A ...

On the Existence of Holomorphic Functions Having Prescribed Asymptotic Expansions

J. Schmets and M. Valdivia

Abstract. A generalization of some results of T. Carleman in [1] is developped. The practical form of it states that if the non-empty subset D of the boundary $\partial\Omega$ of a domain Ω of \mathcal{C} has no accumulation point and if the connected component in $\partial\Omega$ of every $u \in D$ has more than one point, then D is regularly asymptotic for Ω , i.e. for every family $\{c_{u,n} : u \in D, n \in \mathbb{N}_0\}$ of complex numbers, there is a holomorphic function f on Ω which at every $u \in D$ has $\sum_{n=0}^{\infty} c_{u,n}(z-u)^n$ as asymptotic expansion at u.

Keywords: Holomorphic functions, asymptotic expansions

AMS subject classification: Primary 30B99, secondary 46E10

1. Generalities

a) About the vector spaces. All the vector spaces we consider are over the field C of the complex numbers. If A is a subset of a vector space, span A denotes its linear hull. If I is a set, $\omega(I)$ denotes as usual the vector space

 \mathcal{C}^{I} endowed with the product topology. A subset $\{v_{i} : i \in I\}$ of the algebraic dual of a vector space E has the *interpolation property* if, for every family $\{c_{i} : i \in I\}$ of \mathcal{C} , there is $x \in E$ such that $\langle x, v_{i} \rangle = c_{i}$ for every $i \in I$.

For future reference, let us mention the following result of M. Eidelheit, a generalization of which to the case when E is a B-complete space can be found as Theorem 1 of [4].

Theorem 1.1 (Interpolation): A subset $\{v_i : i \in I\}$ of the topological dual E' of a Fréchet space E has the interpolation property if and only if its elements are linearly independent and such that, for every equicontinuous subset B of E', the vector space $\operatorname{span}\{v_i : i \in I\} \cap \operatorname{span} B$ has finite dimension.

b) About the asymptotic expansions. We begin with the following

J. Schmets: Univ. de Liège, Inst. Math., 15 av. des Tilleuls, B - 4000 Liège. Partially supported by a grant of the Belgian CGRI.

M. Valdivia: Univ. di Valencia, Fac. de Math., Dr. Moliner 50, É - 46100 Burjasot (Valencia). Partially supported by DGICIT and the Convenio Cultural Hispano-Belga.

Definition: A holomorphic function f on a non-void domain Ω of \mathcal{C} has an asymptotic expansion at $u \in \partial \Omega$ if the limits

$$a_0 = \lim_{z \in \Omega, \ z \to u} f(z)$$

and, for every $n \in \mathbb{N}$,

$$a_n = \lim_{z \in \Omega, \ z \to u} \frac{f(z) - \sum_{j=0}^{n-1} a_j (z-u)^j}{(z-u)^n}$$

exist and are finite. In such a case,

a) we say that the series $\sum_{n=0}^{\infty} a_n(z-u)^n$ is the asymptotic expansion of f at ub) we write $f(z) \approx \sum_{n=0}^{\infty} a_n(z-u)^n$ at u

c) we use the notations

$$f^{[n]}(u) = a_n \qquad \text{for all } n \in \mathbb{N}_0$$

$$f^{[0]}(z, u) = f(z) \qquad \text{for all } z \in \Omega$$

$$f^{[n]}(z, u) = \frac{f^{[n-1]}(z, u) - f^{[n-1]}(u)}{z - u} \qquad \text{for all } z \in \Omega, n \in \mathbb{N}.$$

(So, in fact, we have

$$f^{[n]}(z,u) = \frac{f(z) - \sum_{j=0}^{n-1} a_j (z-u)^j}{(z-u)^n} \quad \text{for all } z \in \Omega, n \in \mathbb{N}$$

as well as

$$\lim_{z\in\Omega, z\to u} f^{[n]}(z,u) = f^{[n]}(u) \qquad \text{for all } n \in \mathbb{N}_0.$$

c) Notations. Unless explicitly stated, throughout this paper, we use the following notations:

a) Ω is a non-void domain of \mathcal{C} .

b) $\{K_m : m \in \mathbb{N}\}$ is a compact cover of Ω such that $(K_1)^\circ \neq \emptyset$ and $K_m \subset (K_{m+1})^\circ$ for every $m \in \mathbb{N}$.

c) $\mathcal{H}(\Omega)$ is the Fréchet-Montel space of holomorphic functions on Ω , endowed with the compact-open topology (i.e., for instance, with the countable system of norms $\{\|\cdot\|_{K_m} : m \in \mathbb{N}\}$).

d) D is a non-void subset of $\partial \Omega$.

e) $A(\Omega; D)$ is the set of the elements of $\mathcal{H}(\Omega)$ which have an asymptotic expansion at every point of D. Of course, it is a vector subspace of $\mathcal{H}(\Omega)$. We endow it canonically with the topology induced by $\mathcal{H}(\Omega)$. Let us insist on this fact: from now on, $A(\Omega; D)$ is a topological vector subspace of $\mathcal{H}(\Omega)$.

f) The notation T refers to the linear map

$$T: A(\Omega; D) \to \omega(D \times \mathbb{N}_0), \qquad f \mapsto \left(f^{[n]}(u)\right)_{(u,n) \in D \times \mathbb{N}_0}$$

g) For every $u \in D$ and $n \in \mathbb{N}_0$, the notation $\eta_{u,n}$ refers to the linear functional

$$\eta_{u,n}: A(\Omega; D) \to \mathbb{C}, \qquad f \mapsto f^{[n]}(u).$$

As the set $\mathcal{P}(\Omega)$ of the restrictions to Ω of the polynomials is a vector subspace of $A(\Omega; D)$, the next result proves that the linear functionals $\eta_{u,n}$ for $u \in D$ and $n \in \mathbb{N}_0$ are linearly independent on any vector subspace of $A(\Omega; D)$ containing $\mathcal{P}(\Omega)$.

Lemma 1.2: For every subset D of $\partial\Omega$, $\{\eta_{u,n} : u \in D, n \in \mathbb{N}_0\}$ is a set of linearly independent linear functionals on $\mathcal{P}(\Omega)$.

Proof: If it is not the case, there are a finite subset D' of

D, an integer $N \in \mathbb{N}_0$ and elements $c_{u,n}$ of \mathbb{C} for $u \in D'$ and $n \in \{0, \ldots, N\}$ such that $\langle P, \sum_{u \in D'} \sum_{n=0}^{N} c_{u,n} \eta_{u,n} \rangle$ is 0 for every $P \in \mathcal{P}(\Omega)$, although the coefficients are not all equal to 0. So we may suppose the existence of $u_0 \in D'$ and $n_0 \in \{0, \ldots, N\}$ such that $c_{u_0,n_0} \neq 0$ and $c_{u_0,n} = 0$ for every $n \in \{n_0 + 1, \ldots, N\}$. Then the consideration of the polynomial

$$P(z) = (z - u_0)^{n_0} \prod_{u \in D' \setminus \{u_0\}} (z - u)^{N+1}$$

leads immediately to a contradiction

d) About the regularly asymptotic sets. We begin with the following

Definition. The set D is regularly asymptotic for Ω if, for every family

$$\{c_{u,n}: u \in D, n \in \mathbb{N}_0\}$$

of \mathcal{C} , there is a function $f \in A(\Omega; D)$ such that $f(z) \approx \sum_{n=0}^{\infty} c_{u,n}(z-u)^n$ at u for every $u \in D$. So D is regularly asymptotic for Ω if and only if the linear map T is surjective which happens if and only if the set $\{\eta_{u,n} : u \in D, n \in \mathbb{N}_0\}$ has the interpolation property on $A(\Omega; D)$.

In such a case, it is clear that no element of D can be an isolated point of $\partial\Omega$. The next result gives another restriction on such sets D.

Proposition 1.3: If D is regularly asymptotic for Ω , then it has no accumulation point. Hence it is countable.

Proof: If it is not the case, there is a sequence $(u_m)_{m \in \mathbb{N}}$ of distinct points of D converging to some $u_0 \in D$ with $u_m \neq u_0$ for every $m \in \mathbb{N}$. As D is regularly asymptotic for Ω , there is then $f \in A(\Omega; D)$ such that

$$f(z) \approx \sum_{n=0}^{\infty} c_{m,n} (z - u_m)^n$$
 at u_m for all $m \in \mathbb{N}_0$

with

$$c_{m,n} = \begin{cases} 1 & \text{if } m \in \mathbb{N} \\ 0 & \text{if } m = 0 \end{cases} \quad \text{for all } n \in \mathbb{N}_0.$$

This leads directly to the following contradiction:

$$\lim_{z \in \Omega, \ z \to u_m} f(z) = f^{[0]}(u_m) = 1 \quad \text{for all } m \in \mathbb{N}.$$

and

$$\lim_{z\in\Omega,\ z\to u_0}f(z)=f^{[0]}(u_0)=0.$$

Thus the statement is proven

Remark. However these restrictions on D are not sufficient to

ensure that D is regularly asymptotic for Ω . If we set $\Omega = \mathbb{C} \setminus (\{0\} \cup \{1/m : m \in \mathbb{N}\})$, it is clear that $D = \{0\}$ has no isolated point of $\partial\Omega$ and that D has no accumulation point. However, for every $f \in A(\Omega; D)$, there is a neighbourhood U of 0 such that f is holomorphic and bounded on $U \setminus (\{0\} \cup \{1/m : m \in \mathbb{N}\})$. Hence f must have a holomorphic extension to $\mathbb{C} \setminus \{0, 1, \ldots, 1/M\}$ for some $M \in \mathbb{N}$ therefore to $\mathbb{C} \setminus \{1, \ldots, 1/M\}$.

e) Aim of this paper. In [1], T. Carleman has proved the following:

a) Every finite subset D of the boundary of a bounded, convex and open subset Ω of \mathbb{C} is regularly asymptotic for Ω ; for every family $\{c_{u,n} : u \in D, n \in \mathbb{N}_0\}$ of \mathbb{C} , there are infinitely many functions $f \in A(\Omega; D)$ such that $f(z) \approx \sum_{n=0}^{\infty} c_{u,n}(z-u)^n$ at u for every $u \in D$ (cf. [1: p. 31]).

b) {0} is regularly asymptotic for the open subset

 $\Omega = \{ z \in \mathcal{C} : ||z|| < R \} \setminus \{ (x, 0) : x \le 0 \}$

of C (cf. [1: p. 37]).

We are going to generalize these results. We will first introduce some definitions and a basic result when D is a singleton, then consider the case when D is finite, next discuss the case when D is countable and finally state the generalizations we have obtained.

2. If D is a singleton

Let u be a point of $\partial \Omega$. For every $r \in \mathbb{N}$, we set

$$A_r(\Omega; \{u\}) = \left\{ f \in A(\Omega; \{u\}) : \sup_{z \in \Omega, |z-u| \le 1/r} |f(z)| < \infty \right\}.$$

Clearly $A_r(\Omega; \{u\})$ is a vector subspace of $A(\Omega; \{u\})$ and

$$\bigcup_{r=1}^{\infty} A_r(\Omega; \{u\}) = A(\Omega; \{u\}).$$

Moreover an easy recursion on $j \in \mathbb{N}$ establishes that the boundedness of $f \in A(\Omega; \{u\})$ on $\{z \in \Omega : |z - u| \le 1/r\}$ implies for every $j \in \mathbb{N}$ the boundedness of $f^{[j]}(\cdot, u)$ on the same set. Therefore, for every $n \in \mathbb{N}$,

$$p_{u,r,n}: A_r(\Omega; \{u\}) \to [0, +\infty), \quad f \mapsto \|f\|_{K_n} + \left\|\sum_{j=0}^n |f^{[j]}(\cdot, u)|\right\|_{\{z \in \Omega: |z-u| \le 1/r\}}$$

is a semi-norm on $A_r(\Omega; \{u\})$; it is even a norm since Ω is a domain and since $(K_n)^{\circ} \neq \emptyset$ for every $n \in \mathbb{N}$. So

$$P_{u,r} = \{p_{u,r,n} : n \in \mathbb{N}\}$$

is a countable system of semi-norms on $A_r(\Omega; \{u\})$, endowing this space with a metrizable locally convex topology which is finer than the one induced by $\mathcal{H}(\Omega)$. In fact more can be said: we will prove in the next section that $(A_r(\Omega; \{u\}), P_{u,r})$ is a Fréchet space.

The sets

$$V_{u,r,n} = \left\{ f \in A_r(\Omega; \{u\}) : p_{u,r,n}(f) \le \frac{1}{n} \right\} \qquad (n \in \mathbb{N})$$

constitute a fundamental basis of the neighbourhoods of the origin in $(A_r(\Omega; \{u\}), P_{u,r})$. So, for every sequence $\mu = (m_n)_{n \in \mathbb{N}}$ of \mathbb{N} ,

$$B_{u,r,\mu}=\bigcap_{n=1}^{\infty}m_nV_{u,r,n}$$

is an absolutely convex and bounded subset of that space but more can be said here too.

Proposition 2.1: For every $u \in \partial \Omega$, $r \in \mathbb{N}$ and $\mu \in \mathbb{N}^{\mathbb{N}}$, the set $B_{u,r,\mu}$ is an absolutely convex and compact subset of $\mathcal{H}(\Omega)$.

Proof: As $B_{u,r,\mu}$ is an absolutely convex and bounded subset of the Fréchet-Montel space $\mathcal{H}(\Omega)$, it is enough to prove that $B_{u,r,\mu}$ is sequentially closed. Let $(f_k)_{k\in\mathbb{N}}$ be a sequence of $B_{u,r,\mu}$ converging in $\mathcal{H}(\Omega)$ to f. First we establish that f has an asymptotic expansion at u with

$$f^{[j]}(u) = \lim_{k \to \infty} f^{[j]}_k(u)$$

for every $j \in \mathbb{N}_0$. For every $k \in \mathbb{N}$, as we have $f_k \in B_{u,r,\mu}$, we get at once $|f_k^{[0]}(u)| \leq m_1$. So from every subsequence of $(f_k^{[0]}(u))_{k \in \mathbb{N}}$, we can extract a subsequence converging to some $a_0 \in \mathbb{C}$. As we also have

$$\left| f_{k}^{[1]}(z,u) \right| = \left| \frac{f_{k}^{[0]}(z,u) - f_{k}^{[0]}(u)}{z-u} \right| \le m_{1}$$

for every $k \in \mathbb{N}$ and $z \in \Omega$ such that $|z - u| \leq 1/r$, we get

$$\left|\frac{f(z)-a_0}{z-u}\right| \le m_1$$

for every $z \in \Omega$ such that $|z - u| \leq 1/r$, hence $\lim_{z \in \Omega, z \to u} f(z) = a_0$. The conclusion is then direct by use of a recursion.

It is then an easy matter to check that f belongs to $B_{u,r,\mu}$. Hence the conclusion

3. If D is finite

If $D = \{u_1, \ldots, u_J\}$ is finite, we use the following notations: a) For every $r \in \mathbb{N}$,

$$A_r(\Omega; D) = \bigcap_{u \in D} A_r(\Omega; \{u\})$$

=
$$\left\{ f \in A(\Omega; D) : \sup_{z \in \Omega, |z-u| \le 1/r} |f(z)| < \infty \text{ for all } u \in D \right\}.$$

So $A_r(\Omega; D)$ is a vector subspace of $A(\Omega; D)$ and

$$\bigcup_{r=1}^{\infty} A_r(\Omega; D) = A(\Omega; D).$$

b) For every $r, n \in \mathbb{N}$,

$$p_{D,r,n}: A_r(\Omega; D) \to [0, +\infty), \qquad f \mapsto \sup\{p_{u,r,n}(f): u \in D\}$$

is a norm on $A_r(\Omega; D)$ and

$$P_{D,r} = \{p_{D,r,n} : n \in \mathbb{N}\}$$

is a countable system of norms on $A_r(\Omega; D)$ endowing it with a finer locally convex topology than the one induced by $\mathcal{H}(\Omega)$. From now on, if D is finite and if r > 0, the notation $A_r(\Omega; D)$ will refer to the locally convex space $(A_r(\Omega; D), P_{D,r})$. So

$$V_{D,r,n} = \left\{ f \in A_r(\Omega; D) : p_{D,r,n}(f) \le \frac{1}{n} \right\} \qquad (n \in \mathbb{N})$$

is a fundamental sequence of neighbourhoods of the origin in $A_r(\Omega; D)$.

c) For every sequence $\rho = (r_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$,

$$B_{D,\rho}=\bigcap_{u\in D}B_{u,r_1,\rho_1}$$

where ρ_1 is the sequence $(r_{n+1})_{n \in \mathbb{N}}$. Of course, $B_{D,\rho}$ is an absolutely convex and compact subset of $A(\Omega; D)$; moreover it is a bounded subset of the space $A_{r_1}(\Omega; D)$.

Proposition 3.1: If D is finite, then, for every $r \in \mathbb{N}$, $A_r(\Omega; D)$ is a Fréchet space.

Proof: Let $(f_k)_{k \in \mathbb{N}}$ be a Cauchy sequence. As it clearly is a Cauchy sequence in $\mathcal{H}(\Omega)$, it converges in $\mathcal{H}(\Omega)$ to some f. Let us prove now that f belongs to $A_r(\Omega; D)$. Let us fix $u \in D$. Let us also fix $j \in \mathbb{N}_0$. On one hand, for every $k \in \mathbb{N}$, the

function $f_k^{[j]}(\cdot, u)$ on Ω has a finite limit $f_k^{[j]}(u)$ at u. On the other hand, the sequence $(f_k^{[j]}(\cdot, u))_{k \in \mathbb{N}}$ is uniformly Cauchy on $\{z \in \Omega : |z - u| \leq 1/r\}$. Therefore the two limits

$$\lim_{k\to\infty}\lim_{z\in\Omega,\ z\to u}f_k^{[j]}(z,u)=\lim_{k\to\infty}f_k^{[j]}(u)$$

and

$$\lim_{z\in\Omega,\ z\to u}\lim_{k\to\infty}f_k^{[j]}(z,u)$$

exist, are finite and are equal. A direct recursion on $j \in \mathbb{N}_0$ establishes then that f has an asymptotic expansion at u.

It is finally a standard matter to prove that the sequence $(f_k)_{k \in \mathbb{N}}$ converges in $A_r(\Omega; D)$ to $f \blacksquare$

The previous result is also a consequence of the following considerations which will prove to be very fruitful (we refer the reader to [3] for the definition and the properties of the quasi-LB spaces and representations).

Proposition 3.2: If D is finite, then the family $\{B_{D,\rho} : \rho \in \mathbb{N}^{\mathbb{N}}\}$ is a quasi-LB representation of the space $A(\Omega; D)$, made of absolutely convex and compact sets.

Proof: By Proposition 2.1, for every $\rho \in \mathbb{N}^{\mathbb{N}}$, $B_{D,\rho}$ is an absolutely convex and compact subset of $\mathcal{H}(\Omega)$ hence of $A(\Omega; D)$ since it is a subset of $A(\Omega; D)$. It is also clear that, for every $\rho, \sigma \in \mathbb{N}^{\mathbb{N}}$ such that $\rho \leq \sigma$ (i.e. $r_n \leq s_n$ for every $n \in \mathbb{N}$ if $\sigma = (s_n)_{n \in \mathbb{N}}$), we have $B_{D,\rho} \subset B_{D,\sigma}$.

To conclude, it is then enough to check that $\bigcup_{\rho \in \mathbb{N}^N} B_{D,\rho}$ is equal to $A(\Omega; D)$. This is a direct matter: every $f \in A(\Omega; D)$ has an asymptotic expansion at every element of D so it is a bounded function on $\bigcup_{u \in D} \{z \in \Omega : |z - u| \le 1/r\}$ for

some $r \in \mathbb{N}$. Moreover, for every $n \in \mathbb{N}_0$, there is $s_n \in \mathbb{N}$ such that $f \in s_n V_{D,r,n}$. Therefore f belongs to $B_{D,\rho}$ with $r_1 = r$ and $r_{n+1} = s_n$ for every $n \in \mathbb{N}$

Now, as in [3], for every $\rho = (r_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$, we may introduce successively: a) For every $n \in \mathbb{N}$, the set

$$B_{D,r_1,\ldots,r_n} = \bigcup \{B_{D,\sigma} : \sigma = (s_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}; s_1 = r_1,\ldots,s_n = r_n\}.$$

In fact, it is a direct matter to check that in our case

$$B_{D,r_1} = A_{r_1}(\Omega; D)$$

and, for every n = 2, 3, ...,

$$B_{D,r_1,\ldots,r_n} = (r_2 V_{D,r_1,1}) \cap \ldots \cap (r_n V_{D,r_1,n-1}).$$

b) For every $n \in \mathbb{N}$, the linear hull $F_{D,r_1,...,r_n}$ of $B_{D,r_1,...,r_n}$. Of course, in our case, we get at once $F_{D,r_1,...,r_n} = A_{r_1}(\Omega; D)$ for every $n \in \mathbb{N}$.

c) The vector space $F_{D,\rho} = \bigcap_{n=1}^{\infty} F_{D,r_1,\dots,r_n}$, i.e. $F_{D,\rho} = A_{r_1}(\Omega; D)$ in our case.

At this point, [3] provides another way to prove that, for every $r \in \mathbb{N}$, $A_r(\Omega; D)$ is a Fréchet space. **Definition:** If D is finite, we have

$$A(\Omega; D) = \bigcup_{r=1}^{\infty} A_r(\Omega; D)$$

and, for every $r, s \in \mathbb{N}$ such that r < s, the canonical injection from $A_r(\Omega; D)$ into $A_s(\Omega; D)$ is continuous. Therefore we may endow $A(\Omega; D)$ with an (LF)-topology τ by considering the inductive limit of the sequence $(A_r(\Omega; D))_{r \in \mathbb{N}}$ of Fréchet spaces. Of course, τ is finer than the topology of $A(\Omega; D)$.

Notations: If $D = \{u_1, \ldots, u_J\}$ is a finite subset of $\partial \Omega$, then, in this section and unless specifically stated, we use the following notations:

a) For every $j \in \{1, ..., J\}$, the notation T_j refers to the linear map

$$T_j: A(\Omega; D) \to \omega(\mathbb{N}_0), \qquad f \mapsto \left(f^{[n]}(u_j)\right)_{n \in \mathbb{N}_0}$$

which is continuous if we endow $A(\Omega; D)$ with the topology τ and L_j is the vector subspace span $\{\eta_{u_j,n} : n \in \mathbb{N}_0\}$ of the topological dual $(A(\Omega; D), \tau)'$.

b) $L = \operatorname{span}(\bigcup_{j=1}^{J} L_j).$

Now we are looking for necessary and sufficient conditions under which D is regularly asymptotic for Ω .

Definition: If r belongs to \mathbb{N} , the finite subset D of $\partial\Omega$ is r-regularly asymptotic for Ω if the restriction of the map T to $A_r(\Omega; D)$ is also surjective onto $\omega(D \times \mathbb{N}_0)$.

Proposition 3.3: The finite subset D of $\partial\Omega$ is regularly asymptotic for Ω if and only if there is $r \in \mathbb{N}$ such that D is r-regularly asymptotic for Ω .

Proof: The proof of Proposition 9 in [4] applies also to this case

Corollary 3.4: If D is finite and is regularly asymptotic for Ω , then the kernel of T has 2^{\aleph_0} as algebraic dimension.

Proof: By the previous proposition, there is $r \in \mathbb{N}$ such that the restriction S of T to $A_r(\Omega; D)$ is a continuous and surjective linear map. To conclude, we just have to prove that the Fréchet subspace ker S of $A_r(\Omega; D)$ is not finite-dimensional. If it were finite-dimensional, it would have a topological complement M and the restriction of T to M would appear as an isomorphism in between M and

 $\omega(D \times \mathbb{N})$ although M has a continuous norm

The next result comes from [5]. We repeat it here, with proof, for the sake of completeness since the reference [5] is not readily accessible.

Theorem 3.5: The finite subset D of $\partial\Omega$ is regularly asymptotic for Ω if and only if, for every $u \in D$ and $(c_n)_{n \in \mathbb{N}_0} \in \omega(\mathbb{N}_0)$, there is $f \in A(\Omega; D)$ such that $f(z) \approx \sum_{n=0}^{\infty} c_n (z-u)^n$ at u.

Proof: The condition is trivially necessary. The condition is also sufficient. Indeed, if D is a singleton, the result is trivial. So let us consider the case $D = \{u_1, \ldots, u_J\}$ with an integer $J \ge 2$.

For every $j \in \{1, \ldots, J\}$, T_j is clearly a surjective, linear and continuous map. So the Fréchet space $\omega(\mathbb{N}_0)$ is equal to $\bigcup_{r=1}^{\infty} T_j A_r(\Omega; D)$ hence there is $r_j \in \mathbb{N}$ such that $T_j A_{r_j}(\Omega; D)$ is a second category vector subspace of $\omega(\mathbb{N}_0)$. As a surjective, linear and continuous map from the Fréchet space $A_{r_j}(\Omega; D)$ onto its image, the restriction of T_j is a topological homomorphism. Therefore $T_j A_{r_j}(\Omega; D)$ is a Fréchet space hence is equal to $\omega(\mathbb{N}_0)$.

To conclude, we are going to prove that, for $r = \sup\{r_1, \ldots, r_J\}$, the set

$$\{\eta_{u,n}: u \in D, n \in \mathbb{N}_0\}$$

has the interpolation property on $A_r(\Omega; D)$. By Theorem 1.1, as these

continuous linear functionals on $A_r(\Omega; D)$ are linearly independent, we just need to prove that, for every $s \in \mathbb{N}$, the dimension of the vector space $L \cap \text{span } V_{D,r,s}^{\circ}$ is finite.

Let us fix $s \in \mathbb{N}$ and, in order to simplify the notations, let us set $U = V_{D,r,s}$. For every $j \in \{1, \ldots, J\}$, the restriction of T_j to $A_r(\Omega; D)$ is surjective hence the dimension of $L_j \cap \operatorname{span} U^\circ$ is finite: there is $N(j) \in \mathbb{N}$ such that

$$\left(\beta_0,\ldots,\beta_N\in \mathbb{C}:\beta_N\neq 0;\sum_{n=0}^N\beta_n\eta_{u_j,n}\in \operatorname{span} U^\circ\right)\Longrightarrow N\leq N(j).$$

To conclude, it is then sufficient to prove that

$$\zeta = \sum_{j=1}^{J} \sum_{n=0}^{N} \alpha_{j,n} \eta_{u_j,n} \in \operatorname{span} U^{\circ}$$

with $N > \sup\{s, N(1), \ldots, N(J)\}$ implies $\alpha_{j,N} = 0$ for every $j = 1, \ldots, J$.

This we do by contradiction: let us suppose the existence of such a functional ζ with $N > \sup\{s, N(1), \ldots, N(J)\}$ and $\alpha_{k,N} \neq 0$ for some $k \in \{1, \ldots, J\}$, belonging to qU° for some $q \in \mathbb{N}$.

We need some preparation. Let us denote by P(z) the polynomial

$$\prod_{1\leq j\leq J,\, j\neq k}(z-u_j)^{N+1}$$

It can also be written as

$$P(z) = c_0 + c_1(z - u_k) + \ldots + c_{(N+1)(J-1)}(z - u_k)^{(N+1)(J-1)}$$

with $c_0 \neq 0$. Then we choose a closed disk B in \mathbb{C} , centered at the origin and containing

$$K_s \bigcup \left(\bigcup_{j=1}^J \left\{ z \in \Omega : |z - u_j| \leq \frac{1}{r} \right\} \right)$$

Finally we set

$$C_1 = \sup\left\{ \left\| \frac{P(\cdot)}{(\cdot - u_j)^h} \right\|_B : h \in \{0, \ldots, s\}, \ j \in \{1, \ldots, J\} \setminus \{k\} \right\}$$

$$C_2 = \sup \left\{ \left\| c_h + \cdots + c_{(N+1)(J-1)} (z - u_k)^{(N+1)(J-1)-h} \right\|_B : h = 0, \dots, s \right\}$$

and introduce the polynomial

$$Q(z) = \frac{P(z)}{2(C_1 + C_2)(s+1)^2}.$$

For every $g \in U$, the function Qg clearly belongs to $A_r(\Omega; D)$. In fact, it belongs to U: a) For every $j \in \{1, \ldots, J\} \setminus \{k\}$ and $h \in \{0, \ldots, s\}$, we have

$$(Qg)^{[h]}(z,u_j) = \frac{Q(z)}{(z-u_j)^h} g(z)$$

hence

$$|(Qg)^{[h]}(z,u_j)| \le \frac{C_1}{2(C_1+C_2)(s+1)^2} \cdot \frac{1}{s} \le \frac{1}{2s(s+1)^2}$$

for every $z \in \Omega$ such that $|z - u_j| \leq 1/r$.

b) For $h \in \{0, \ldots, s\}$, we also have

$$(Qg)^{[h]}(z, u_k) = \frac{\sum_{l=0}^{h-1} c_l g^{[h-l]}(z, u_k) + (c_h + \dots + c_{(N+1)(J-1)}(z - u_k)^{(N+1)(J-1)-h}) g^{[0]}(z, u_k)}{2(C_1 + C_2)(s+1)^2}$$

hence

$$\left| (Qg)^{[h]}(z, u_k) \right| \leq \frac{(s+1)C_2}{2(C_1 + C_2)(s+1)^2} \cdot \frac{1}{s} \leq \frac{1}{2s(s+1)}$$

for every $z \in \Omega$ such that $|z - u_k| \leq 1/r$.

c) For every $z \in K_s$, it is clear that

$$|(Qg)(z)| \leq \frac{C_1}{2(C_1+C_2)(s+1)^2} \cdot \frac{1}{s} \leq \frac{1}{2s(s+1)^2}.$$

At this stage, we consider the continuous linear functional

$$\eta = \sum_{n=0}^{N} \alpha_{k,n} \sum_{j=0}^{n} Q^{[n-j]}(u_k) \eta_{u_k,j}.$$

The coefficient of $\eta_{u_k,N}$ is $\alpha_{k,N}Q^{[0]}(u_k)$ and differs from 0. Moreover as N > N(k), η does not belong to span U° . Therefore there is $f \in U$ such that $|\langle f, \eta \rangle| > q$. As Qf belongs to U, we finally arrive at the following contradiction:

We have

$$|\langle Qf,\zeta\rangle|\leq q$$

because $\zeta \in qU^{\circ}$, as well as

l

$$\begin{aligned} \langle Qf,\zeta\rangle | &= \left| \sum_{j=1}^{J} \sum_{n=0}^{N} \alpha_{j,n} \langle Qf,\eta_{u_{j},n} \rangle \right| \\ &= \left| \sum_{n=0}^{N} \alpha_{k,n} \langle Qf,\eta_{u_{k},n} \rangle \right| \\ &= \left| \sum_{n=0}^{N} \alpha_{k,n} \sum_{j=0}^{n} Q^{[n-j]}(u_{k}) f^{[j]}(u_{k}) \right| \\ &= \left| \left\langle f, \sum_{n=0}^{N} \alpha_{k,n} \sum_{j=0}^{n} Q^{[n-j]}(u_{k}) \eta_{u_{k},j} \right\rangle \right| \\ &= \left| \langle f,\eta \rangle \right| \\ &> q. \end{aligned}$$

Thus our statement is proved

At this stage, we can extend Theorem 4 of [4] in the following way.

Proposition 3.6: The finite subset $D = \{u_1, \ldots, u_J\}$ of $\partial\Omega$ is regularly asymptotic for Ω if and only if the following condition (*) is satisfied:

(*) There is $r \in \mathbb{N}$ such that, for every compact subset K of Ω and $j_0 \in \{1, \ldots, J\}$, there is an integer $p \in \mathbb{N}$ such that, for every h > 0, there is $f \in A_r(\Omega; D)$ verifying

$$|f(z)| \leq 1$$
 for all $z \in K \bigcup \left(\bigcup_{j=1}^{J} \left\{ u \in \Omega : |u - u_j| \leq \frac{1}{r} \right\} \right)$

and

$$|f^{[p]}(u_{j_0})| > h.$$

Proof: The condition is necessary. Indeed, by Proposition 3.3, there is an integer $r \in \mathbb{N}$ such that

$$S: A_r(\Omega; D) \to \omega(D \times \mathbb{N}_0), \qquad f \mapsto \left(f^{[n]}(u)\right)_{(u,n) \in D \times \mathbb{N}_0}$$

is a continuous, surjective and linear map. Let us fix a compact subset K of Ω and an integer j_0 in $\{1, \ldots, J\}$. There is then an integer $s \in \mathbb{N}$ such that $K \subset K_s$. As, for $n \in \mathbb{N}_0$, the continuous linear functionals $\eta_{u_{j_0},n}$ on $A_r(\Omega; D)$ are linearly independent, Theorem 1.1 tells us that the dimension of the vector

space

$$\operatorname{span}\left\{\eta_{u_{j_0},n}:n\in\mathbb{N}_0\right\}\cap\operatorname{span}V_{D,r,i}^\circ$$

is finite. Therefore there is an integer $p \in \mathbb{N}$ such that $\eta_{u_{j_0},p}$ does not belong to span $V_{D,r,s}^{\circ}$. Hence, for every h > 0, there is $f \in V_{D,r,s}$ such that

$$|f^{[p]}(u_{j_0})| = |\langle f, \eta_{u_{j_0}, p} \rangle| > h.$$

Hence the conclusion.

The condition is sufficient. Indeed, by Theorem 3.5, it is enough to prove that, for every $j \in \{1, ..., J\}$, the map

$$S_j: A_r(\Omega; D) \to \omega(\mathbb{N}_0), \qquad f \mapsto \left(f^{[n]}(u_j)\right)_{n \in \mathbb{N}_0}$$

is surjective. Let us fix $j \in \{1, ..., J\}$. As, for $n \in \mathbb{N}_0$, the continuous linear functionals $\eta_n = \eta_{u_j,n}$ are linearly independent, by Theorem 1.1, we just need to prove that, for every $s \in \mathbb{N}$, the vector space

$$\operatorname{span}\{\eta_n:n\in I\!\!N_0\}\cap\operatorname{span}V^{\circ}_{D,r,i}$$

has finite dimension. Let us fix $s \in \mathbb{N}$ and denote by p_j the least integer satisfying condition (*) for $K = K_s$ and $j_0 = j$. There is then k > 0 such that, for every $g \in A_r(\Omega; D)$ verifying $|g(z)| \leq 1$ for every element z of the set

$$\mathcal{K} = K_{\boldsymbol{s}} \bigcup \left(\bigcup_{u \in D} \left\{ t \in \Omega : |t - u| \leq \frac{1}{r} \right\} \right),$$

one has

$$|g^{[n]}(u_j)| \leq k$$
 for all $n \in \{0, \ldots, p_j - 1\}$

At this point, to conclude, it is sufficient to prove that a functional of the type

$$\delta = \sum_{n=0}^{N} \alpha_n \eta_n \quad \text{with } N > p_j + s, \ \alpha_n \in \mathcal{C} \text{ and } \alpha_N \neq 0$$

never belongs to span $V_{D,r,s}^{\circ}$. This we do by contradiction. Let us suppose that such a functional δ belongs to $hV_{D,r,s}^{\circ}$ for some h > 0. We need some preparation. We choose an integer d greater than the diameter of \mathcal{K} and set successively

$$\alpha = \sup\{|\alpha_0|, \dots, |\alpha_N|\}$$

$$P(z) = (z - u_j)^{N-p_j} \prod_{1 \le k \le J, \ k \ne j} (z - u_k)^N$$

$$L = \sup\{|P^{[n]}(u_j)| : n = 0, \dots, N\}.$$

Now we choose $f \in A_r(\Omega; D)$ such that $|f(z)| \leq 1$ for every $z \in \mathcal{K}$ and

$$|f^{[p_j]}(u_j)| > \frac{s(s+2)hd^{NJ} + 2L\alpha N^2 k}{|\alpha_N P^{[N-p_j]}(u_j)|}$$

....

Finally we set g = Pf. Of course g belongs to $A_r(\Omega; D)$; more precisely from

$$p_{D,r,s}(g) = \sup_{u \in D} \left(\|Pf\|_{K_s} + \sup\left\{ \sum_{l=0}^{s} \left| \frac{P(z)f(z)}{(z-u)^l} \right| : z \in \Omega, |z-u| \le \frac{1}{r} \right\} \right)$$

$$\le d^{NJ} + (s+1)d^{NJ}$$

$$= (s+2)d^{NJ}$$

we get that g belongs to $s(s+2)d^{NJ}V_{D,r,s}$ and hence g satisfies

$$|\langle g,\delta\rangle| \leq hs(s+2)d^{NJ}.$$

But we also have

$$|f^{[N-i]}(u_j)| \leq k$$
 for every $t \in \{N - p_j + 1, \dots, N\}$

and this leads to the following contradiction:

.....

$$\begin{split} |\langle g, \delta \rangle| &= \left| \sum_{n=0}^{N} \alpha_{n} g^{[n]}(u_{j}) \right| \\ &= \left| \sum_{n=0}^{N} \alpha_{n} (Pf)^{[n]}(u_{j}) \right| \\ &= \left| \sum_{n=0}^{N} \alpha_{n} \sum_{t=0}^{n} P^{[t]}(u_{j}) f^{[n-t]}(u_{j}) \right| \\ &= \left| \sum_{n=N-p_{j}}^{N} \alpha_{n} \sum_{t=N-p_{j}}^{n} P^{[t]}(u_{j}) f^{[n-t]}(u_{j}) \right| \\ &\geq |\alpha_{N}| \left| P^{[N-p_{j}]}(u_{j}) f^{[p_{j}]}(u_{j}) \right| - |\alpha_{N}| \sum_{t=N-p_{j}+1}^{N} \left| P^{[t]}(u_{j}) \right| \left| f^{[N-t]}(u_{j}) \right| \\ &- \sum_{n=N-p_{j}}^{N-1} |\alpha_{n}| \sum_{t=N-p_{j}}^{n} \left| P^{[t]}(u_{j}) \right| \left| f^{[n-t]}(u_{j}) \right| \\ &\geq s(s+2)hd^{NJ} + 2L\alpha N^{2}k - \alpha NLk - N^{2}\alpha Lk \\ &> s(s+2)hd^{NJ}. \end{split}$$

Thus the assertion is proved

Now by use of the previous result and of ideas of [4], we are going to establish a first generalization of Carleman's result.

Notations: For $u \in \mathcal{C}$ and $A \subset \mathcal{C}$, let us set

$$\delta_1(u, A) = \inf\{|u - z| : z \in A\}$$
 and $\delta_2(u, A) = \sup\{|u - z| : z \in A\}$

Definition: The boundary $\partial\Omega$ is quasi-connected at $u \in \partial\Omega$ if, for every $\varepsilon, \delta > 0$ such that $0 < \varepsilon < \delta$, there is a connected subset A of $\partial\Omega$ such that

 $\delta_2(u, A) < \delta$ and $\delta_1(u, A) < \varepsilon \delta_2(u, A)$.

Let us mention that in Section 5, we will prove that $\partial\Omega$ is quasi-connected at $u \in \partial\Omega$ if the connected component of u in $\partial\Omega$ contains more than one point. So if Ω is simply connected, $\partial\Omega$ is quasi-connected at every point of $\partial\Omega$. **Theorem 3.7:** If $\partial\Omega$ is quasi-connected at every point of the finite subset D of $\partial\Omega$, then D is regularly asymptotic for Ω .

Proof: As $D = \{u_1, \ldots, u_J\}$ is finite, there is $r \in \mathbb{N}$ such that the disks

$$\left\{z\in C: |z-u_j|\leq \frac{1}{r}\right\}$$

are pairwise disjoint for $j \in \{1, ..., J\}$. Let us fix $j \in \{1, ..., J\}$ and a compact subset K of Ω . We are going to prove that Proposition 3.6 applies with p = 1. Of course there is C > 0 such that $|z - \alpha| \cdot |z - \beta| < C^2$ for every

$$z \in \mathcal{K} = K \bigcup \left(\bigcup_{u \in D} \left\{ t \in \mathcal{C} : |t - u| \leq \frac{1}{r} \right\} \right)$$

and every $\alpha, \beta \in \mathbb{C}$ such that $|\alpha - u_j| \leq 1/r$ and $|\beta - u_j| \leq 1/r$. Given h > 0, by hypothesis, there is a connected subset A of $\partial\Omega$ such that

$$\delta_2(u_j,A) < rac{1}{r}$$
 and $0 < \delta_1(u_j,A) < \inf\left\{rac{1}{2r},rac{1}{16C^2h^2}
ight\}\delta_2(u_j,A).$

Therefore there are points α and β in A such that

$$|u_j-\alpha|<\inf\left\{rac{1}{2r},rac{1}{16C^2h^2}
ight\}|u_j-eta|.$$

Then there is a determination g of $\sqrt{(\cdot - \alpha)(\cdot - \beta)}$ which is holomorphic on $\Omega \cup V$ for some open neighbourhood V of D. So f = g/C

a) belongs to $A_r(\Omega; D)$

b) verifies |f(z)| < 1 for every $z \in \mathcal{K}$

c) verifies

$$|f^{[1]}(u_j)| = \frac{1}{C} \lim_{z \in \Omega, z \to u_j} \left| \frac{g(z) - g(u_j)}{z - u_j} \right|$$
$$= \frac{|2u_j - (\alpha + \beta)|}{2C|u_j - \alpha|^{1/2}|u_j - \beta|^{1/2}}$$
$$\ge \frac{1 - \left|\frac{u_j - \alpha}{u_j - \beta}\right|}{2C \left|\frac{|u_j - \alpha|}{u_j - \beta}\right|^{1/2}}$$
$$> \frac{1 - 1/2}{2C \cdot \frac{1}{4Ch}}$$
$$= h.$$

hence the conclusion by Proposition 3.6 \blacksquare

Let us also mention the following result.

Proposition 3.8: Let D be a finite subset of $\partial\Omega$. Let us suppose moreover the existence of a subset $\{d_{u,n} : u \in D, n \in \mathbb{N}_0\}$ of $(0, +\infty)$ such that, for every subset $\{c_{u,n}: u \in D, n \in \mathbb{N}_0\} \text{ of } \mathcal{C} \text{ such that } |c_{u,n}| \leq d_{u,n} \text{ for every } u \in D \text{ and } n \in \mathbb{N}_0, \text{ there} \\ \text{ is } f \in A(\Omega; D) \text{ such that } f(z) \approx \sum_{n=0}^{\infty} c_{u,n}(z-u)^n \text{ at every } u \in D. \\ \text{ Then there is } \rho \in \mathbb{N}^{\mathbb{N}} \text{ such that, for every subset } \{c_{u,n}: u \in D, n \in \mathbb{N}_0\} \text{ as above,} \\ \text{ there is } g \in B_{D,r_1,\rho_1} \text{ such that } g(z) \approx \sum_{n=0}^{\infty} c_{u,n}(z-u)^n \text{ at every } u \in D. \\ \end{cases}$

Proof: The set

$$C = \left\{ (c_{u,n})_{(u,n) \in D \times \mathbb{N}_0} : |c_{u,n}| \le d_{u,n} \quad \text{for all } (u,n) \in D \times \mathbb{N}_0 \right\}$$

is clearly an absolutely convex and compact subset of $\omega(D \times \mathbb{N}_0)$. By the Proposition 12/(b) of [3], there are then $\rho \in \mathbb{N}^N$ and a subset M of B_{D,r_1,ρ_1} such that TM = C. Hence the conclusion

4. If D is infinite

Let us recall that every subset D of $\partial \Omega$ which is regularly asymptotic for Ω is countable.

- Notations: Let $D = \{u_j : j \in \mathbb{N}\}$. Then:
- 1) For every $\rho = (r_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$, we set

$$\begin{split} A_{\rho}(\Omega;D) &= \bigcap_{j=1}^{\infty} A_{r_j}(\Omega;\{u_j\}) \\ &= \left\{ f \in A(\Omega;D) : \sup_{z \in \Omega, \, |z-u_j| \le 1/r_j} |f(z)| < \infty \text{ for all } j \in \mathbb{N} \right\}. \end{split}$$

So $A_{\rho}(\Omega; D)$ is a vector subspace of $A(\Omega; D)$ and

$$\bigcup_{\rho\in\mathbb{N}^N}A_\rho(\Omega;D)=A(\Omega;D).$$

2) For every $\rho \in \mathbb{N}^{\mathbb{N}}$ and $n \in \mathbb{N}$,

$$p_{D,\rho,n}: A_{\rho}(\Omega; D) \to [0, +\infty), \qquad f \mapsto \sup\{p_{u_j,r_j,n}: j \in \{1, \ldots, n\}\}$$

is a norm on $A_{\rho}(\Omega; D)$ and

$$P_{D,\rho} = \{p_{D,\rho,n} : n \in \mathbb{N}\}$$

a countable system of norms on $A_{\rho}(\Omega; D)$ endowing it with a finer locally convex topology than the one induced by $\mathcal{H}(\Omega)$. From now on, if $D = \{u_j : j \in \mathbb{N}\}$ and if $\rho \in \mathbb{N}^{\mathbb{N}}$, the notation $A_{\rho}(\Omega; D)$ will refer to the locally convex space $(A_{\rho}(\Omega; D), P_{D,\rho})$. So

$$V_{D,\rho,n} = \left\{ f \in A_{\rho}(\Omega; D) : p_{D,\rho,n}(f) \le \frac{1}{n} \right\} \qquad (n \in \mathbb{N})$$

is a fundamental sequence of neighbourhoods of the origin in $(A_{\rho}(\Omega; D), P_{D,\rho})$. 3) We fix once for all an infinite partition

$$\left\{\left\{n_{j,k}:k\in\mathbb{N}\right\}:j\in\mathbb{N}\right\}$$

of $\{2n : n \in \mathbb{N}\}$. Then, for every $\rho \in \mathbb{N}^{\mathbb{N}}$,

$$B_{D,\rho} = \bigcap_{j=1}^{\infty} B_{u_j,r_{2j-1},\rho_{(j)}}$$

where $\rho_{(j)}$ is the sequence $(r_{n_{j,k}})_{k \in \mathbb{N}}$. Of course, $B_{D,\rho}$ is an absolutely convex and compact subset of $A(\Omega; D)$; moreover it is a bounded subset of the space $(A_{\rho'}(\Omega; D), P_{D,\rho'})$ where ρ' is the sequence $(r_{2n-1})_{n \in \mathbb{N}}$.

Let us remark that these notations depend heavily on the enumeration of the points of D but any enumeration will do.

Proposition 4.1: If $D = \{u_j : j \in \mathbb{N}\}$, then, for every $\rho \in \mathbb{N}^{\mathbb{N}}$, $A_{\rho}(\Omega; D)$ is a Fréchet space.

Proof: One can go on with a direct proof as in Proposition 3.1 or use the technique of the (LB)-spaces as we do hereafter

Proposition 4.2: If $D = \{u_j : j \in \mathbb{N}\}$, the family $\{B_{D,\rho} : \rho \in \mathbb{N}^{\mathbb{N}}\}$ is a quasi-LB representation of the space $A(\Omega; D)$ made of absolutely convex and compact sets.

Now as in [3], once again, for every $\rho \in \mathbb{N}^{\mathbb{N}}$, we may successively introduce the sets

$$B_{D,r_1,\ldots,r_n} = \bigcup \{B_{D,\sigma} : \sigma \in \mathbb{N}^{\mathbb{N}}, s_1 = r_1,\ldots,s_n = r_n\}$$

$$F_{D,r_1,\ldots,r_n} = \operatorname{span} B_{D,r_1,\ldots,r_n}$$

for every $n \in \mathbb{N}$ and

$$F_{D,\rho} = \bigcap_{n=1}^{\infty} F_{D,r_1,\ldots,r_n}.$$

One can describe directly these sets in our case. In particular, one gets $F_{D,\rho} = A_{\rho'}(\Omega; D)$. This provides another way to establish that, for every $\rho \in \mathbb{N}^N$, $A_{\rho}(\Omega; D)$ is a Fréchet space.

Definition: If $D = \{u_j : j \in \mathbb{N}\}$, we have

$$A(\Omega; D) = \bigcup_{\rho \in \mathbb{I} \setminus \mathbb{I}^{N}} A_{\rho}(\Omega; D)$$

and, for every $\rho, \sigma \in \mathbb{N}^{\mathbb{N}}$ such that $\rho \leq \sigma$, the canonical injection from $A_{\rho}(\Omega; D)$ into $A_{\sigma}(\Omega; D)$ is continuous. Therefore we may endow $A(\Omega; D)$ with the locally convex topology τ of the inductive limit of these Fréchet spaces. Of course τ is finer than the topology of $A(\Omega; D)$ but we must insist on the fact that $(A(\Omega; D), \tau)$ is not an (LF)-space.

However some results similar to those obtained in the case when D is finite, can be established.

Definition: If $\rho = (r_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$, the subset $D = \{u_j : j \in \mathbb{N}\}$ of $\partial \Omega$ is ρ -regularly asymptotic for Ω if the restriction of the map T to $A_{\rho}(\Omega; D)$ is surjective.

Theorem 4.3: Let $D = \{u_j : j \in \mathbb{N}\}$ be a subset of $\partial\Omega$ having no accumulation point. The following conditions are equivalent:

(a) D is regularly asymptotic for Ω .

(b) For every $j \in \mathbb{N}$ and every sequence $(c_n)_{n \in \mathbb{N}}$ of complex numbers, there is $f \in A(\Omega; D)$ such that $f(z) \approx \sum_{n=0}^{\infty} c_n (z - u_j)^n$ at u_j .

(c) There is $\rho \in \mathbb{N}^{\mathbb{N}}$ such that D is ρ -regularly asymptotic for Ω .

Proof: (a) \Rightarrow (b) and (c) \Rightarrow (a) are trivial.

(b) \Rightarrow (c): Let us first introduce a sequence $\rho \in \mathbb{N}^{\mathbb{N}}$. As D has no accumulation point, there is a sequence $\tau = (t_j)_{j \in \mathbb{N}}$ such that the disks $\{z \in \mathbb{C} : |z - u_j| \le 1/t_j\}$ are pairwise disjoint. We set $r_1 = t_1$ and obtain the other elements as follows, by induction. If r_1, \ldots, r_m are determined, we denote by d_m the distance of u_{m+1} to

$$H_m = K_m \bigcup \left(\bigcup_{j=1}^m \left\{ z \in \mathbb{C} : |z - u_j| \leq \frac{1}{t_j} \right\} \right).$$

As $\{u_{m+1}\}$ is a regularly asymptotic set for Ω , u_{m+1} is not an isolated point in $\partial\Omega$; therefore there is $v_m \in \partial\Omega$ such that

$$0 < |v_m - u_{m+1}| < \inf \left\{ \frac{d_m}{4}, \frac{1}{t_{m+1}} \right\}$$
 and $d(v_m, H_m) \ge \frac{d_m}{2}$.

Then we choose r_{m+1} in \mathbb{N} such that $r_{m+1} \ge t_{m+1}$ and $1/r_{m+1} < |v_m - u_{m+1}|$.

As $\{\eta_{u,n} : u \in D, n \in \mathbb{N}_0\}$ is a subset of the dual space $(A_{\rho}(\Omega; D), P_{D,\rho})'$, the elements of which are linearly independent, by Theorem 1.1, all we need to prove is that, for every $s \in \mathbb{N}$, the vector space

$$\operatorname{span}\{\eta_{u,n}: u \in D, n \in \mathbb{N}_0\} \cap \operatorname{span} V^{\circ}_{D,o, \bullet}$$

has finite dimension. Let us fix $s \in \mathbb{N}$ and, to simplify the notations, let us set $q = p_{D,\rho,s}$ and $U = V_{D,\rho,s}$. For every $j \in \mathbb{N}$,

we know already that

$$\operatorname{span}\{\eta_{u_i,n}:n\in\mathbb{N}_0\}\cap\operatorname{span} U^\circ$$

has finite dimension so there is an integer $N(j) \in \mathbb{N}$ such that

$$\left(\alpha_1,\ldots,\alpha_N\in \mathbb{C}: \alpha_N\neq 0; \sum_{n=0}^N \alpha_k\eta_{u_j,n}\in \operatorname{span} U^{\circ}\right)\Longrightarrow N\leq N(j).$$

To conclude, it is then sufficient to prove that, if

$$\zeta = \sum_{j=1}^{m+1} \sum_{n=0}^{N} \alpha_{j,n} \eta_{u_j,n} \quad \text{with } m \ge s$$

belongs to span U° , then a) and b) hereunder hold.

a) We have $\alpha_{m+1,n} = 0$ for every n = 0, ..., N. Indeed, if it is not the case, let $q \in \mathbb{N}$ be such that $\zeta \in qU^{\circ}$ and let l be the greatest integer such that $\alpha_{m+1,l} \neq 0$. We then introduce the polynomial

$$P(z) = (z - u_1)^{m+N} \cdots (z - u_m)^{m+N} (z - u_{m+1})^l$$

and an integer d larger than the diameter of H_m , choose an integer t such that

$$|u_{m+1} - u_1|^{m+N} \cdots |u_{m+1} - u_m|^{m+N} 2^t > qs(s+2)d^{(m+N)(m+1)}$$

and finally set

$$g(z) = P(z) \cdot \left(\frac{d_m}{2(z-v_m)}\right)^t$$
 for all $z \in \Omega$.

It is clear that g belongs to $A_{\rho}(\Omega; D)$. Moreover from

$$\left|\frac{d_m}{2(z-v_m)}\right|^t \le 1 \qquad \text{for all } z \in H_m$$

we easily get

$$q(g) \leq \sup_{1 \leq j \leq s} p_{u_j, r_j, s}(g)$$

$$\leq d^{(m+N)(m+1)} + (s+1)d^{(m+N)(m+1)}$$

$$= (s+2)d^{(m+N)(m+1)}$$

hence g belongs to $s(s+2)d^{(m+N)(m+1)}U$ therefore

$$|\langle g,\zeta\rangle| \leq qs(s+2)d^{(m+N)(m+1)}.$$

But we also have

$$\left|\frac{d_m}{2(u_{m+1}-v_m)}\right|^t > 2^t$$

hence

$$\begin{aligned} |\langle g, \zeta \rangle| &= \left| \sum_{j=1}^{m+1} \sum_{n=0}^{N} \alpha_{j,n} g^{[n]}(u_j) \right| \\ &= \left| g^{[l]}(u_{m+1}) \right| \\ &= |u_{m+1} - u_1|^{m+N} \cdots |u_{m+1} - u_m|^{m+N} \cdot \left| \frac{d_m}{2(u_{m+1} - v_m)} \right|^t \\ &> |u_{m+1} - u_1|^{m+N} \cdots |u_{m+1} - u_m|^{m+N} \cdot 2^t \\ &> gs(s+2)d^{(m+N)(m+1)}. \end{aligned}$$

Hence a contradiction.

b) We have $\alpha_{j,N} = 0$ if $N > \sup\{s, N(1), \ldots, N(s)\}$, by a proof very similar to the one of Theorem 3.5.

The proof is now complete \blacksquare

Corollary 4.4: If $D = \{u_j : j \in \mathbb{N}\}$ is regularly asymptotic for Ω , then the kernel of T has 2^{\aleph_0} as algebraic dimension.

Proof: The proof of Corollary 3.4 applies here too: one has just to replace $r \in \mathbb{N}$ by some appropriate $\rho \in \mathbb{N}^{\mathbb{N}}$ and the space $A_r(\Omega; D)$ by $A_{\rho}(\Omega; D)$

Proposition 4.5: Let $D = \{u_j : j \in \mathbb{N}\}$ be a subset of $\partial\Omega$ having no accumulation point. This implies the existence of a sequence $\tau = (t_j)_{j \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$ such that the disks $\{z \in \mathbb{C} : |z - u_j| \leq 1/t_j\}$ are pairwise disjoint. Then the following conditions on a sequence $\rho \in \mathbb{N}^{\mathbb{N}}$ verifying $\rho \geq \tau$ are equivalent:

(a) D is ρ -regularly asymptotic for Ω .

(b) For every compact subset K of Ω and every $j_0 \in \mathbb{N}$, there is $p \in \mathbb{N}$ such that, for every h > 0, there is $f \in A_{\rho}(\Omega; D)$ verifying

$$|f(z)| \leq 1$$
 for all $z \in K \bigcup \left(\bigcup_{j=1}^{J} \left\{ u \in \Omega : |u - u_j| \leq \frac{1}{r_j} \right\} \right)$,

and

 $|f^{[p]}(u_{j_0})| > h.$

Proof: The proof of (a) \Rightarrow (b) is essentially the same as the one of the necessity of the condition in Theorem 3.6: one just has to replace $A_r(\Omega; D)$ by $A_{\rho}(\Omega; D)$.

Slight modifications to the proof of the sufficiency of the condition in Theorem 3.6 give (b) \Rightarrow (a). One just needs to replace $A_r(\Omega; D)$ by $A_{\rho}(\Omega; D)$, to fix j in \mathbb{N} , to impose moreover the condition s > j on s, to replace $V_{D,r,s}$ by $V_{D,\rho,s}$, to set

$$\mathcal{K} = K_{\bullet} \bigcup \left(\bigcup_{j=1}^{\bullet} \left\{ z \in \Omega : |z - u_j| \leq \frac{1}{r_j} \right\} \right)$$

and

$$P(z) = (z - u_j)^{N-p_j} \prod_{1 \le k \le s, \ k \ne j} (z - u_k)^N$$

and to replace $p_{D,r,s}$ by $p_{D,\rho,s}$

Theorem 4.6: Let $D = \{u_j : j \in \mathbb{N}\}$ be a subset of $\partial\Omega$ having no accumulation point. This implies the existence of a sequence $\rho = (r_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$ such that the disks $\{z \in \mathbb{C} : |z - u_j| \leq 1/r_j\}$ for $j \in \mathbb{N}$ are pairwise disjoint.

If $\partial \Omega$ is quasi-connected at every point of D, then D is ρ -regularly asymptotic, hence regularly asymptotic, for Ω .

Proof: The proof is very similar to the one of Theorem 3.7. One fixes j in \mathbb{N} , sets

$$\mathcal{K} = K \bigcup \left(\bigcup_{k=1}^{j} \left\{ t \in \mathcal{C} : |t - u_j| \le \frac{1}{r_j} \right\} \right)$$

and chooses A with the condition $\delta_2(u_j, A) < 1/r_j$ instead of $\delta_2(u_j, A) < 1/r$. The conclusion then follows from the preceding proposition

5. Generalizations of Carleman's results

We begin with the following

Theorem 5.1: If D is a non-empty subset of $\partial\Omega$ having no accumulation point and if $\partial\Omega$ is quasi-connected at

every point of D, then D is regularly asymptotic for Ω .

Moreover, for every family $\{c_{u,n} : u \in D, n \in \mathbb{N}\}$ of complex numbers, the set of the elements f of $A(\Omega; D)$ such that $f(z) \approx \sum_{n=0}^{\infty} c_{u,n}(z-u)^n$ for every $u \in D$ is a linear variety of dimension 2^{\aleph_0} .

Proof: Having no accumulation point, D must be countable. So if D is finite, this is Theorem 3.7 and the Corollary 3.4, and if D is infinite but countable, it is a trivial consequence of Theorem 4.6 and of Corollary 4.4

The following result gives an easy way to verify that $\partial \Omega$ is quasi-connected at some point.

Proposition 5.2: If the connected component C_u of $u \in \partial \Omega$ has more than one point, then $\partial \Omega$ is quasi-connected at u.

Proof: We are going to use twice the following property (cf. [6: (10.1)]): If A is a closed, connected subset and G a bounded, open subset of \mathcal{G} such that $A \neq G \cap A \neq \emptyset$, then every connected component of $\overline{G} \cap A$ has some point in the boundary

of G.

Given $0 < \varepsilon < \delta < 1$, as C_u contains more than one point, there is $r_1 \in (0, \delta/2)$ such that $C_1 = C_u \cap \{z \in \mathcal{C} : |z - u| \le r_1\} \neq C_u$. Let C be the connected component of C_1 containing u. Of course, C_u is a closed, connected subset and $b = \{z \in \mathcal{C} : |z - u| < r_1\}$ is a bounded, open subset of \mathcal{C} such that $C_u \neq b \cap C_u \neq \emptyset$. Therefore there is $z_1 \in C$ such that $|z_1 - u| = r_1$. Now we chose $r_2, r_3 > 0$ such that $r_2 < \varepsilon r_1$ and $r_1 < r_3$, and set $G = \{z \in \mathcal{C} : r_2 < |z - u| < r_3\}$. So we have $u \notin G$ and $z_1 \in G$, hence $C \neq G \cap C \neq \emptyset$ and the connected component P of $C \cap \overline{G}$ containing z_1 contains a point z_2 of the boundary of G. As $|z_2 - u| \neq r_3$, we must have $|z_2 - u| = r_2$. Therefore P is a connected subset of $\partial\Omega$ such that $\delta_1(u, P) = |z_2 - u| = r_2$ and $\delta_2(u, P) = |z_1 - u| = r_1$ hence $\delta_2(u, P) = r_1 < \delta$ and $0 < \delta_1(u, P) = r_2 < \varepsilon r_1 = \varepsilon \delta_2(u, P)$.

Combining the previous two results, we get the following statement which constitutes the practical form of our result. Let us mention that it generalizes Proposition 10 of [4]:

If the connected component of $u \in \partial \Omega$ has more than one point, then $\{u\}$ is regularly asymptotic for Ω

as well as Corollary 1 of [4]:

If Ω is simply connected, then every point of $\partial\Omega$ is regularly asymptotic for Ω .

Theorem 5.3: If D is a non-empty subset of $\partial\Omega$ having no accumulation point and if the connected component of every point of D in $\partial\Omega$ has more than one point, then D is regularly asymptotic for Ω . Moreover, for every family $\{c_{u,n} : u \in D, n \in \mathbb{N}\}$ of complex numbers, the set of the elements f of $A(\Omega; D)$ such that $f(z) \approx \sum_{n=0}^{\infty} c_{u,n}(z-u)^n$ at every $u \in D$ is a linear variety of dimension 2^{\aleph_0} .

References

- Carleman, T.: Les Fonctions Quasi-Analytiques (Coll. Monogr. Théorie Fonct.). Paris: Gauthier-Villars 1926.
- [2] Grothendieck, A.: Produits tensoriels topologiques et spaces nucléaires. Mem. Amer. Math. Soc. 16 (1955).
- [3] Valdivia, M.: Quasi-LB-spaces. J. London Math. Soc. 35 (1987), 149 168.
- [4] Valdivia, M.: Interpolation in spaces of holomorphic mappings with asymptotic expansions. Proc. R. Irish Acad. 91A (1991), 7 - 38.
- [5] Valdivia, M.: Una propriedad de interpolacion en espacios de funciones holomorfas con desarrollos asintoticos. In: Homenaje al Prof. Dr. Nácere Hayek Calil. La Laguna (Tenerife/Spain): Secretariado de Public. Univ. La Laguna 1990, pp. 351 - 360.
- [6] Whyburn, G.T.: Topological Analysis (Princeton Mathematical Series: Vol. 23). Princeton (N.J.): Univ. Press 1964.

Received 01.02.1993; in revised form 22.09.1993