-dimensional 
case would not be strong enought. In Section 9 we prove spectral estimations based on 
estimations for the zeta functions. We use these results in Section 10 in order to derive 
estimations for the logarithmic derivative of the Selberg zeta function. We essentially use 
these estimations to prove Theorem B in Section ii. 

6. Definition of the Selberg zeta function and first properties 

Since we have already noted that the Selberg trace formula (Theorem 1 in Part I) bears a 
striking resemblance to the so-called explicit formulas of prime number theory, it is quite 
natural to search for a function which is analogous to the classical Riemann zeta function. 
Nowadays this function Z is commonly known as the Selberg zeta function, the original 
reference is [24] (Part I). We generalize a method given by Hejhal [14] for the classical 
case n 2,p = 0. In this special case the Selberg zeta funtion is defined by 

00 

Z(s) = fi II (i - e_1)(+m)) 
m=O 

for Res > 1. Elementary calculations show that A In Z(s) is the right-hand side of the 
Selberg trace formula in the version of Theorem 1 (Part 1) with g(u) = e_(9_1/2). In' the 
general case we start with the definition of a function W, which later on (cf. Lemma 13) 
will be identified to be the logarithmic derivative of a Selberg zeta function Z,. We define 

	

'4l ,(s) =	 (62) 
wEO 

for Res > 2N with N (n-1)/2 (as in Part I), ,c,, = 1 for n odd and ,c = I'(p+i)I'(n—p) 
for n even. 

Lemma 12: The series (62) converges absolutely and uniformly for s in the half 
space Re s 2N + e0 , e0 > 0. 

Proof: As a consequence of Proposition 5 we get 

	

IG,o(T)I = 	E e,,(w) 1(w) c(w) = O(TN) 
cosh I(...)<T
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Using Stieltjes integration, we immediately get the assertion U 

We denote the j" power of the eigenvalues /3,(w) given by the parallel displacement 
along the closed geodesic line (cf. Introduction to Part I) belonging to a non-trivial free 
homotopy class w € 11 by /31(w) = (/3(w)). We can write the elementary symmetric 
function e as a sum 

e(w) =	Cp,k(W) with q = (n_ 1) and ek(w) = /311(w) 

using ij < i 2 < ... < i and i 1 ,i 2 ,. ..,i,, € {1,2,...,n - 1). Let M denote the set of 
multiindices m = (mi ,. , m,,_) with non-negative integers m,. Further on we define in 
the usual way $m() = 19r'(w) . . flç'(w) and Iml = m 1 +	+ m_1. 

Lemma 13: The zeta function 

H'  H (i - ep,k (w)/3m (w)e 11+ImD)	 (63) 
'.'Efl k=1 mEM 

satisfies
'lip(s) = —lnZ(s).	 (64)
ds 

The product on the right-hand side of (63) is absolutely convergent for Re s > 2N. We 
have Z(.) = Zr(s), 'I1 (.1) = 'li p (s), where .1 denotes the complex conjugate number of s. 

Proof: The product on the right-hand side of (63) is absolutely convergent, if the 
series

'7

lp.k(&)l 113m (w)l e _1(3mD 
.en, k=lnEM

'7 

=
in k1 mEM 

	

= q	('i] 1 - 
.Efl	j=I 

is convergent. Thereby we have used ICP,k(w)l = 1, 113 m (w)l = 1. It is sufficient to prove 
the convergence of	e(4 '7c3 for Re s > 2N, which is a consequence of Proposition 
5 (for p = 0) using Stieltjes integration. Using (3) and the fact that every free homotopy 
class is the power of a primitive homotopy class, we can write 

	

00	 n.I f 

=	l(w)ep(wJ)( fl	
1	)_l(i)a 

	

Efl j=1	 1 - 

Using the definitions, we get

 Zr(s) =

 

=	e(w) with e' k(w) = (,k(w))'
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and thereby it follows 

W5(s) =  00  l(w)e,,(w) (ii'	
1	

e'('4. 

	

Efl j=1 k=1	 \ 11 — 

Applying geometric series we get 

n-1 1 	 00	00 =	 e_j(m1+...+m_1) 'ñ 93m,() 
t=1 1 —81(w)e	m1=0	m_j=O 

It follows
oo q 

= KP i > 
Et J=Ik=ImEM 

= K 	E 1(w) 
ep,k(ww3m(w)et((1+ImD 

Efl k=1 mEM	1 - €P,k(w)f3m(w)e_I((l)(i+ImI)• 

This proves (64). 

Lemma 14: Using s = o + iT, it holds 
(i) I In Z(s)1	c	Efl,()=1	for o > n - I with c = K('')(i  

and lo = inLen (1(w)) 
(ii) lnZ(s) = Q(e_100') uniformly for e> n —1 + e,0 <C < 1,jsI — 00 

(iii) Zr (s) = 1 + Q(e_ 100 ) uniformly for o > n — I + e,0 < e < 1, Isl —' 00. 

Proof: Definition (63) guarantees Re Zr(s) > 0 for Re s > n — 1. We use the branch 
of In Zr(s) with —r Im In Z,(s) <ir for Re s > n — I. The proof is a straightforward 
generalization of Hejhal [14, Proposition 4.13] using Proposition A (Part I), Lemma 12 
and Lemma 13. For more details cf. Schuster [35] u 

As a direct consequence from the definition (62) and Theorem A we get 

Lemma 15: Let .s = f + iT. Then it holds lW(s)l = 0(1) 'uniformly for o 
n-1+e, e>0, IsI —'oo. 

An other version of a Selberg zeta function is given by Christian [29, 301 (cf. also [31 
-33]). 

7. Analytic continuation of the Selberg zeta function 

Theorem 1 will come in handy if we try to find an analytic continuation of the Selberg zeta 
function. Till now we have only used the right-hand side of the Selberg trace formula for 
the definition of the logarithmic derivative of that zeta funtion: We will apply standard
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analytic number theory techniques which already have been used by Hejhal [14] in the 
classical case n = 2, p = 0. It is possible to carry this idea through, but we will have much 
more technical problems. 

Usinga	aj for i &j (i,j = 1,...,vn), in> n/2 we define 

	

P(i,$) =	(a - 2) , p, 

	

32), 	=	(a +	 (65) 

	

Q(i, .$) =	(a - 2), Q(i, .9) = 11 (a + 2),	 (66) 

	

R.(s) = H(+s2 ).	 (67) 

An empty product shall have the value 1. From now on we use the following 

Assumption 16: We use m = 2 + 1 for n even and in = !11 for n odd. Put 
= s - N = c + iT, N = (n - 1)/2. We suppose a, E R for i = 2,...,m, and 

1+N<c 2 <cx3 < ... < a n . Futheronwe suppose a i N+k for 2=2,.,m, k E Z 
and a	a, for i = 2,.. . , m. 

We apply the Selberg trace formula with the function 

1	 (68) 

Then the assumptions of Theorem 1 are fulfilled for Re s 2N + co, co > 0. Gangolli [9] 
takes another special function (and another version of the trace formula) using a cut-off 
function. The resulting formulas are not explicite enough to use those methods of analytic 
number theory which we will apply. By partial fraction expansion we get 

Lemma 17: We suppose a, 0 ctj for  96 j (i,j = 1,... ,m). Then we get. 

1	1 
1(r_ 1 Q(j,aj ) r2 +a	 .	(69) 

We remark, that the summands in (69) allone do not fulfill the growth assumption 
of Theorem 1. We easily obtain the Fourier transform. 

1	e_0iII 
g#(u) =	 ( 70)

Q(j,a,) 2a j=1 

of ON =	y (cf. [14) for n=2, m=2). We define (cf. Part I) r(i) = JIT- (N - p)2 

for ju -a (N - p)2 and r() = J(N. p)2 - z i for u <(N - p) 2 with the imaginary unit 
i.
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Proposition 18: The logarithmic derivative 

	

= "p	l(w)ti(w)ep()e_l(1)(8_N) 
Efl 

of the Selberg zeta function

q 
Zr(s) = fl fl fl (i - 

'E k=1 mEM 

satisfies the equation 

Wy(s)	
-	

P(i, 3 - N) W(a, + N)	
(71) 2(s - N)scp	j2 P(i, cx,)	2cx1,c, 

Q(1,s—N) + E d(1) 
R( r()) - 

(S,g#)Q(1,s - N) vol V 
ES, 

for o, > N supposing Assumption 16. 

Proof. The functions h#(r) and g#(u) satisfy the assumptions of Theorem 1 if we 
suppose Assumption 16 using = _;31). The application of the Selberg trace 
formula (5) and Lemma 17 proves the propositions 

We remark that we can not split up the sum in (71) using (69) as we have 
done it for P.,, using (70) because of the fact that we have to guarantee the convergence 
of the sum EESP. Next we are interested in the meromorphic continuation of that sum. 
For Res >n —1 we define 

A(s) = E d()2 - N)Q(1,s - N)	
(72) 

	

ES,	 R.(r(u)) 

Standard considerations (çf.[9, 14]) give 

Lemma 19: The function A(s) has a meromorphic continuation into the whole 
complex plane. The poles are s + ( ju) = N+ir(u) and s( /4) = N—ir(/4)for ji E S,, and 
d;(,L) 54 0. These are simple poles with residues d;(,) if it 96 (N - p) 2 and with residue 
2ds) if p = (N - p)2. 

In order to get the meromorphic continuation of Ii(s) we define 

W(s) = —Q(1,s - N) (S , g# ) vol V	 (73) 

for Res > 2N. We start with the discussion of the case of n even. Using (6) and (22) we 
also can write

W(s) = cwfr (r) tanh(7rr) dr	 (74)



	

Spectral Estimates for Compact Hyperbolic Space Forms	269 

with
N	 (-1)(V) i(r)=P(r2)13N) P(s)= fl (s+u2), CW= (75) 

R(r)'	1/2	 21'(p+ 1)F(n — P) 
..; IN-pi 

The polynomial P is of degree n/2 - 1 = rn - 2. 

Lemma 20: For n even the function W(s) = —Q(1,s - N)(S,g#) vol V has a 
meromorphic continuation into the whole complex plane which is given by 

=	P(—(s—N)2)
-21N-pI

 
cw —(N—p)2+(s—N)2 

— 	P(—a ) P(j,s—N)	-21N-pI 
j2 P(j,cs,)	—(N—p)2+a 

- ( P(	(s N)2)	
—2 IN + k 

-
(76) 

k=1
—(N + k)2 + (s — N)2 

M 

P(—a ) — E
P(j,s—N)	—21N+kI	\ 

P(j,cj)	_(N+k)2+c) j=2 

—P(—(s - N) 2 ) ir tan (ir(s - N)) + m P(—a)	(j,s—N) r tan(7ra1).

The function W(s) has simple poles in the points s = N - IN - I and s = —k (k E N) 
with the residues 2cw P( - (N - p) 2 ) and 2c P( - (N + k) 2 ), respectively. In the other 
points there is holomorphic behaviour. 

Proof: Clearly we obtain

P(r2)P(—c)	1 
R(r)	f;Q(j,aj)r2+a	

(77)


It follows
1	m	P(j,ai)	1 

i(r) = P(—c)

	

	 (78)
2 + 2 - P(—a) 
j=2	P(j,a1) r2+c 

Thereby we have used a = s - N. In order to calculate the integral f° r h(r) tanh(7rr) dr 
we apply the residue theorem. The convergence of the sum E in (76) is guaranteed 
by the convergence of E 1 (N+k)h(IN+kIi) = O(E1 k-2 ). Standard calculations (cf. 
[9, 14]) prove the lemma. For more details cf. [35]. 

Lemma 21: Using  = {k E Z : k > N+1}U (IN -pI} we get for  even the 
equation

W(s) = 2cw	
(P(_a)	P(—a)P(j,a1)\ 

tEL 
a 1 + k	j2 a + k P(j,crj))	 (79) 

IV 

+ cw
(p(_a)P(—a)P(j,a1)\ 

k.-N	ai+k j=2 a+k VU 
k,d*IN-pI 
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Proof: Lemma 21 follows by straightforward calculations starting with (76) using 

1	 1	1 7rtan(ira)=- 1 -	
(aik+I) 2	O*kEZ	2 

and
m	 P(j,a1) —P(—cx) +, P(—cx)	= 0. P(j, ci,) 

Next we consider (73) for n odd. Then we get 

W(s) = —cwf)i(r) dr	 (80) 

with

(n;1)(4.)_n/2	
Q 

- 
C)%1 

=	I'(n/2)	"I V, h(r) = (r2)	
7(r) 
3 - N) p
	

N 
(s) = H	(s +u2). (81) 

u;I;O-pl 

The polynomial P is of degree N = in - 1. Applying (77), we conclude 

/z(r) =	 —C,2 - > P(—a)P(j,ci1)	
. (82) r2 +c	._2r2+aP(j,a,) 

Using
+00 
t	1 
Jr2+a2'=a	 (83) 
00 

it follows
R,aj) ir = _P(_a)-- - 

CW	 a' 3=2	 a)_•	 (84) 

Thereby we have proved 

Lemma 22: For n odd the function	 - 

- N)W(s) = IrcW (_P( - (s - N)2 ) +	 (85) P(j,a,)	a3 

is holomorphic in the whole complex plane. 

From Proposition 18 and the definitions (72) and (73) it follows 

m P(j,s—N)s—N 
T, ( S ) 'I1 (a + N) + cA(s) + 2K1, (s - N)W(s).	(86) j=2 P(j,a,)	a3



Spectral Estimates for Compact Hyperbolic Space Forms	271 

Proposition 23: The logarithmic derivative 'I'p of the Selberg zeta function Z,, has 
a meromorphic continuation to the whole complex plane. The function 1P, has holomor-
phic behaviour with the exception of the following simple poles with integer residues: 

no. point	
J

residue 

(i) s = N — IN — pl
d(0) for n odd and plN 
2d(0) for p=N	 - 
?Cd;(o) + (-1) '22IN— p	(V) P(—(N - p) 2 ) for n even 

(i:) s = N + IN - Kd;(0)for p	N 
s = N 2kd((N - p)2) 

(iv) 

L

= N + ir(&) Kd(/ )for/4	0,	z	(N—p)2 
s-()= N — i rp(j) 7i s = —k (k E N) (—l)"22(N + k)(V)P(—(N + k) 2 ) for n even

Proof: The proposition is an immediate consequence of (22), (75), (86), Lemma 19 
and Lemma 20. We have chosen l j, =. I'(p + 1)1'(n - p) for n even in order to guarantee 
that 2ccw is an integer. We remark that ?C is in general not the smallest number with 
that property u 

Let M,, be the number of poles described above, which are real numbers. If we order 
them by their value, we get S1,...,SM . Gangolli [9] called the poles of type (i) - (iv) 
spectral poles and those of type (v) topological poles. The topological poles are determined 
by .the Euler-Poincaré characteristic (V) and the numbers p and n. 

As a concequece of Proposition 23 there exists a meromorphic function Zr(s) with 
Z(s)/Z(s) = 'I'(s), which is uniquely determined up to a multiplicative constant. But 
this constant is determined by our definition (63). So we have found an analytic contin-
uation of Zr (s) and we get 

Theorem 24: The Selberg zeta function . Z(s) defined by (68) has a meromorphic 
continuation to the whole complex plane. We define vp = 

	

I d;( 0)	 for  odd and ptN 

	

= 2d;(0)	 for p= N 
 icd(0) + (-1)'22IN - p (V) P(—(N - p) 2 ) for n even 

and Vpk = (- 1)' /22(N + k)(V)P(—(N + k) 2 ) for n even. The function Z9 (s) has holo-
morphic behaviour with the exception of the following poles and we also state the zeros: 
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T no. I	 pole at point [	multiplicity] 
[.	(i) s=N—IN—plforv;<o  L (ii) 3=N+IN—pl for v<O and pN IppI 

(iii) 3=—k (kEN) for nO mod  
zero at point [	multiplicity 

(iv) 1 s= N — IN — plforv>O 
(v) I 3=N +IN—pI for v>O and p&N

Lip 
(vi) I s=N	for(N—p)2ES, N&p 24((N—p)3) 

(vii) 3(ju)=N+ir9 for uE5, pO, (N— p)2 
(viii) s(p) =N—irfor,u E 5,,, f450, (N—p)2 

(ix) 3=—k(kEN)f6rn2mod4
______ 

v

It follows that the zeros of Zr(s) are in the intervall IN - IN- p, N + IN - p11, at the 
points s = —k, (k E N) or at the line Res = N. So we can say that the Selberg zeta 
function Zr(s) satisfies a modified Riemann hypothesis. 

In order to get estimations for the Selberg zeta function we will frequently use a 
functional equation for Zr(s). We define 

4(s) { (—l)'22sX(V)P(—s2 )7rtan(1rs)	for n even	
(87)
= _(fl;1)(4)_(fl_2)/2P(32)/f(fl/2) vol V for n odd. 

Proposition 25: The logarithmic derivative 'I',, of the Selberg zeta function Z,, 
satisfies the functional equation T(s) + I (2N - 3) = I(s - N). 

Proof: From (66) and (72) it follows A(s) + A(2N - 3) = 0. Using (86) we get 
'I',,(s) + W,,(2N - s) = 2sc(s - N)(W(s) - W(2N - 3)). By (76) we obtain for n even 
W(s) - W(2N - .9) = —2cwP( - (s - N) 2 )r tan (7r(s - N)). In view of Lemma 22 we get 
for n odd the equation (s - N)(W(s) - W(2N - s)) = —27rcwP( - (s - N) 2 ). Using (75), 
(81) and the definition (87) the proposition follows at once I 

Further on, the definition ( 87) implies 

Lemma 26: The function 4D P is meromorphic in the whole complex plane. It satisfies 
= 'Z',,(—s). For a even the function '(s) is holomorphic with the exception of the 

simple poles s = ±(N - p), s = ±(N + k) (k € N) with integer residues. The residues 
at the points 3 = ±(N - p) are negative for a 2 mod 4. The residues at the points 
s = ±(N—p) are positive for n+2p 2 mod 4 for  < N as well as for n+2p 0 mod 4 
for p> N, in the other cases they are negative. The residues at the points a = ±(N + k) 
are negative for n 2 mod 4 and positive for a 0 mod 4. For n odd the function 1,,(s) 
is holomorphic in the whole complex plane. 

From Lemma 26 it follows that there exists a merornorphic function B(s) with 

= S±) and B5 (0) = 1. 
Bp(s) 
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As a consequence of Proposition 25 we get 

Proposition 27:	The Selbery zeta function Z,, satisfies the functional equation

Z(2N - a) = B(N - s)Z(s). 

Definition 28: We define the open domain


D = {sC: Res>O} 

\ U	(r,( jz) i, N + r(p) i] 
pESt 

\ U (_rp(p)i, N_rp(a)i] \ (0, N+ IN—,I]. 
AmEst


.>( N—p)2 

The domain D is simply connected. We have Zr (s) 0 0 for a € D. As a consequence 
of (63) we get

In Zr(s) =	 In (i - 
'Efl k=1mEM 

for Res > 2N. This describes the function In Zr(s) in terms of the length spectrum. 
The analytic continuation to D is meromorphic because of the fact that D is simply 
conected and Zr (s) has no poles and zeros in that domain. Further on we get by analytic 
continuation

ZPM = Zr(s), 'I',(a) = 'Ii,,(a).	 (88) 

8. An estimation for the Selberg zeta function based on the Weyl 
estimation for the eigenvalue spectrum 

We will apply standard methods of prime number theory and function theory. Following 
Hejhal [14] and Ingham [16] we will omit those parts of the proofs which are straigtforward 
generalizations, for a detailed discussion cf. Schuster [35]. The main result of this section 
will be 

Theorem 29: For all points a E C, which have a distance not smaller than 1/2 to 
the poles of the Selbery zeta function Zr (s), we can state Z(s)I = exp (O(IsITt)). 

We remark that in the classical case n = 2, p = 0 describt in [14) there are no poles at 
all. For Rea > 2N+e (0< e < 1) Theorem 29 is a simple conclusion of Lemma 14. Next 
we will analyze the case Re a e, then it remains to discuss the case —e < Re s 2N + C. 
For n 2 mod 4 we define 

= {a € C: Ia ± (N - p) I> -, Is ± (N + k)I> (k E N)}.
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For n 0 (mod 4) we define 

D={sEC: s±(N—p)I>}. 

If n is odd we put D = C. We get 

Lemma 30: For Res —e and $ - N E D, we have IZ(s)I = exp(O(IsI")). 

Proof: Using B(s) = B(i) exp ( f, 4(v) dv), where the integration shall be taken 
along the polygonial connecting the points i, iT and s = o + iT for Im s > 1 and the 
points i, Res + i and s for 0 Ims < 1, a straightforward generalization of [14, pp. 75 
- 761 applying the maximum modulus principle gives IB(s)I = exp(Q(IsI")) for s E D. 
The functional equation described in Proposition 27 and Lemma 14/(iii) complete the 
proof. 

Following [14, 16] we use the concept of "good" numbers. For that we define 

X k =	E	d(1i) 
pESp


*-2rp()<k+2 

for k € N, k > 2. The equation (1) implies 

2L 

> x k 4 ( 2" -1 )np L" forLEN,L —. 00	 (89) 
k=L 

with n, given by (2). We put ñ, = 4(2" - 1)n. The number k E N is said to be "good" 
if X ñk" 1 is satisfied. By a trivial generalization of [14, Proposition 4.211 we see that 
for a fixed S > 0 there exists a sufficiently large number L € N such that the interval 
[L, L(1 + 5)] contains "good" values. 

But a straightforward generalization of the concept of "admissible" numbers used in 
[14] would not be strong enough for the following considerations. Our definition will be 
different also for the classical case n = 2, p = 0. 

Proposition 31: Let k be a "good" number. Then there exists T € [k - 1,k + 1] 
with

d,,(u)	
= O(T"' In T).	 (90) 

T-1(rp()<T+1	- 

Such a number T shall be called "admissible". 

For the proof we need the following 

Lemma 32: There shall be given real numbers r (i = 1,.. . , E) with —2 < r 1 < 
<rE < 2. Then there exists a number r	[-1,1] with 

E	

-	
O(EInE).	 (91)
j=, Iri

Thereby the 0-term for E - oo is independent of the position of the points r1.
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Proof: We devide the interval [-2,2) into bE subintervals I, = [-2+(i-1)ko, —2+ 
sko) with Ic0 =	, i = 1,. . . , bE. Let I' be the union of those intervals 1i in which one of 

SE 
the given r, is situated. Let I" be the union of intervals which are already included in I' 
or which have neighbouring intervals (with respect to the intervals introduced above) in 
P. We denote by 1 the union of the intervals I which are contained in [-1, 1] but which 
are not included in I". By help of the usual Lebesgue measure we get p(I-) 15 6/5 
and u(I) ^! 4/5. We denote the midpoint of the interval Ii in which the point ri is 
contained by F,. It follows Ir - < k0/2. For r € 1 and for all r, F, we have 
fr— r1^! ko,I r — F1I^! ko . Further on, we get either r>r,F,>rorr<r,F<r. 
Suppose r, > r, F, > r. From F1 —r, :5 k0 /2 < ko <r— r there follows irl <2rl. The 
same equation follows for the other case r, > r, F, > r using r, - F < ko/2 < k0 <r - r,. 
We get as an immediate consequence 

E	1	E	1 
<2 E	forrEl. 

i=1 r,	rl	1=1 
r,	r 

We denote by s(i = 1,..., E*) the midpoints of those intervals I,(j = 1,.. . ,E) for 
which we have I, C 1 with s*, < s < ... < s.. The inequality u(1) ^ 4/5 implies 
E > 2E. We obtain

b2(i+i+i++b)<2l(boE) 

for i = 1,2,3,... ,E. We deduce that 
EE	1	2 

-. -m- • < j -Eln(1OE) = 5E2ln(1OE). 

It follows
E	1	SE2 mm	 < —ln(IOE). 

j=i.... .E.1 I— s;I - E 
The minimum shall be reached for r• = 3. Using	we get 

E 

V - r.I	
Eln(lOE). 

Since (92) we find that
E 

i=, I - r.I	
5Eln(1OE) = O(EInE). ri

Thereby the lemma is proved. 

Proof of Proposition 31: By the definition of a "good" number, there are at most 
E = nk"' values rp(jz) (counted with multiplicity d(j)) which are contained in the 
interval [Ic —2, k + 21. Applying Lemma 32 there exists r • = T with T € [k - 1, k + 11 and 

d;(,)	
= O(k" 1 ink) = O(T"T' In T). 

k-2r,(p)<k+2 IT -

(92)
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This proves Lemma 31 U 

As mentioned above, we need estimates for the Selberg zeta function Z9(s) for —e 
Re s < 2N + e in order to prove Theorem 29. We can state 

Lemma 33: Using s = N + a + iT we suppose - 1 - N  a < N + 1, T > 2 and 
that T is "admissible". Then we have 

(i) IW(s)I = O(ITII 
(ii) IZ(s)I = exp(O(ITI")). 

Proof: We start with the case of n even. As a consequence of (72), (79) and (86) 
we get

T(s) -	P(j,s - N) 'P(a, + N) + 
21c	

d_( Q(1,s - N) 

	

3— N - =2 P(j,a1)	 14) 

E+ 4CWK9> 
(P(__2' m 

k EL1+ k j=2 a+k 

	

N	(P(—a)	,P(—)P(j, al) \ 

	

+ 2cwic,,	 cx1+k	2 a1 +k
k—N 
,'*IN-pI 

By Proposition 23 the poles of '4 for the supposed domain of s are at T = ±r(/4), a = 0 
for jz E Si,, ii ^! (N - p)2 + 4	with d;(14) 56 0. We deduce 

	

15' O(ITI"2)+2	 Q(1,c+iT)I (93) s—N
pESp	I 1(r(/4)) I

4:5e 

	

+ 4cwrep > I P(_(a + iT) 2) -	P(—a)P(j,a + iT)I 

	

kELI a+iT+k	j=2 a+k P(j,cxj) 

We break up the sum EPO <ES into contributions 
(i) rp(p) < T - 1, 

(ii) T-1 <r(14):5T+1, 
(iii) T+ 1 < r(/4) < 2T, 
(iv) 2T < rp(js). 

We recall that we suppose that T is "admissible". 
Case r,(/4) <T - 1: With constants c1 and c', we obtain 

I (2, a + iT) I	T"2	I	1	P(2, a + iT) I	T2	
(94) JP+(2,rp ( 14 ))	(r(/4))n-2' J(r(p))2 + a P+(2,r(14)) I 

Using IT - r(/4)I > 1, we see that 

	

1 II	1
1<—


	

+ (a + iT) 2	(r(/4) + ic - T)(r(14 ) - ia + T)
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The spectral estimate (24) implies 

E	d;() - 0(T),	= 0(InT).	(95) n-I - I	Sfl 
pESp	(r(1u)) 

rp()<T-I	 rp(o)<T-1 

We obtain

E 
uESp	 I R(r,,(1&)) I 

dp*

4cu, rp()<T-1

() I ( (r ())2 + (c + iT) 2 - (rp(p)) 2 + a	+(2,r()) 

1	 1	
)v(2,a+iT) ESP	 I 

= 0(T"1). 

Case T - 1 rp(j) <T + 1: Here we have to use that T is "admissible". We get 

Pesp	 =(	Irp(,)_TI)9(T) 
T- l Srp(M)^T+ )	 T-15rp()5T+I 

= 0(T"2lnT) 
= 0(T"). 

Case T + 1 < r(z) < 2T: We get the same result as for the case rp(p) < T - 1 
because of the fact that we have IT - rp(p)I > 1 again. 

Case 2T < r(): We clearly obtain 

1	 1	 2 
+ (c + iT) 2 = Ir(,z) + ic - T lr(,) - icr + TI	(r())2 

The estimation (25) implies

d(1)	1n+2 = 0(T2) 
MESp	(r()) 

and thereby

d," (.a) 
Q(1,c + iT)I = O(T"2). 

jAesp 

Summarizing the 4 cases considered above, we get 

2K E d )IQ(1U+tT) = 0(r-1 ).	 (96) 
MESP	I 
4.c
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Next we consider the sum >CkEL in (93). We break up the sum into two parts with 
k < 2T and k > 2T. Using T> 2 we get 

(271 
4c	

: (P(_(s - N) 2 ) -	P(—cs)P(j,cxi)\ 

k=N+i	s—N+k	j=2 a+k P(j,aj)) 

	

IP(—(s - N)2) -	P(—a) P(j1)\ 
+ 4Cw	N+I	NI	_2aj+Ip_NIP(j,)) 

(271	1	1	

2)(1	

1 
= O(T2)	

( +	
+ O(T	

- 1T.:7  NI + k=N+1 
= O(T' 2 in T) + O(T-2) 
= 

It is easily seen that

m 
P( - (s - N)2 ) - 

Y=-2 
P(—cs)	= 0. 

P(j,cx) 

It follows that

4c  
00 

(P( - (s - N)2 ) - 

	

k=[2T+1( ' s —N + k	=2 cx, + k P(j,cx) 

=	
(_O(km_2)Tn_2 

k=[2T+I] (s - N + k) fl 2 (cx + k))	
,(97) 

= O(T2). 

This comletes the proof of the first part of Lemma 33. In order to prove (ii) we integrate 
=T) along the straight line from 2N + 1 + iT to + N + iT. For n odd we get 

a similar estimation I 

Proof of Theorem 29: The theorem is an imediate consequence of (88), Lemma 
30, Lemma 33 and the maximum modulus principle. 

9. Spectral estimations based on estimations for the zeta function 

In this section we prove a weaker version of Theorem B. We need this result in order to 
get estimations for the logarithmic derivative of the Selberg zeta function (cf. Section 10) 
as a tool for the proof of Theorem B (cf. Section 11). As we remarked in the Introduction 
(Part I), this weaker version is well known in the literature. The proof is reached easily 
generalizing [14]. We mainly want to point out, which tools are necessary for our approach, 
and we give those details which we will need later on. For more details cf. Schuster [35].
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Proposition 34: The error term R..(T) defined by 

(fl_' vol V 
(i)—	' d - (4.)n/2 f(!Li) 

p<T3+(p-N)2 

satisfies lR(T)I = O(T-'). 

We will prove Proposition 34 after Proposition 38. For s E D (cf. Definition 28) we 
define

arg Zr (s) = Im In Zr (s).	 (98) 

The following proposition states a connection between arg Zr (s) and the p-eigenvalue 
spectrum. 

Proposition 35: For T > 1, T {rp ( p) Ja E S} we obtain 

with

I (—l)"/2 2(V) f [t P(t 2 ) tanh t - t- 1 1 dl ± !. for n even


	

E(T) 
=	

4(';')vo:v r	
2,i,

for nodd, (4T)nI2r() 10 [(t2) — t" 1 ] dt	2 

1 
fl(T) = — arg Z(N + iT) 

ir 

with an integer m depending only on p and the space form V. 

Proof: Proposition 35 is a generalization of [14, Theorem 7.11. For the straightfor-
ward generalization of the proof one has to use the Cauchy residue theorem, Proposition 
23, Lemma 26, Proposition 27 and (88). 

An easy computation shows 

Lemma 36: We observe that e(T) = O(T2). 

Proposition 37: For o	—1 and T > 1 we get 

IZ(o + iT)I exp(aT" + O(T'2)) 

with	 -	 = I (-1)' I2 7rn(V) for n even 
n("')uolV	

for  odd.  2(4)(-2)/2r(n/2) 

Proof: The related proof of [14] for n = 2, p = 0 as well as the straightforward 
generalization to our situation is based on the Phragm6n-Lindel6f principle (cf. Boas [3, 
Theorem 1.4.2]) and the functional equation of Proposition 27.



280	R. Schuster 

Using an estimation of Titchmarsh [26, Lemma 9.41 and Jensens' Theorem (Boas 
[3, Theorem 1.2.1]), Proposition 37 implies the following proposition (cf. Hejhal [14] for 
n = 2, p = 0). 

Proposition 38: For T > 1, T { rp ( /A),p E S,), we have jargZ(N + iT)I = O(T''), I1((T)I 
Proof of Proposition 34: By virtue of Proposition 35, Lemma 36, Proposition 38 

and a usual continuity argument we get the assertion. 

10. Estimations for the logarithmic derivative of the Selberg zeta 
function	using spectral estimations 

As we have already remarked, we want to use Proposition 34 in order to get estimations 
of '1'(s). 

Proposition 39: Supposing  = N+a+iT, —i—N < o N+1, T > 100, 
T V {r(jz) : z E S,} we get 

-
O (I T I" 2 ) + 2K	d,* (y) Q(1,s - N)	

(99) s - N -	 'ESP 
T-I!51p(p):5T+1 

Proof: We suppose &m> m _ i > ... > 2 >n with m=+1 for n even and 
m = !Li for n odd (as above, cf. Assumption 16). We start with the case of n even. As 
a consequence of (72), (79) and (86) we get in analogy to (93) (cf. the proof of Lemma 
33) the equation

-- 
o (IT I -2 ) + 2ic E cjQ(is - N) (100) s - N 	 pESp 

+ 4cwic	
.(P(_(cY + iT) 2) -	P(—a) P(j, o + IT)\ 

keL	r+iT+k	j=2 a+k P(j,a1) ) 

Thereby the assumption r,() > 0 shall include the assumption r(z) E R. We break up 
the sum E ESp in the same way as we have done it with the sum E €s in the proof of 
Lemma 33. 

Case r(i) < T - 1: We choose a number 5 with 2N < b < 2N + 1 and b V {r(i) 
E S,j. Then we get 

Si = 2ic.,, E 
EsP 

' p )<T-1
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= O(T' 2 ) + 2c
T-1 

(l,s - N) djV;(r)


	

J	T(r) 
6 
T- 1 

= O(T 2 ) + 2rp I (2(a + iT) a + i(T + r) 

	

-	6 

1 

	

+	- 

	

__________	1 )P(2,s- N) 
diV;(r). 

	

a+i(T_r) 	r2+ 	P+(2,r) 
We define

T- 1 
K	I	l	P(2,s—N) 

a+i( 

	

a+iT	T+r) P+(2, r) 
It follows 

I IiI LP IP(2,s - N)I 
J(T+)rn-2 

dN;(r) < O(T4) J'() 

The Weyl asymptotic estimate (1) states J4(r) = O(r') and thereby we get by partial 
integration III i = O(T' 2 ). Next we consider 

T- 1 

	

- '	1	1	P(2, s - N) djV ( 

	

2 - a + IT	a + i(T - r) P+ (2, r)	r 

Now we use Proposition 34. By help of 1.4(T) = n,T' + 1(T) we break up 12 into 
12 = I + I' with

	

?C, T- 
1 

J	
1	P(2,s—N) 

	

'2 - a + iT	a + i(T - r) P+ (2, r) d(nrTh). 
6 

We obtain
T- 1 

	

I =	'' P(2, s - N) I	 nnr'
+iT 	(a+i(T_r))P+(2,r)d7' 

	

=	'' P(2,s - N) T_Innprp+(2,r) + P_3(r) 
(a + i(T - r))P+(2, r) 

dr 

	

a + iT	 I  
c +iT2' - N)nn( J a + i(T - r) dr + 0(1)) 

with a polynomial P_3 (r) of degree n - 3. Further on we use 
T-1

r	
T-i	 T-1

a - T) - a	 —zT 
-dr = —z	

.

 / c+i(Tr)	/ a+i(T_r) 

= i(T - 1 - 5)+ (IT + 
a) Iai + (r T) dr 

'' = i(T— 1 _8)+(iT+a)ln(ai+r_7')I.
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It follows
I	T- I Jr 

or -iTi+ i(T—r) dr=—lnT+O(1) 

and thereby
= —K,n,P(2, s - N) In T + O(T' 2 ) n  

Further on we get for

T-1 
- ,c,

	

1	- N)	
(r) 

2 - c + iT	+ i(T - r) P+(2,r) d1  

the estimation
T- 1 

I 'I	lP(2,s —N)I I (T - r)rt2 dlRp(r)I 
6

I1Z(r)I T-i	 __________________________ ______________________ ^	IP(2, s— N)l ((T - r)r 2 6 + j I(r)I (n - 
l)r2 - T(n - 2)r n-3 1

 dr) 
6	

(T - r) 2r2'4 
T- 1 

< O(r3)(O(T) + J O(r') (n - 1)r - T(n - 2)1 
6	

(T - r)2rn1	 dr) 

T-1 

^ O(T3)(O(T) +
	

I0(1)II(n- 
1)r - T(n - 2)1 I (T—r)2	

dr) 

and therby J PJ = O(T 2 ). We conclude 

12 = —?cnnP(2, s - N) In T + O(T'2) 

For the estimation of S1 it remains toconsider 

T_1 p(2 3 - 
N) 13 = —2Kv / Q+(1,r) dAf,(r). 

We find that

T-I 
r' 1	

T-1 
' 13 = —2knnP(2,s - N) / Q+(l,r) 

dr - 2KP(2,s - N) J Q+(1,r) 

In analogy to the estimation of I and I' we obtain 

13 = —2#cnnP(2, s - N) In T T' 2 + O(T'2) 

An easy calculation shows P(2, s - N) = T' 2 + O(T 3 ), and we immediately obtain 

51 = —3KnnlnTT 2 +O(T' 2 ).	 (101)
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In the case T - 1 < r() 5 T + 1 we have to do no changes for the assertion of the 
proof. 

Next we consider the case T + 1 < r9(i) < 2T. We then have to estimate 

S3=2c	E	j.Q(ls_N) 
ESp 

T+l<rp(.)<2T 

If rp(ii) = T + 1 or rp ( fi) = 2T, then Proposition 34 implies d;(,i) = O(T''). We 
conclude

27' (1,s Q	- N) 
S3 = O(T' 2 ) + 2c J R.(r(ji)) jV,(r). 

r+1 

We use the decomposition 

	

Q(1,s—N)- (	1	1	
+	

1	 1'\P(2,s—N) 
+ iT)ka + i(T + r) a + i(T - r) ) - r2 —+a 	P+(2,r) 

as above. First we consider
2T ,c,	(	1P(2,s—N) 

a+iT	a+i(T+r) P+(2,r) d4
(r). 

T+1 

We get

IJiI	IP(2,s—N)I Jrn2pr 
T+I 

and therby J1 = O(T 2 ). In the same way we get for 

2T 
J3 - 2K,,	

P(2, P(2,s-N) dJV(r) 
-	Q+(1,r) 

T+ I 

the estimation J3 = O(T 2 ). It remains to consider 

27' 

	

J2 =	's'._P(2,s - N) 1	11	.N,(r) 
a+zT	 ' 

T+ 1 
a+i(T—r)'P+(2,r) 

According to the decomposition J4(r) = npr n + 7?(r), we study 

2T 1nnr'' =	P(2, — N) I a + i(T — r) P + (2, r) dr. 
T 

a+tT  

We have
27' 1 dr 
J a+i(T—r)P(2,r) 

T+ 1
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2T
1

(,+0('))d, I  T+1 +i(T—r) 
2T 

= ,' ((r—T)+io	T — it	O(l/r) \ 
+i(T—r) + a+i(T—r) +c+i(T_r)) dr T+1

2T 
=O(T)+(c+iT)J

	

	 dr

cri—T+r T+1 

= O(T)+(o -I- iT)lnT. 

It follows J = icnnT' 2 In T + O(T' 2 ). In analogy to the calculations above, we get 
2T 

	

= ?C P(2,s - N) I
1	1	

d14() = O(T'2) a+zT	 +i(T—r)P+(2,r) T+1 

It follows
S3 ,c,nn,T' 2 in T + O(T' 2 ).	 (102)


We recall that for the case 2T < r() we have shown in Section 8 the estimation 

S4=2K E = O(T2) 
,Esp	 R.(r(j)) 

2T<p() 

We now turn our attention to the estimation of the sum EtEL in the right-hand side of 
(100) using an argument of the proof of Lemma 33. We define 

Ss = 4CwK, E (P( - (o + iT)2) -	P(—a)P(j,o. + iT)\ 

	

kEL i+k+iT	j=2 a1 +k P(j,a1) )

with LT = { k E L: k < 2T}. We apply

B 
lfl(a+B+1)—ln(a+A)<	' < ln(a + B) — ln(a + A + 1)


k=A a + k 

with A,B EN, a ER, a >0 and get EkEL - = lnT+ 0(1). We immediately see 
that

S5 = 4cWKp 2 P(j,a+iT)	\ 

	

)	.	lnT) +0(T2) 
' j=2	P(.i,a,)	/ 

= —4cwicP( - (s - N) 2 ) In T + 0(T'2) 
—4CWkr 2 In T + 0(T'2). 

Equation (97) states 

00 (P( - (a+ iT) 2) -	P(—a,) P(j,c + iT)\ S = 4cw,,, E 
k=(2TJ+1	a + k + iT)	j=2 a + k P(j, a) ) = O(T' 2). (103)
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Summarizing (100) - (103) it follows 

= Q(r-2 ) - 2cnnlnT r-2 - 4cwi lnT T2 
s — N 

Using

	

ITulx( V)	 ___ ____ 
n = (_1)2 P /	 and cw = ( _ i)P	(V) 

	

I'(n+ 1)	 2r(p+ l)r(n —p) 
we get the assertion of the proposition for n even. 

Next we consider the case of n odd. Instead of (100) we get 
Q(1,s—N) 

O(lT I' 2 ) + 2	d(j) 
	

(104) 
s — N - jESP 

We use the same decomposition of the sum on the right-hand side as in the case of n even. 
In contrast to this case we get

T- I s - N) 

/	

nnr'	dr 2 -	ci + iT	(ci + i(T - rflP+(2, r) 

= P(2,s - N) T-1 

j 
nnr2P(2,r) + Pn..s(r) dr 

	

o+iT	
6 

(ci+i(T—r))P(2,') 

with a polynomial P 3 (r) of degree n - 3 and consequently 
I nn7'(2,s - N) f T-i	r2	T•i	0(1) -

u+iT	/ c+i(T—r) + I ci+i(T_r)dr


We apply
T••I	2	 Ti	 Ti 

I +i(T	
dr=i J rdr—i(ci+iT)J ci+i(	dr=O(T2 

c

	

	
)


- r) T—r) 
6	 6	 6 

and get I = O(T' 2 ). In the same way we get 13 = O(T" 2 ). It follows f = O(T2). 

A similar calculation gives S3 = O(T' 2 ). This completes the proof i 

Proposition 40: For - < Res < n, Ims > 100, s N + ci + iT and T 
{rp(p) : /4 E S} we obtain 

W y(s) = O(T) + CP E	
d;()

(105) 
pESp s - N - irp. 

rp(u)-TI1 

Proof: Proposition 39 implies 

= O(r-1) + ,c,,	: d(ii)	
1

( (
s - N - irp (p) ESp 

frp(p)_TI1 

	

1	2(s - N)\ P(2,s - N) \

+3 - N+ir(p) - r(p) +) P+(2,,rp(p))
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Using -	Res <n and Irp(,i) - TI 1 we conclude 

P(2,s - N - 1)m_2 + P+ (2,r) - 

As a consequence of Proposition 34 we get A1,(T + 2) - Ar(T —2) = O(T' 1 ) and thereby


d;()	
<	,	

d() 

MESP r() + T 
frp(u)-TI^1	

= 0(T2) 
ESp	Is - N + ir(i)I -

Irp()-TII 
d;()	 ______ <d;() 

Irp(p)_TI^I	
MESp	(T - 1)2 = O(T-3). 

PESp (r	 a2+ a -
Irp(.)-TI!51 

This completes the proof. 

To compare the analogous considerations for the Riemann zeta function, we refer to 
Landau [19] and Titchmarsh [26], for the case n = 2, p = 0 cf. Hejhal [14]. We easily get 
the following conclusion. 

Proposition 41: For 0 < e < 1, s = N + a + iT, a e and T > 100, we have 
W P(s) = 

	

Proof: In the case a N + 1 the assertion is a consequence of I,—N+	^ , the r,  
estimation Af,,(T + 1) - )(T - 1) = O(T"') (which follows from Proposition 34) and 
Proposition 40. In the case a N + 1 we have 'Ii(s) = 0(1) by Lemma 15. 

We need the following Phragmén-Lindelöf principle, stated in Landau [19, Satz 405]. 

Proposition 42: Suppose 0 > a, T0 > 0 and let the function f(s) be holomorphic 
in the half strip a a /3, T > T0 with s = a + iT. Further on, we suppose 
f(s) = O(TO ) for a = a and f(s) = O(T) for a = 13 and If(s)I = O(T) in the used 
half strip. Then it follows

If(s )I = o (Tot6 

in the introduced half strip. 

Proposition 43: Suppose  < e< 1, s= N+a+iT, a e and T> 100. Then 
we can state Vs) = O(T2 max[O—o+N+cl) 

Proof: We use Proposition 42 with f(s) = eW(s + e) and the half strip N Re s < 
2N, Ims > 100. The function f(s) is holomorphic in this half strip by Proposition 23. 
As a consequense of Proposition 41 we have 

f(s) = 0(1 Ims I" 1 )	and	f(N + iT) = O(T'1) 
IE 

Lemma 15 implies f(2N + iT) = 0(1). We get the assertion for Res 2N. In the case 
Res > 2N we only have to apply Lemma 15 again.
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11. Proof of Theorem B 

We are generalizing the proof for n = 2, p = 0 given by Hejhal [14], but we have much 
more technical problems. Using the length spectrum of the considered compact space 
form V we introduce

= 1()cr(w)e(w)e''4".	 (106) 

Then we can write (62) (valid for Res > 2N) in the form 

'I'(s) = xp E A()e.	 (107) 
wEO 

Using a cut-off number t with
t 2 20	 (108)


we define
%Ylt] 	=	t1	J	X(, ., t) q'() d	 (109) 

with
(e(J)t - e2(_9)t)%'l 

X(,s,t)=	()n	(110) 

and
o= max (4N,2N+Res).	 ( 111) 

For Re = a we have '') = 0(1) by Lemma 15 and thereby the integral in (109) exists. 
For s = o + iT (as above) we suppose 

0 <o4N	 (112) 

	

T>50, T + k V {r(z) : p  S} fork E Z, I 	15.	(113)


For further considerations we use numbers 

01i E R with N < 01 <4N/3	 (114) 
F = T+10,	 (115) 
C = T-10	 (116) 
A E {k+1/2: kEZ,k>_N}.	 ( 117) 

We denote by R(A,$) the rectangle defined by the points —A - iF, a - iF, a + iF and 
—A + iF. We remark that F, C and a are depending on s. An interesting background of 
the definition of T)() is the fact that it will turn out to be a sum which is similar to 
(107), but finite. More precisely, we get 

Proposition 44: For Res > 2N we obtain 

= ,c,,	A,(w) e'"4	 (118) 

with
fl—I	(i)k 

=	
{(n 

1 + k)
	 In—I 

k!(n - 1 - k)!	-	-	
A().	(119)
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v'	for v>0 Thereby we use v=10	for ti<O. 

Proof: The definitions imply 

	

- --t''	f	X(, s, 1) e'	d A(w)	 (120)
2irz wEO 
KP -	t'" E 1	(e' - e2ut )T_l u_t _l(c.)u du A(w) e18. JR 27r1	 eu=o—owEO 

In order to calculate the integral we use the Cauchy residue theorem. Let K° denote the 
straight line from a - - ip to a - c + ip. We denote the right curcular arc of the 
circle with center 0, radius p given by the chord K° by K. Analogously we define the 
left circular arc K. We can state

n—I 
(ei - e2ut)n_I u_ fl = >(_ l)k(fl - l)(fl_I+k)utfl 

k=O 

We consider the integrals

= JReu=o—c e_
	tu_ne_I(J)u du. 

For 0 < (n - 1 + k)t < 1(w) the integrand e(_ k)u_fle_l(J)U is holomorphic with respect 
to n in the domain bounded by K° and K. For u E J(1 we obtain 

I	
p_fl 

and the arc length ofis smaller then irp. It follows 

lim f	 du = 0. 
"—•°° K 

Now the residue theorem implies 

IR
e(1+tu_e_1(l)t du = 0. 

e un—o 

For 1(w) :5 (n - 1 + k)t the integrand	 is holomorphic in the domain 
bounded by K° and K with the exception of the pole in u = 0. For u E K we can 10
estimate

	

I e_1+	u'e'''	eR_1+i_I)l(0_)p_7t. 

The arc length of K' is smaller then 21rp and thereby we get 

lim e 	tu_fle_((J)U du = 0. P— JK 

The residue of the integrand in u = 0 follows from the equation 

= u + ... +	[(n - 1 + k)i - l(w)]"' U-1 + 
(n—i)!
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For 1(w) !,^ (n - I + k)t the application of the Cauchy residue theorem gives 

J

	

	e(Th_tu_ne_I	du 
= 2iri 

((n -	1 + k)t - 
(n - 1). 

Summarizing the results gives 

J
e_1+iu_e_1H 

Re u=—e 

= y2(_I)k(n 
k 

1)2ri{( - 1 + k)t - 

Now the assertion follows from equation (120) u 

We have
A, (w) = 0 for 1(w) 2(n - 1)t. (121) 

It follows that the sum in (118) is finite in contrast to the sum in (107). We use the fact 
that we have found an analytic continuation of 'I',() (cf. Proposition 23) and apply the 
Cauchy integral theorem to the function X(,s,t)W,() and the domain R(A,$): 

1 a-f iF 

2ri- J X(,s,t)W,()d 
a—iF

	

1 —A+sF	
1 

a+iF 

= - J X(,s,t)W,()d + i
- J	X(,s,t)W,()d	(122)
ri 

	

2ri
—A—iF	 —A+iF


a—iF 

2ri
_ -- J X(,s,t)/,()d + E Res(X(,s,t)W,()). 

	

—A--iF	 EPOA,. 

Thereby P01A, denotes the set of simple poles of the function X(, 3,t)W,() with respect 
to the variable e within the rectangle R(A,$). Because of (113), (117) and Proposition 
23 there are no poles situated on the boundary of R(A,$). Our next task will be the 
estimation of the terms on the right-hand side of (122). 

Proposition 45: If we suppose (108) - (117) we get 
—A+,F 

_ J X(e,s,t)',()d =O (El + (F/A)"-'] e"'"). 
—A—iF 

Proof: We consider the integrals 

L, =	J	Y(,s,t)W,()tie 
—A—iF 

—A+i 

L2
=	

Y(.,s,t)W,()de  _ L 
—A+iF 

L3 =	J	Y(,s,t)W,()d 
—A+i
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with
e8)t 

(—s)'	 (123) 

Using the functional equation of Proposition 25 we obtain 

	

L1 = J Y(, s, t)[ - W(2N - ) +	- N)]d.	 (124) 
-A-iF 

If we suppose (117) and apply Lemma 15 we get the estimation I'I'(2N - )I = 0(1) for 
Res = —A, A >. Applying (87) we obtain 

- W(2N - s) + (s - N)I 
= { O(s'' tan(7rs)) for n even 

	

0(s"')	for n odd.	(125) 

Fors=k++iT, kEZ, T>Owehave

.1 + e_2T 
tan(irs) = tan (ir(k + + iT)) = - cot(iriT) = i cot(irT) =- e_2 = 0(1) 

and thereby
- 'I'(2N - ) +	- N) = 0(.'')	 (126) 

for E [—A - iF, —A - i]. It follows L 1 = 0(L) with 

-A-s	 -1 

Y(,s,t)I it	I ((A + oj 2 + (' + T)1) (A
+ ,2)fL d,7. 

-A-sF 

Since 1(r) = r(_4 )/2 is a convex function for n > 3, we get (A2 + 2)()'2 < 

2 (" 3)/2(A" + ,"'). For n = 2 we use (A2 + i2)1/2 < A + ,. We conclude L'1 = 0(L'1') 
with

F r	e_(A)t 

- / [(A +a) 2 + ( + T)2]f/2(	
+	)dq 

F 

^ (A" 1 + Fn_1)e_+/

	

	 d

[(A + c)2 + (q + T)2]"'2 

A" + pvs_1	 F
1

d 
A-2	 J (A + a + (' + T)2 , 

- o([i + 
(ç)n_l] 

e_ ot) . - 

In order to get the last equation, we have used f ' (A+a5)2(+T)2 di7 = 0(i). It follows 
that

F
= 0 ([i+()

n- 1 ]  
eft).
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We get the same estimation for L3. 
It remains to estimate L2 . For that purpose we apply again the functional equation 

of Proposition 25 and the estimation (126): 

f—A+i 
L2 =	J t) Y(, s,	' 

4) 

[(A + a )2 + + T)2]/2 d) 

	

= eC	(J	
(A2 + 

(An-1 

A- ) 
= e_4t 

So we have proved 

—A+iF (F) 'i J Y(,s,t)W9()d = 0 ([ 1 + 
—A—iF 

We use this estimation for every term of the binomial expansion of (e(_ 3) t - 
to complete the proof. 

Proposition 46: If we suppose (108) - (117), we get 

(i) j+F IX(, s, t)'I'()I IdI = 0 (L! 

() J4N+iF Ix( s, t)'I'()I dI = 0 (e2(n_I)(00)t). 

Proof: We consider
—2N-4-iF 

	

L4 =	J	Y(, s, t)'I'()I IdI. 
—A-f iF. 

The functional equation of Proposition 25 implies 

—2N+iF 
L4 =

	

	J IY(,s,t)['I'(2N - ) + 4I (e - N )]I I4I.

—A+iF 

We will apply (125) and suppose —A - N r —3N for s = r + iF. Then we get 

- 1 
tan(irs) = tan (ir(r + iF)) = — i tanh (ir(ri - F)) = 1 e2(ri_1') + 1 

Using (113) and (115) we obtain tan(lrs)I < 2 and thereby	- N)I = 0(n_1)


Because of
Re(2N—i)>2N+	for €[—A+iF,-2N+iF]



292	R. Schuster 

we get 'Ii(2N - = 0(1). It follows 

/ 
L4 = 0

- 2N+iF l

 
Yt)I IIm i del 

—A4-iF 

By (108) and (115) we get

—2N 

= (Fm_i J et l th l) and L4 = (f e(-2N-0)t 

If we use the binomial expansion of (e ( ' ) -	we get the assertion (i). For 
0 < o < 2N we have a = 4N and consequently the upper and lower bounds of the 
integral in (ii) are the same. So let us suppose 2N ( o	4N. Then we get 

a+iF	 ° 

= J lX(s,l)W(C)l 141:5 J 
C,	

Jon— I0(l)ld = 0(e2(m_1_0t). 
4N-f iF	 4N 

Thereby we have used Lemma 15. 

Assumption 47: We suppose that the cutting-off parameter I and the imaginary 
part T = Im s of the considered complex parameter s satisfy the inequality e t T2. 

	

Proposition 48: We suppose o	N + e, 0 < e < 1/10, (108) - (117), 01 ^ o• 
and Assumption 47. Then it holds 

(i) f4N+IF 
N+c+iF lY(e,s,t)'I'(el ldel = 0 (.e(01_0)t) + 0 (e("°')') 

(ii) 1N—+iF 
—2N+iF lY(e,s,t)W(e)l ldCl = 0 (e(N__0')t). 

Proof: For = q + iF, s = + TT we define 

4N-4-iF 

	

L6 =
 J	Y(, s, t)W(e)J ldl 
N++sF 

and get

L6 :5 10	7 e "'lp( + iF)l d. 
N-i-c 

By using Proposition 43, it follows 

	

'(,7 + iF)l =	 for '7 € [N + c, 4N]. 
C. 

We easily deduce that 

L6 = 0 (- J e_tF2m(0,_+2) d,7


	

N-f,	 )
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I 2N+c	 / 4N 
=	

(- J 

e_0iF2(_2fI+o) dii 
N	

) +	J 
+c	 2N+c 

I	 2N+c 

= 0	eF2(2N4 J (e'/F2 )' d,7)+ 0 (-e(4N_"t). 
N+ 

Using (115) and Assumption 47, we obtain	T2 F2 . Accordingly we get 
N+c 

L6 =	( . e_0tF2(m' (F2 )	) + 
0 (_e(41t) 

= 0 (-F2Ne71_9) + 0 (e") 

This proves (i). 
In order to study

N—+iF 
L7 =	J	I Y(,s,t)'I'()I IdCI 

—2N+iF 
we use Proposition 25 and get 

/ N—c+sF 
L7 = 0 ( J e t I - W,(2N - ) +	- N)d 

\-2N+iF 

By Proposition 41 we obtain 

- )I = 0 (F%_1) for € 1-2N + iF,N - e + iF]. 

Using	- N)I = O(F' 1 ), it follows 

7 =.O ((pn_i + Ft 1)Je(77_0•)tdi7) = (e_t_t). 

Thus also statement (ii) is proved I 

Using Proposition 48 a quick calculation shows 

Proposition 49: We suppose o 1 = N + e, 0 < e < 1/10, 01 15 o, (108) - (117) 
and Assumption 47. Then it holds 

(i) f,N+.FF, X(,s,t)'I'()I dj = 0 (Le(oi_)t) + 0 (e(4N_)t) 

(ii) f'	IX(, s, i)W()I IdI = 0 (e(N_c_7). 

Proposition 50: We suppose °i N.+ e, 0 < e < 1/10, 01 < o, (108) - (117) 
and Assumption 47. Then it holds 

N.fc+IF	 S 

J Y(,s,t)'119(.)4= 0(F2Ne(ffI_Q•)i) 
N—c+iF
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Proof: Proposition 40 with = i + iF implies

1 = Q(pfl_l) + K;,	
d(4) - N - ir;,(z) r: SP 

for E[N — +iF,N++iF]. Weget 

N+c+iF 

	

L8 
=	J Y(,s,t)W;,(.)de 

N—+,F 
N++IF 

	

=	J Y(,s,t)O(F`)d	 (127) 
N—e+iF

N++iF 

d;(1) J Y(,s,t)	1	
d. 

"ESP	 N—+iF	
- N - ir,(t) 

It holds - sI ^! 10 and thereby we get 

N+c+,F JY(,s, t)O(F') d = O( e(ditF1).	 (128). 
N—c+iF 

In order to analyze
N+c+iF	

1 
= J Y(, .s, t)

N 
N—c+,F	

- - zr;,(jz) 

we use the Cauchy integral theorem transforming the path of integration into a semi-
circular. We denote the upper semi-circular above [N - + iF, N + c + iF] by H and 
the corresponding lower semi-circular by H. Since (113) we have r;,() 36 F. Then the 
function is holomorphic with respect to in the domain bounded by H and 
H because of 54 s. For r;,(i) > F and r;,( j ) <F we use H and H+ , respectively as 
the new path of integration. Using c < 1/10 we get - I > 9 and - N - ir;,(s)( > e. 
It follows

	

= O(e_0t).	 (129)


Thereby the 0-term is independent of z and T. From (127) - (129) we get 

L8 = 0(e 1	)tF71) +	>	O(d;,(iz)e(°•)).	(130)

Irp(p)—FI<1 

Proposition 34 implies EIrp()-Fj<1 d;() = O(F'') and we easily obtain the assertion  

Of course, we again get the corresponding result using X(e,s, t) instead of Y(,s, t).
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Proposition 51: We suppose 01 = N + e, 0 < e < 1/10, a 1 o, (108) - (117) 
and Assumption 47. Then it holds 

N+c+IF 

J X(e,s,t)'I(.)d = 0(F2Ne(1it). 

N—+iF 

We have described the integrals on the right-hand side of (122) and get information 
about the term on the left-hand side of (122). 

Proposition 52: We suppose o = N + e, 0 < e < 1/10, 01 :5 o, (108) - (117) 
and Assumption 47. Then it holds 

+iF 
---

 27ri 
1 X(,s,t)W9()de 

J

) = 0 ([i + (F)2N] e_2Nt +O I)	
/F2N -e (2N+0)t 

+0 (e4N(---')t)' + ( 1	e44t) 
 

( F
-N	) +

	Res(X(,s,t)'I'()). 
•EPOIA. 

Proof: Proposition 45 states 

1
J 

X(,s,1)W,()d = 0 (11 + ( )2] e2N(4t). 
—A—IF 

Further on, we apply Propositions 46, 49 and 51: 

2vi
1
- / X(,s,t)W9()d 

—A+iF

	

Q (f2N (2N+.)t) + O(e4N;;i)	 (131) 

+0 (
e4N(4 it) +0 G	e1t 

o 1 —N  

There are similar calculations for f'F instead of	The proposition is completed 

by a simple application of the Cauchy integral theorem I 

Proposition 53: We suppose 01 = N + e, 0 < e < 1/10, 01 < 0, (108) - (117) 
and Assumption 47. Then it holds 

1	,, o+IF 
I	X(,,t)W(e)d 

Jci—tF
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0(tI_ne4N(0_dui) 
+ (a'TNe44N_t) 

+0(F2Nt_e_(2N+0t) + o 
(

F 2"t 
- N 

e4Nfn_it) 

MP 
+t'	V/X(—k, s, t) + tl-n ErX(sk , s, t) 

k=1	 k=1 

+t" E 2Kd;(,u)x(s(,4),s,t) 
)ACS 

O<r(p)<F 

+t 1 '	E	2(i)X(s(z), s, t) + (-1 )_I ''(s). 
ESp 

O<rp(p)<F 

Thereby we have used the residues of ''(s) in the poles = —k given by Vk = (—l)''22(N+ 
k)(V)P(—(N + k) 2 ) for n even and vk = 0 for n odd. The residues in the poles = 
31,..•, 3M are denoted byr(k= I,—, MP). 

Proof: We use Proposition 52 and take the limit A - . We obtain 

urn o( I i + ()21] e_2N(4t)t) = o. A—.00 

For the calculation of the residues we use Proposition 23. From the equation 

[e - e2 J'x' = e_ 1 )2t (1 - 

= (1 + . . .)(—zt + . . 
= (—t)' l _, + 

we conclude Res,X(,s,t) = (—t). We remark, that (112) and (113) ensure that 
= s is no pole of 'Ii() u 

Proposition 54: We suppose (108) - (117) and Assumption 47. Then it holds 

(i) i:.r IX(, s, t)'u'(e)I IdeI = 0(t1_0e4N(0_)t) 

(ii) t'	i:	IX(, s, )''()I Idl = 0(t1_le4N(0_()t). 

Proof: Since (111) and (112) we have 4N <a <6N and Re(—s)= a — o > 2N 
for C E (a + iF, a + ico). It follows 

0+100	
0+IOO J X(

4N(0_lT•)t 
, s, t)W()I IdI 

.5

I e - sj'	0(1) 
o+iF

00	
1	

d,7< 0(e)) 
1  
F F L -	 a - o') 2 + ( - T)2]"'2 

^ 
0(4N(o_a)t) 

= 

This proves (i), the proof of (ii) is similar u
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Proposition 55: We suppose a 1 = N + c, 0 < e < 1/10, O	o, (108) - (117)

and Assumption 47. Then it holds 

= (—l)''W(s) + O(t1_ne4N(_t) + o(	e4N(4_ui) 
- N 

• 0(F2Nt_e_(2N4(7t) + 0(p2NjI_n e1t) 
- N 

M,, 
• t'"	v,X(—k, s, t) + t''	s, t) 

k=1	 k=1 
• t1—n E 2d;(,)X(s(,),s,t) 

ESp 
O<rp(.)!5F • t i "	E 29(&)X(s(),s,t). 

IEsp 
O<rp(p)!5F 

Proof: The assertion is an immediate consequence of definition (109), Proposition 
53 and Proposition 54. 

Our next aim is a simplification of the estimation of Proposition 55. It will turn out 
to be useful to suppose the following 

Assumption 56: From now on we suppose 
(i)et <T 

(ii) 011 = N+ 
(iii) a1 < cr < 4N. 

We get part (ii) of Assumption 56 if we minimize	 with respect to a1. 

Proposition 57: We suppose (108) - (117), Assumption 47 and 56. Then it holds 

(-1)'' 'P(s)	'I'(s) + S# + 

with
= t 1	2d(p)X(s(j), s, t). 

,E Sp 
Irp(M)TI!510 

Proof. We first want to prove the assertion of Proposition 57 with 

= t'' E 2k9d(p)X(s(p),3,t) 
Sp


O'p(M)F 

instead of S#. In order to reach this goal we want to show that the 0-estimates of 
Proposition 55 are included in the 0-estimate of Proposition 57. 

1. We consider t1_%e4t(0_a')t. If we have 0	a	2N, then we get cl= 4N by 
(Ill) and therefore Assumption 56/(i) gives 

< T2N and	 < e2diTh T 2
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and consequently
g_2N e4N (0_d u t T2 e2N('_c 

For 2N	< 4N it holds a, = 2N + c and thereby 

e(3N+t ^ T, e(20_27_) T, j_2N e4N(ooit	' T2 e2N_01t. 

It follows j-2N e4N(_) t < O(T2' e2N(N_0) and thereby 

t_ 2 "	= O(T2N e(N-)t)	 (132) 

2. We consider o __L -N _t_2Ne4N(4N_t7)t. According to Assumption 561(u) we have 
(ai - N)t = 1 and therefore al -1 t 1. Furthermore Assumption 56/(i) implies 
e4'(4N)t < T 2 e2N(N. Consequently we get 

1	j_n e4N (4N_ )t = O(T2N e2N(N_t7)i) 
- N 

and

- Nte	 = O(T2N e(N_)t)	 (133) 

3. We consider F2N t e_(2N)9. We immediately obtain 

F 2 Fn e 2N+u-)t	(72N eut).	 (134) 

4. Assumption 561(u) implies e(1 )t =	e and consequently we get 

F 2 el t = O(T2N e(V_t).	 (135) 

5. Since vk = O(k') by Proposition 23, we obtain 

tl-n 00 V/X(k, 3, t)I = 0 
(tl 

'1 
-  

k=i	 I	 Ik+sI'	
k' 1 )	 (136) 

= 0 ( t l-n *
e
 -(m-i)c	Te__1t)	(137) 

	

= 0 (t1_n T' eTh_1)t) .	 (138) 

We apply
t' - T' -()0t = O(T2N e2') 

and get

	

V/X(_k, s, t) = O(T2N e_09).	 (139) 

6. We consider the poles 3k (k 1,.. . , M,) of 'I'(s) which have the imaginary part 
0 (cf. Proposition 23). Then it holds 0 Resk < 2N and we have 0 < Res(p) 2N 
and

IX(sk, 3, t) 15 T[e(20 )i +
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From Assumption 56/(i) we get 

T e(2N_7 ) i = O(T2N e(N_0)i) and TTh e4N (2N_ it = O(T2N e'). 

Consequently we obtain 
M,	 -  

T'	
e_2(3_5	I = O(T2 ' e2N( N_ ) t ) .	 (140) 

(sk - k= 1 

7. Further on we get 

L9 =	 s, t) 
1	O<rj,(u)<F 

(	-,	 O(e(N 

O<r(u)<F	

_(7)t) 
= 0	L, d() S—(,.) - s n gn—i 

\  

= L : d;()t1_mT_ne_t 

The condition 0 < rp(j) < F shall be an abbreviation for it .E Si,, Jmr(p) = 0 and 
< ri) < F. The Weyl asymptotic estimate (1) implies o<r,()<pd;(ji) = 0(F) = 
0(T') and thereby

= 0(te") = 0(T2Ne_)t). 

In order to get this estimation we have used Imst) <0 and I s- (JA ) - s I ^! T. We can 
not use a similar consideration for .s(z) instead of s(). We get 

I	2?d(1z)X(s(1L),s,t)I = O(T2Ne2_t)	(141) 
IOrp(u)F	 I 

and the theorem is proved for S instead of S# . We have shown 

= W(s) + O(T2Ne_0t) + t'	2Kd;()X(S(,L),s,t).. 
O(rp(4!5F 

Next we consider

Ljo 
=	2Kd(/z)X(s(/),s,t). 

O<rp(u)G 

We easily see

IL10 I = .0 
(L( - N)2 + . (T - r9()212 

It follows 

1L10 1 = 0 (i1_te_*_1)t I + I	- N)2 + (T - 
r)2j'2 dN(r)]).'	(142)
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We apply Proposition 34. It holds N(r)	np r" + R,,(r) with IR(r)I = O(r"'). We 
split up the integral in (142). We first consider 

L1 = 

	

t i-n 	1	
d(nr') 

- N)2 + (T - r)2]T/2 

C 

	

= ti-n	n np rn-I 

if [(° - N) 2 + (T - 

It follows

ILii = 1 

1. [(a. - N)2 + (T - r)2]2 dr) 

	

C	 —n/2 (Gn—I 

	

=	•1N)nJ[1+(i)2J	dr) 

	

(an-I	1	 -i 

= 0\(._N)flJ[1+(C. N)] dr) 

	

(	1 

	

0 ( Gn-I 	1 
t'(cr_N)n j	dr 

	

=	 1+2 ). 

By Assumption 561(u) and (iii) we get t(o - N) ^! 1 and thereby jLiiI = O(G 1 ) = 0(T2N). The other term resulting from the decomposition .iV;(r) = n, r" + 1?.,,(r) is 
C 

L 12 = ti-n [(c - N) 2 + (T - r)2}_2 d1(r). 

The integrand [(c - N)2 + (T - r)2]-n/2 is monotonically encreasing for 0 < r G. We obtain L12 = 0(t 1 ' fjG dR,,(r)). Using partial integration, it follows L 2 = 0(G"/t'1) 
and thereby L12 = 0(T2 '). Using (142), we get 

	

t1—	 X(s(ji),s, )l = O(T2Ne(0)t).	 (143) 

	

Orp(gs)<C	 I 

Thereby the proof of Proposition 57 is completed  

Proposition 58: We suppose (108) - (117), Assumption 47 and 56. Then it holds 

'4',(o- + iT) = (1)n-1 w	02N( l (3) + (Te tV	)t) +0(eIW '(o i + iT)I) .	(144) 

C 

Proof: It holds

	

I e' ) ') =	<
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with k E N. It follows

- e2(a+(_1)u ] I_u I < 
and thereby

t1-

	

	 d(X(st),s,t) 
Ir,()—TI<iO 

0_TI2TI_1te_0t	 (145) 
Ir(p)—TI<iO [( 0-. - N)2 + (T - 

with	:5 1. Assumption 561(u) implies 

1	 1	 (c1—N) 
t' [(0. - N)2 + (T - rp(ji))2Jfh12 - [( - N)2 + (T - 

o1—N 
- [(ci' - N)2 + (T - 

We apply Proposition 57 and we get with a number t9 l with 1t911 :5 1 the equation 

	

)n-1 pp(,)= l(s) +0 (T2Ne(N—a*)' 	 (146) 
+

ci, - N x	,2lcPd;(I1)[(0 - 
N)2 + (T - 

for o	o < 4N. We 'remark that by Proposition 34 we can use EIrp(u)—TI<l as well as

EIrp(M)-TI<iO in the equations above. Further on, by Proposition 40 we obtain 

1 W(c, + iT) = O(T 1 ) + ?C,

	

	 ç(IL)( - 
N) + i(T - Ir(u)—TI<IO 

We get

- 
Re I'(a + iT) = O(TTI_l) + K

	

	 d-* C	
ci, 

Na)	- N)2 + (T - fp(p))2	
(147)


Ir(,4)—TI<I0 

Equation (146) implies 

ReW(ci + iT) = Re [(_1)'W1(ci, + iT)] + O(T2Ne_i)

(148)


	

x E 2d)	
- N 

Ir,(s)—TI<10	(a.' - N)2 + (T - r(u))2 

with It9 i j <2. Using (147) and (148) it follows 

= 

Re'J4 1 (s) =

x

	

	
d;()( ' -N)	

+ O(T2N).	(149)

Ir(p)—TIiO (o- - N) 2 + (T -
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We get

°1 N 
- N) 2 + (T - r(i))2 = o(I 1 j + iT)I) + O(T2N ) .	(150) 

frp(s)-TI 
The combination of the last equation and equation(146) proves the assertion of the theo-
remi

Proposition 59: We suppose (108) - (117), Assumption 47 and 56. Then it holds 

arg Z,(N + iT) = -Im [ E A,(w) 

+o( iT ) +o(i 

Proof. We have 

arg Z9 (N + iT)	- Jim (a + iT)d + arg Z(4N + iT) 

= -JIm(ci+iT)da+O(1)	 (151) 

-	

= _NImp(c+iT) do, _(cI  -N)IrnW(ui +iT) 

+JIm [( i + iT) -	+ iT)]d + 0(1). 

We consider the terms on the right-hand side. 
1) We first consider Jj = JQ J ',(o + iT) do Proposition 58 gives 

4N 
= ( _i )''j irn%l4(+iT)d.7 

+ O ( I ! ' (a i -4- iT)I)J e_)td + 

im	 + 0(1) 
wEfl 

+ o(E A(w)e_M 1+tT e(N_71)t) + 0(T2_e(N_I)t) 

It follows

	

Jj = (-1)'ic, fin	 + 0(1)	(152) 
'EO	1(w) 

+0( l	A(w)e_l	+0 T2 


	

wEfl	 1)
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2) We consider J2 = —(at - N)Im 'I',,(o i + iT). By Proposition 58 we obtain 

1 J21 =	+ iT)Iw(a i + iT)t)	 (153) 

= o(!I	A ,)e_10141T)) + O(T2N). 

3) We consider J3 = f' fin f lIl (aj + iT) - '1',,(o- + iT)] da. Proposition 40 yields 

IM	+ iT) - 'I1 (cr + iT)] - O(T-)
1	 1 

= +K	 ()Im  
fr (p)-TI<lO	

(1 - N + i(T - r()) - a - N + i(T - rp(p)))

= KPE	di)(
	

—(T - rp (j))	+	T - r() 

fr(u)-TI<lO	(aj - N)2 + (T - r(&)) 2 (a - N)2 + (T - rp(ji))2) 

=	
[T - r(i)][(ai - N) 2 - (a - N)2) 

- N)2 + (T - r9(L))2][(a - N)2 + (T - r(/L))2] 

IT - rp()I(o i - N)2 
d(1) 

[(Cl - Ir(u)-TI<lO	 N)2 + (T - rp(jz))2][(a - N)2 + (T - 

It follows
Cl 

1J31 ( JO(Tl_1) 
N 

+	
d;()IT -rp(,z)I(ai- N)2

da 
frp(p)-TI<1O 

[(a 1 - N)2 + (T - r(z)) 2][(a - N)2 + (T - 

^ O(T''(ai —N)) 

d! (p)	(a1-N)2  j da 
lr(p)-Tj<1O	(a1 - N)2 .+ (T .-rp(it))2	(a - N)2 -4- (T - 

N 

= O(T'(aj - N)) + o 
(jrp(jA)-Tj<10 

d(/1)_(C1 - N)2

 (a1 - N)2 + (T - rp(p))2 

= o(r-') + 0 
(i > d(1L)_a - N 

IrP(p)T1<10	(a1 - N)2 + (T - rp())2) 

We apply (151) and get 

J3 = ô(T') t° (i	A)e)uI).	 (154) 
wEll 

Summarizing (152) - (155) we obtain the assertion u 

Now we can give the
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Proof of Theorem B: We first suppose (113). Proposition 59 implies 

arg Z(N + iT) = (-1)	 '' A(w)--e'' sin (l(w)T) 
wEO	F(W) 

+0 (11F A(w)e_1(1d ' 4iT) I) + o(T__'_) 

=
 0 (

+ o(_). 
wEfi 

Equation (119) implies A P (w) = O(A,()) with an 0-term not depending on W E Q. 
Using (122), it follows 

ary ZP (N + iT) = 0 (	Av(w)e_1) + 0 (s). 

Proposition 5 implies

.Ap(w)e'" = 

We now use e = T' /7 ' (cf.Assumption 56/(i)) and get 

T4NIT	T"' arg ZP (N + iT) = o(---_) + O(—j-_). 

It follows
argZ(N+iT)= o(T—\ "mT1 

and thereby

I1(T)I = O(-;-). 

By right continuity this equation is valid for all T and Theorem B is proved. 
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