\mathbf{A}_{max}

On the Existence of Holomorphic Functions Having Prescribed Asymptotic Expansions

J. Schmets and M. Valdivia

Abstract. A generalization of some results of T. Carleman in [1] is developped. The practical form of it states that if the non-empty subset *D* of the boundary $\partial\Omega$ of a domain Ω of φ has no accumulation point and if the connected component in $\partial\Omega$ of every $u \in D$ has more than one point, then *D* is regularly asymptotic for Ω , i.e. for every family $\{c_{u,n} : u \in D, n \in \mathbb{N}_0\}$ of complex numbers, there is a holomorphic function f on Ω which at every $u \in D$ has $\sum_{n=0}^{\infty} c_{u,n}(z-u)^n$ as asymptotic expansion at u.

Keywords: *Holomorphic functions,* asymptotic *expansions*

AMS subject classification: Primary 30B99, secondary 46E10

1. Generalities

a) About the vector spaces. All the vector spaces we consider are over the field ç of the complex numbers. If *A* is a subset of a vector space, span *A* denotes its linear hull. If *I* is a set, $\omega(I)$ denotes as usual the vector space

 \mathbb{C}^I endowed with the product topology. A subset $\{v_i : i \in I\}$ of the algebraic dual of a vector space *E* has the *interpolation property* if, for every family $\{c_i : i \in I\}$ of \mathbb{C} , there is $x \in E$ such that $\langle x, v_i \rangle = c_i$ for every $i \in I$.

For future reference, let us mention the following result of M. Eidelheit, a general-. ization of which to the case when *E* is a B-complete space can be found as Theorem 1 of [4).

Theorem 1.1 (Interpolation): *A subset* $\{v_i : i \in I\}$ *of the topological dual E' of a Fréchet space E ha,, the interpolation property if and only if its elements are linearly* independent and such that, for every equicontinuous subset B of E' , the vector space $\text{span}\{v_i : i \in I\} \cap \text{span } B$ *has finite dimension.*

b) About the asymptotic expansions. We begin with the following

J. Schmets: Univ. de Liege, Inst. Math., 15 ay. des Tilleuls, B - 4000 Liege. Partially supported by a grant of the Belgian CGRI.

M. Valdivia: Univ. di Valencia, Fac. de Math., Dr. Moliner 50, E - 46100 Burjasot (Valencia). Partially supported by DGICIT and the Convenio Cultural Hispano-Belga.

ISSN 0232-2064 / 8 2.50 ® Heldermann Verlag Berlin

Definition: A holomorphic function f on a non-void domain Ω of \mathbb{C} has an asymp*totic expansion at* $u \in \partial\Omega$ if the limits

$$
a_0=\lim_{z\in\Omega,\ z\to u}f(z)
$$

and, for every $n \in \mathbb{N}$,

1. Valdivia
\nmorphic function f on a non-void dom
\n
$$
\Omega \text{ if the limits}
$$
\n
$$
a_0 = \lim_{z \in \Omega, z \to u} f(z)
$$
\n
$$
a_n = \lim_{z \in \Omega, z \to u} \frac{f(z) - \sum_{j=0}^{n-1} a_j (z - u)^j}{(z - u)^n}
$$
\nwhich a case,
\n
$$
\sum_{n=0}^{\infty} a_n (z - u)^n \text{ is the asymptot}
$$

exist and are finite. In such a case,

a) we say that the series $\sum_{n=0}^{\infty} a_n(z-u)^n$ is the asymptotic expansion of f at u b) we write $f(z) \approx \sum_{n=0}^{\infty} \frac{z^{n}}{a_n(z-u)^n}$ at u

c) we use the notations

308 J. Schnets and M. Valdivia
\nDefinition: A holomorphic function f on a non-void domain
$$
\Omega
$$
 of \mathbb{C} h
\ntotic expansion at $u \in \partial\Omega$ if the limits
\n
$$
a_0 = \lim_{z \in \Omega, z \to u} f(z)
$$
\nand, for every $n \in \mathbb{N}$,
\n
$$
a_n = \lim_{z \in \Omega, z \to u} \frac{f(z) - \sum_{j=0}^{n-1} a_j(z-u)^j}{(z-u)^n}
$$
\nexist and are finite. In such a case,
\na) we say that the series $\sum_{n=0}^{\infty} a_n(z-u)^n$ is the asymptotic expansion
\nb) we write $f(z) \approx \sum_{n=0}^{\infty} a_n(z-u)^n$ at u
\nc) we use the notations
\n $f^{[n]}(u) = a_n$ for all $n \in \mathbb{N}_0$
\n $f^{[0]}(z, u) = f(z)$ for all $z \in \Omega$
\n $f^{[n]}(z, u) = \frac{f^{[n-1]}(z, u) - f^{[n-1]}(u)}{z - u}$ for all $z \in \Omega, n \in \mathbb{N}$.
\n(So, in fact, we have
\n $f^{[n]}(z, u) = \frac{f(z) - \sum_{j=0}^{n-1} a_j(z-u)^j}{(z-u)^n}$ for all $z \in \Omega, n \in \mathbb{N}$
\nas well as
\n $\lim_{z \in \Omega, z \to u} f^{[n]}(z, u) = f^{[n]}(u)$ for all $n \in \mathbb{N}_0$.)

(So, in fact, we have

$$
f^{[n]}(z, u) = \frac{f(z) - \sum_{j=0}^{n-1} a_j (z - u)^j}{(z - u)^n}
$$
 for all $z \in \Omega, n \in \mathbb{N}$

as well as

$$
\lim_{z \in \Omega, z \to u} f^{[n]}(z, u) = f^{[n]}(u) \quad \text{for all } n \in \mathbb{N}_0.
$$

c) Notations. Unless explicitly stated, throughout this paper, we use the following notations:

a) Ω is a non-void domain of $\mathbb C$.

b) ${K_m : m \in \mathbb{N}}$ is a compact cover of Ω such that $(K_1)^\circ \neq \emptyset$ and $K_m \subset (K_{m+1})^\circ$ for every $m \in \mathbb{N}$.

c) $\mathcal{H}(\Omega)$ is the Fréchet-Montel space of holomorphic functions on Ω , endowed with the compact-open topology (i.e., for instance, with the countable system of norms $\{\|\cdot\|_{K_m}: m \in \mathbb{N}\}.$

d) D is a non-void subset of $\partial\Omega$.

e) $A(\Omega; D)$ is the set of the elements of $\mathcal{H}(\Omega)$ which have an asymptotic expansion at every point of *D*. Of course, it is a vector subspace of $\mathcal{H}(\Omega)$. We endow it canonically with the topology induced by $\mathcal{H}(\Omega)$. Let us insist on this fact: from now on, $A(\Omega; D)$ is a topological vector subspace of $\mathcal{H}(\Omega)$. the set of the elements of $\mathcal{H}(n)$.
 A(*D*, *Of course*, it is a vector sum

induced by $\mathcal{H}(\Omega)$. Let us in

zetor subspace of $\mathcal{H}(\Omega)$.
 $\mathcal{H}(\Omega)$,
 $\mathcal{H}(\Omega; D) \rightarrow \omega(D \times N_0)$,
 $\mathcal{H}(\Omega; D) \rightarrow \omega(D \times N_0)$,

f) The notation *T* refers to the linear map

tation T refers to the linear map
\n
$$
T: A(\Omega; D) \to \omega(D \times N_0), \qquad f \mapsto (f^{[n]}(u))_{(u,n) \in D \times N_0}
$$

\n $\text{try } u \in D \text{ and } n \in N_0, \text{ the notation } \eta_{u,n} \text{ refers to the line}$
\n $\eta_{u,n}: A(\Omega; D) \to \mathbb{C}, \qquad f \mapsto f^{[n]}(u).$
\n $(\Omega) \text{ of the restrictions to } \Omega \text{ of the polynomials is a vect$

g) For every $u \in D$ and $n \in \mathbb{N}_0$, the notation $\eta_{u,n}$ refers to the linear functional

$$
\eta_{u,n}:A(\Omega;D)\to\mathbb{C},\qquad f\mapsto f^{[n]}(u).
$$

As the set $\mathcal{P}(\Omega)$ of the restrictions to Ω of the polynomials is a vector subspace of $A(\Omega; D)$, the next result proves that the linear functionals $\eta_{u,n}$ for $u \in D$ and $n \in I\!\!N_0$ are linearly independent on any vector subspace of $A(\Omega; D)$ containing $\mathcal{P}(\Omega)$.

Lemma 1.2: For every subset D of $\partial\Omega$, $\{\eta_{u,n}: u \in D, n \in \mathbb{N}_0\}$ is a set of linearly *independent linear functionals on* $\mathcal{P}(\Omega)$.

Proof: *If* it is not the case, there are *a* finite subset *D' of*

D, an integer $N \in \mathbb{N}_0$ and elements $c_{u,n}$ of \mathbb{C} for $u \in D'$ and $n \in \{0,\ldots,N\}$ such that $\langle P, \sum_{u \in D'} \sum_{n=0}^{N} c_{u,n} \eta_{u,n} \rangle$ is 0 for every $P \in \mathcal{P}(\Omega)$, although the coefficients are not all equal to 0. So we may suppose the existence of $u_0 \in D'$ and $n_0 \in \{0, ..., N\}$ such Lemma 1.2: For every subset D of $\partial\Omega$, $\{\eta_{u,n} : u \in D, n \in N_0\}$ is a set of linearly

independent linear functionals on $\mathcal{P}(\Omega)$.

Proof: If it is not the case, there are a finite subset D' of

D, an integer $N \in N_0$ the polynomial that $c_{u_0,n_0} \neq 0$ and $c_{u_0,n} = 0$ for every $n \in \{n_0+1,\ldots,N\}$. Then the consideration of

$$
P(z) = (z - u_0)^{n_0} \prod_{u \in D' \setminus \{u_0\}} (z - u)^{N+1}
$$

leads immediately to a contradiction \Box

d) About the regularly asymptotic **sets.** We begin with the following

Definition. The set *D* is regularly asymptotic for Ω if, for every family

$$
\{c_{u,n}:u\in D,n\in I\!\!N_0\}
$$

of \mathcal{C} , there is a function $f \in A(\Omega; D)$ such that $f(z) \approx \sum_{n=0}^{\infty} c_{u,n}(z-u)^n$ at u for every $u \in D$. So D is regularly asymptotic for Ω if and only if the linear map T is surjective which happens if and only if the set $\{\eta_{u,n} : u \in D, n \in \mathbb{N}_0\}$ has the interpolation property on $A(\Omega; D)$.

In such a case, it is clear that no element of D can be an isolated point of $\partial\Omega$. The next result gives another restriction on such sets *D.*

Proposition 1.3: If D is regularly asymptotic for Ω , then it has no accumulation *point. Hence it is countable.*

Proof: If it is not the case, there is a sequence $(u_m)_{m \in \mathbb{N}}$ of distinct points of onverging to some $u_0 \in D$ with $u_m \neq u_0$ for every $m \in \mathbb{N}$. As D is regularly mptotic for Ω , there is then $f \in A(\Omega; D)$ s *D* converging to some $u_0 \in D$ with $u_m \neq u_0$ for every $m \in N$. As *D* is regularly asymptotic for Ω , there is then $f \in A(\Omega; D)$ such that

$$
f(z) \approx \sum_{n=0}^{\infty} c_{m,n}(z - u_m)^n \quad \text{at } u_m \text{ for every } m \in \mathbb{N}.
$$
 A

$$
f(z) \approx \sum_{n=0}^{\infty} c_{m,n}(z - u_m)^n \quad \text{at } u_m \text{ for all } m \in \mathbb{N}_0
$$

$$
c_{m,n} = \begin{cases} 1 & \text{if } m \in \mathbb{N} \\ 0 & \text{if } m = 0 \end{cases} \quad \text{for all } n \in \mathbb{N}_0.
$$

with

$$
c_{m,n} = \begin{cases} 1 & \text{if } m \in \mathbb{N} \\ 0 & \text{if } m = 0 \end{cases}
$$
 for all $n \in \mathbb{N}_0$.
the following contradiction:

$$
\lim_{n, z \to u_m} f(z) = f^{[0]}(u_m) = 1
$$
 for all $m \in \mathbb{N}$.

This leads directly to the following contradiction:

$$
\lim_{z\in\Omega,\,z\to u_m}f(z)=f^{[0]}(u_m)=1\qquad\text{for all }m\in\mathbb{N}\,.
$$

and

$$
\lim_{z \in \Omega, x \to u_0} f(z) = f^{[0]}(u_0) = 0.
$$

Thus the statement is proven \blacksquare

Remark. However these restrictions on *D* are not sufficient to

ensure that *D* is regularly asymptotic for Ω . If we set $\Omega = \mathcal{C} \setminus (\{0\} \cup \{1/m$: $m \in \mathbb{N}$), it is clear that $D = \{0\}$ has no isolated point of $\partial\Omega$ and that *D* has no accumulation point. However, for every $f \in A(\Omega; D)$, there is a neighbourhood *U* of 0 such that *f* is holomorphic and bounded on $U \setminus (\{0\} \cup \{1/m : m \in \mathbb{N}\})$. Hence *f* must have a holomorphic extension to $\mathcal{C} \setminus \{0, 1, ..., 1/M\}$ for some $M \in \mathbb{N}$ therefore to $\mathcal{C} \setminus \{1, ..., 1/M\}$. **accumulation point.** However, for every $f \in A(\Omega; D)$, there is a neighbourhood U of 0 such that f is holomorphic and bounded on $U \setminus \{0\} \cup \{1/m : m \in \mathbb{N}\}\)$. Hence f must have a holomorphic extension to $\mathbb{Q} \set$ **Remark.** However these restrictions on *D* are not sufficient to

ensure that *D* is regularly asymptotic for Ω . If we set $\Omega = \mathbb{C} \setminus (\{0\} \cup \{1/m : m \in \mathbb{N}\})$, it is clear that $D = \{0\}$ has no isolated point of $\partial\$

e) Aim of this paper. In [1), T. Carleman has proved the following:

a) Every finite subset D of the boundary of a bounded, convex and open subset Ω every $u \in D$ (cf. [1: p. 31]).

b) {O} is regularly asymptotic for the open subset

 $\Omega = \{z \in \mathbb{C} : ||z|| < R\} \setminus \{(x,0) : x \leq 0\}$

of \oint (cf. [1: p. 37]).

We are going to generalize these results. We will first introduce some definitions and a basic result when *D is* a singleton, then consider the case when *D is* finite, next discuss the case when *P* is countable and finally state the generalizations we have obtained.

2. If *D* is a singleton

Let u be a point of $\partial\Omega$. For every $r \in \mathbb{N}$, we set

a singleton
\nint of
$$
\partial\Omega
$$
. For every $r \in \mathbb{N}$, we set
\n
$$
A_r(\Omega;\{u\}) = \left\{ f \in A(\Omega;\{u\}) : \sup_{z \in \Omega, |z-u| \leq 1/r} |f(z)| < \infty \right\}.
$$

Clearly $A_r(\Omega; \{u\})$ is a vector subspace of $A(\Omega; \{u\})$ and

$$
\bigcup_{r=1}^{\infty} A_r(\Omega; \{u\}) = A(\Omega; \{u\}).
$$

Moreover an easy recursion on $j \in \mathbb{N}$ establishes that the boundedness of $f \in A(\Omega;\{u\})$ on $\{z \in \Omega : |z - u| \leq 1/r\}$ implies for every $j \in \mathbb{N}$ the boundedness of $f^{[j]}(\cdot, u)$ on the same set. Therefore, for every $n \in \mathbb{N}$,

rly
$$
A_r(\Omega; \{u\})
$$
 is a vector subspace of $A(\Omega; \{u\})$ and
\n
$$
\bigcup_{r=1}^{\infty} A_r(\Omega; \{u\}) = A(\Omega; \{u\}).
$$
\nProveverg an easy recursion on $j \in \mathbb{N}$ establishes that the boundedness of $f \in A(\Omega; \{x \in \Omega : |z - u| \leq 1/r\}$ implies for every $j \in \mathbb{N}$ the boundedness of $f^{[j]}(\cdot, u)$ on
\n*z \in \Omega : |z - u| \leq 1/r* implies for every $j \in \mathbb{N}$ the boundedness of $f^{[j]}(\cdot, u)$ on
\n*z \in \Omega : |z - u| \leq 1/r*,
\n*z \in \Omega : |z - u| \leq 1/r*,
\n*z \in \Omega : |z - u| \leq 1/r*,
\n*z \in \Omega : |z - u| \leq 1/r*,
\n*z \in \Omega : |z - u| \leq 1/r*.
\n*z \in \Omega : |z - u| \leq 1/r*.
\n*z \in \Omega : |z - u| \leq 1/r*.
\n*z \in \Omega : |z - u| \leq 1/r*.
\n*z \in \Omega : |z - u| \leq 1/r*.
\n*z \in \Omega : |z - u| \leq 1/r*.
\n*z \in \Omega : |z - u| \leq 1/r*.
\n*z \in \Omega : |z - u| \leq 1/r*.
\n*z \in \Omega : |z - u| \leq 1/r*.
\n*z \in \Omega : |z - u| \leq 1/r*.
\n*z \in \Omega : |z - u| \leq 1/r*.
\n*z \in \Omega : |z - u| \leq 1/r*.
\n*z \in \Omega : |z - u| \leq 1/r*.
\n*z \in \Omega : |z - u| \leq 1/r*.
\n*z \in \Omega : |z - u| \leq 1/r*.
\n*z \in \Omega : |z - u| \leq 1/r*.
\n*z \in*

is a semi-norm on $A_r(\Omega;\{u\})$; it is even a norm since Ω is a domain and since $(K_n)^\circ \neq \emptyset$ for every $n \in \mathbb{N}$. So

$$
P_{u,r} = \{p_{u,r,n} : n \in \mathbb{N}\}\
$$

is a countable system of semi-norms on $A_r(\Omega;\{u\})$, endowing this space with a metrizable locally convex topology which is finer than the one induced by $\mathcal{H}(\Omega)$. In fact more can be said: we will prove in the next section that $(A_r(\Omega;\{u\}), P_{u,r})$ is a Fréchet space. On the Existence of Holom

semi-norms on $A_r(\Omega; \{u\})$, endowing t

ogy which is finer than the one induce

ie in the next section that $(A_r(\Omega; \{u\}))$,
 $\left\{ f \in A_r(\Omega; \{u\}) : p_{u,r,n}(f) \leq \frac{1}{n} \right\}$

I basis of the neighbourhoo

The sets

$$
V_{u,r,n} = \left\{ f \in A_r(\Omega;\{u\}) : p_{u,r,n}(f) \leq \frac{1}{n} \right\} \qquad (n \in \mathbb{N})
$$

constitute a fundamental basis of the neighbourhoods of the origin in $(A_r(\Omega;\{u\}), P_{u.r})$. So, for every sequence $\mu = (m_n)_{n \in \mathbb{N}}$ of \mathbb{N} ,

$$
B_{u,r,\mu} = \bigcap_{n=1}^{\infty} m_n V_{u,r,n}
$$

is an absolutely convex and bounded subset of that space but more can be said here too.

Proposition 2.1: For every $u \in \partial\Omega$, $r \in \mathbb{N}$ and $\mu \in \mathbb{N}^N$, the set $B_{u,r,u}$ is an *absolutely convex and compact subset of* $\mathcal{H}(\Omega)$ *.*

Proof: As $B_{u,r,\mu}$ is an absolutely convex and bounded subset of the Fréchet-Montel space $\mathcal{H}(\Omega)$, it is enough to prove that $B_{u,r,\mu}$ is sequentially closed. Let $(f_k)_{k\in\mathbb{N}}$ be a sequence of $B_{u,r,\mu}$ converging in $\mathcal{H}(\Omega)$ to *f*. First we establish that *f* has an asymptotic expansion at *u* with

$$
f^{[j]}(u) = \lim_{k \to \infty} f_k^{[j]}(u)
$$

for every $j \in \mathbb{N}_0$. For every $k \in \mathbb{N}$, as we have $f_k \in B_{u,r,\mu}$, we get at once $|f_k^{[0]}(u)| \leq m_1$. So from every subsequence of $(f_k^{[0]}(u))_{k\in\mathbb{N}}$, we can extract a subsequence converging to some $a_0 \in \mathbb{C}$. As we also have

$$
\left|\hat{f}_{k}^{[1]}(z,u)\right| = \left|\frac{f_{k}^{[0]}(z,u)-f_{k}^{[0]}(u)}{z-u}\right| \leq m_{1}
$$

for every $k \in \mathbb{N}$ and $z \in \Omega$ such that $|z - u| \leq 1/r$, we get

$$
\left|\frac{f(z)-a_0}{z-u}\right|\leq m_1
$$

for every $z \in \Omega$ such that $|z - u| \leq 1/r$, hence $\lim_{z \in \Omega, z \to u} f(z) = a_0$. The conclusion is then direct by use of a recursion.

It is then an easy matter to check that f belongs to $B_{u,r,\mu}$. Hence the conclusion \Box

3. If *D* **is finite**

If $D = \{u_1, \ldots, u_J\}$ is finite, we use the following notations: a) For every $r \in \mathbb{N}$,

$$
\begin{aligned} \n\langle u_1, \ldots, u_J \rangle & \text{is finite, we use the following notations:} \\ \n\text{for every } r \in \mathbb{N}, \\ \nA_r(\Omega; D) &= \bigcap_{u \in D} A_r(\Omega; \{u\}) \\ \n&= \left\{ f \in A(\Omega; D) : \sup_{z \in \Omega, |z - u| \le 1/r} |f(z)| < \infty \quad \text{for all } u \in D \right\}. \n\end{aligned}
$$

So $A_r(\Omega; D)$ is a vector subspace of $A(\Omega; D)$ and

$$
\bigcup_{r=1}^{\infty} A_r(\Omega; D) = A(\Omega; D).
$$

ery $r, n \in \mathbb{N}$,

$$
p_{D,r,n} : A_r(\Omega; D) \to [0, +\infty), \qquad f \mapsto \sup\{1, 2, \ldots, r\}.
$$

b) For every $r, n \in \mathbb{N}$,

$$
p_{D,r,n}: A_r(\Omega; D) \to [0, +\infty), \qquad f \mapsto \sup\{p_{u,r,n}(f) : u \in D\}
$$

is a norm on $A_r(\Omega; D)$ and

$$
P_{D,r} = \{p_{D,r,n} : n \in \mathbb{N}\}
$$

is a countable system of norms on $A_r(\Omega; D)$ endowing it with a finer locally convex topology than the one induced by $\mathcal{H}(\Omega)$. From now on, if D is finite and if $r > 0$, the topology than the one induced by $\mathcal{H}(\Omega)$. From now on, if *D* is finite and if $r > 0$, the notation $A_r(\Omega; D)$ will refer to the locally convex space $(A_r(\Omega; D), P_{D,r})$. So $V_{P,n}: A_r(\Omega; D) \to [0, +\infty), \qquad f \mapsto \sup\{p_{u,r,n}(f) : u \in$
 $V(\Omega; D)$ and
 $P_{D,r} = \{p_{D,r,n} : n \in \mathbb{N}\}$
 V ystem of norms on $A_r(\Omega; D)$ endowing it with a fine

the one induced by $\mathcal{H}(\Omega)$. From now on, if D is finite a
 $D)$ will

$$
V_{D,r,n} = \left\{ f \in A_r(\Omega; D) : p_{D,r,n}(f) \leq \frac{1}{n} \right\} \qquad (n \in \mathbb{N})
$$

is a fundamental sequence of neighbourhoods of the origin in $A_r(\Omega; D)$.

c) For every sequence $\rho = (r_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$,

$$
B_{D,\rho}=\bigcap_{u\in D}B_{u,r_1,\rho_1}
$$

where ρ_1 is the sequence $(r_{n+1})_{n\in\mathbb{N}}$. Of course, $B_{D,\rho}$ is an absolutely convex and compact subset of $A(\Omega; D)$; moreover it is a bounded subset of the space $A_{r_1}(\Omega; D)$.

Proposition 3.1: *If D* is finite, then, for every $r \in \mathbb{N}$, $A_r(\Omega; D)$ is a Fréchet space.

v_{D,r,}
is a fundamental sequence of \mathcal{P}_1 is the sequence of \mathcal{P}_2
where ρ_1 is the sequence of \mathcal{P}_3
compact subset of \mathcal{P}_4
space.
Proof: Let $(f_k)_k$
 $\mathcal{P}_4(\Omega)$, it converges in **Proof:** Let $(f_k)_{k\in\mathbb{N}}$ be a Cauchy sequence. As it clearly is a Cauchy sequence in $\mathcal{H}(\Omega)$, it converges in $\mathcal{H}(\Omega)$ to some *f*. Let us prove now that *f* belongs to $A_r(\Omega; D)$. Let us fix $u \in D$. Let us also fix $j \in N_0$. On one hand, for every $k \in N$, the

function $f_k^{[j]}(\cdot, u)$ on Ω has a finite limit $f_k^{[j]}(u)$ at u. On the other hand, the sequence u)) $_{k\in\mathbb{N}}$ is uniformly Cauchy on $\{z\in\Omega:|z-u|\leq 1/r\}$. Therefore the two limits On the Existence

as a finite limit $f_k^{[j]}(u)$ at u. C

ly Cauchy on $\{z \in \Omega : |z - u| \le$
 $\lim_{k \to \infty} \lim_{z \in \Omega, z \to u} f_k^{[j]}(z, u) = \lim_{k \to \infty}$

$$
\lim_{k \to \infty} \lim_{z \in \Omega, z \to u} f_k^{[j]}(z, u) = \lim_{k \to \infty} f_k^{[j]}(u)
$$

and

$$
\lim_{z\in\Omega,\,z\to u}\lim_{k\to\infty}f_k^{[j]}(z,u)
$$

exist, are finite and are equal. A direct recursion on $j \in \mathbb{N}_0$ establishes then that f has an asymptotic expansion at u.

It is finally a standard matter to prove that the sequence $(f_k)_{k\in\mathbb{N}}$ converges in $A_r(\Omega; D)$ to f **I**

The previous result is also a consequence of the following considerations which will prove to be very fruitful (we refer the reader to [3] for the definition and the properties of the quasi-LB spaces and representations).

Proposition 3.2: *If D* is finite, then the family ${B_{D,\rho} : \rho \in N^N}$ is a quasi-LB *representation of the space* $A(\Omega; D)$ *, made of absolutely convex and compact sets.*

Proof: By Proposition 2.1, for every $\rho \in \mathbb{N}^N$, $B_{D,\rho}$ is an absolutely convex and compact subset of $\mathcal{H}(\Omega)$ hence of $A(\Omega; D)$ since it is a subset of $A(\Omega; D)$. It is also clear that, for every $\rho, \sigma \in \mathbb{N}^N$ such that $\rho \leq \sigma$ (i.e. $r_n \leq s_n$ for every $n \in \mathbb{N}$ if $\sigma = (s_n)_{n \in \mathbb{N}}$, we have $B_{D,\rho} \subset B_{D,\sigma}$.

To conclude, it is then enough to check that $\bigcup_{\rho \in \mathbb{N}^N} B_{D,\rho}$ is equal to $A(\Omega; D)$. This is a direct matter: every $f \in A(\Omega; D)$ has an asymptotic expansion at every. element of *D* so it is a bounded function on $\bigcup_{u \in D} \{z \in \Omega : |z - u| \leq 1/r\}$ for

some $r \in \mathbb{N}$. Moreover, for every $n \in \mathbb{N}_0$, there is $s_n \in \mathbb{N}$ such that $f \in s_n V_{D,r,n}$. Some *r* ∈ *N*. Moreover, for every *n* ∈ *N*₀, there is s_n ∈ *N* such that *f* ∈ Therefore *f* belongs to $B_{D,\rho}$ with $r_1 = r$ and $r_{n+1} = s_n$ for every $n \in N$ **I**

Now, as in [3], for every $\rho = (r_n)_{n \in N} \in N^N$, w

Now, as in [3], for every $\rho = (r_n)_{n \in \mathbb{N}} \in \mathbb{N}^N$, we may introduce successively: a) For every $n \in \mathbb{N}$, the set

$$
B_{D,r_1,\ldots,r_n}=\bigcup\{B_{D,\sigma}:\sigma=(s_n)_{n\in\mathbb{N}}\in\mathbb{N}^{\mathbb{N}};s_1=r_1,\ldots,s_n=r_n\}.
$$

In fact, it is a direct matter to check that in our case

$$
B_{D,\mathbf{r}_1}=A_{\mathbf{r}_1}(\Omega;D)
$$

and, for every $n = 2,3,...$

$$
B_{D,r_1,\ldots,r_n}=(r_2V_{D,r_1,1})\cap\ldots\cap(r_nV_{D,r_1,n-1}).
$$

b) For every $n \in \mathbb{N}$, the linear hull F_{D,r_1,\ldots,r_n} of B_{D,r_1,\ldots,r_n} . Of course, in our case, we get at once $F_{D,r_1,\ldots,r_n} = A_{r_1}(\Omega;D)$ for every $n \in \mathbb{N}$.

c) The vector space $F_{D,\rho} = \bigcap_{n=1}^{\infty} F_{D,r_1,\dots,r_n}$, i.e. $F_{D,\rho} = A_{r_1}(\Omega; D)$ in our case.

At this point, [3] provides another way to prove that, for every $r \in \mathbb{N}$, $A_r(\Omega; D)$ is a Fréchet space.

Definition: If *D* is finite, we have

we have
\n
$$
A(\Omega; D) = \bigcup_{r=1}^{\infty} A_r(\Omega; D)
$$

and, for every $r, s \in \mathbb{N}$ such that $r < s$, the canonical injection from $A_r(\Omega; D)$ into $A_{\bullet}(\Omega; D)$ is continuous. Therefore we may endow $A(\Omega; D)$ with an (LF)-topology τ by considering the inductive limit of the sequence $(A_r(\Omega; D))_{r \in \mathbb{N}}$ of Fréchet spaces. Of course, τ is finer than the topology of $A(\Omega; D)$.

Notations: If $D = \{u_1, \ldots, u_J\}$ is a finite subset of $\partial\Omega$, then, in this section and unless specifically stated, we use the following notations: is a finite subset of $\partial\Omega$,

following notations:

otation T_j refers to the li
 N_0), $f \mapsto \left(f^{[n]}(u_j)\right)$

a) For every $j \in \{1, \ldots, J\}$, the notation T_j refers to the linear map

$$
T_j: A(\Omega; D) \to \omega(N_0), \qquad f \mapsto \left(f^{[n]}(u_j)\right)_{n \in \mathbb{N}_0}
$$

which is continuous if we endow $A(\Omega; D)$ with the topology τ and L_j is the vector subspace span $\{\eta_{u_j,n} : n \in \mathbb{N}_0\}$ of the topological dual $(A(\Omega; D), \tau)'$.

b) $L = \text{span}(\cup_{j=1}^{J} L_j).$

Now we are looking for necessary and sufficient conditions under which *D* is regularly asymptotic for Ω .

Definition: If *r* belongs to *N*, the finite subset *D* of $\partial\Omega$ is *r-regularly asymptotic for* Ω if the restriction of the map *T* to $A_r(\Omega; D)$ is also surjective onto $\omega(D \times N_0)$.

Proposition 3.3: The finite subset D of $\partial\Omega$ is regularly asymptotic for Ω if and only if there is $r \in \mathbb{N}$ such that D is r-regularly asymptotic for Ω .

Proof: The proof of Proposition 9 in [4] applies also to this case

Corollary 3.4: If D is finite and is regularly asymptotic for Ω , then the kernel of *T* has 2^{\aleph_0} as algebraic dimension.

Proof: By the previous proposition, there is $r \in \mathbb{N}$ such that the restriction S of *T* to $A_r(\Omega; D)$ is a continuous and surjective linear map. To conclude, we just have to prove that the Fréchet subspace ker S of $A_r(\Omega; D)$ is not finite-dimensional. If it were finite-dimensional, it would have a topological complement *M* and the restriction, of *^T* to *M* would appear as an isomorphism in between *M* and

 $\omega(D \times N)$ although *M* has a continuous norm \blacksquare

The next result comes from [5]. We repeat it here, with proof, for the sake of completeness since the reference [5] is not readily accessible.

Theorem 3.5: The finite subset D of $\partial\Omega$ is regularly asymptotic for Ω if and *only if, for every* $u \in D$ and $(c_n)_{n \in \mathbb{N}_0} \in \omega(N_0)$, there is $f \in A(\Omega;D)$ such that $f(z) \approx \sum_{n=0}^{\infty} c_n (z-u)^n$ at *u*.

Proof: The condition is trivially necessary. The condition is also sufficient.Indeed, if *D* is a singleton, the result is trivial. So let us consider the case $D = \{u_1, \ldots, u_J\}$ with an integer $J \geq 2$.

For every $j \in \{1, ..., J\}$, T_j is clearly a surjective, linear and continuous map. So the Fréchet space $\omega(N_0)$ is equal to $\cup_{r=1}^{\infty} T_j A_r(\Omega; D)$ hence there is $r_j \in \mathbb{N}$ such that $T_j A_{r_j}(\Omega; D)$ is a second category vector subspace of $\omega(N_0)$. As a surjective, linear and continuous map from the Fréchet space $A_{r_i}(\Omega; D)$ onto its image, the restriction of T_j is a topological homomorphism. Therefore $T_j A_{r_j}(\Omega; D)$ is a Fréchet space hence is equal to $\omega(N_0)$.

To conclude, we are going to prove that, for $r = \sup\{r_1, \ldots, r_J\}$, the set

$$
\{\eta_{u,n}:u\in D,\,n\in I\!\!N_0\}
$$

has the interpolation property on $A_r(\Omega; D)$. By Theorem 1.1, as these

continuous linear functionals on $A_r(\Omega; D)$ are linearly independent, we just need to prove that, for every $s \in \mathbb{N}$, the dimension of the vector space $L \cap \text{span } V_{D,r,s}^{\circ}$ is finite.

Let us fix $s \in \mathbb{N}$ and, in order to simplify the notations, let us set $U = V_{D,r,s}$. For every $j \in \{1, \ldots, J\}$, the restriction of T_j to $A_r(\Omega; D)$ is surjective hence the dimension of $L_j \cap \text{span } U^{\circ}$ is finite: there is $N(j) \in \mathbb{N}$ such that ude, we are going to prove that, for $r = \sup\{r_1, \ldots, r_J\}$, the set
 $\{\eta_{u,n} : u \in D, n \in \mathbb{N}_0\}$

polation property on $A_r(\Omega; D)$. By Theorem 1.1, as these

us linear functionals on $A_r(\Omega; D)$ are linearly independent, we ju

$$
\left(\beta_0,\ldots,\beta_N\in\mathbb{C}: \beta_N\neq 0; \sum_{n=0}^N \beta_n \eta_{u_j,n}\in\text{span}\,U^{\circ}\right)\Longrightarrow N\leq N(j).
$$

To conclude, it is then sufficient to prove that

$$
\zeta = \sum_{j=1}^{J} \sum_{n=0}^{N} \alpha_{j,n} \eta_{u_j,n} \in \text{span } U^{\circ}
$$

with $N > \sup\{s, N(1), \ldots, N(J)\}\$ implies $\alpha_{j,N} = 0$ for every $j = 1, \ldots, J$.

This we do by contradiction: let us suppose the existence of such a functional ζ with $N > \sup\{s, N(1),...,N(J)\}\$ and $\alpha_{k,N} \neq 0$ for some $k \in \{1,...,J\}$, belonging to qU° for some $q \in I\!\!N$.

We need some preparation. Let us denote by $P(z)$ the polynomial

$$
\prod_{1 \leq j \leq J, \, j \neq k} (z - u_j)^{N+1}
$$

It can also be written as

$$
P(z) = c_0 + c_1(z - u_k) + \ldots + c_{(N+1)(J-1)}(z - u_k)^{(N+1)(J-1)}
$$

with $c_0 \neq 0$. Then we choose a closed disk *B* in \mathcal{C} , centered at the origin and containing

$$
K_{s}\bigcup\left(\bigcup_{j=1}^{J}\left\{z\in\Omega:|z-u_{j}|\leq\frac{1}{r}\right\}\right).
$$

Finally we set

Then we choose a closed disk
$$
B
$$
 in \mathbb{C} , centered at the origin and
\n
$$
K_s \bigcup \left(\bigcup_{j=1}^J \left\{ z \in \Omega : |z - u_j| \leq \frac{1}{r} \right\} \right).
$$
\nset
\n
$$
C_1 = \sup \left\{ \left\| \frac{P(\cdot)}{(\cdot - u_j)^h} \right\|_B : h \in \{0, \ldots, s\}, j \in \{1, \ldots, J\} \setminus \{k\} \right\}
$$

J. Schmets and M. Valdivia
\n
$$
C_2 = \sup \left\{ \left\| c_h + \dots + c_{(N+1)(J-1)} (z - u_k)^{(N+1)(J-1) - h} \right\|_B : h = 0, \dots, s \right\}
$$
\ntrroduce the polynomial
\n
$$
Q(z) = \frac{P(z)}{2(C_1 + C_2)(s+1)^2}.
$$

and introduce the polynomial

$$
Q(z) = \frac{P(z)}{2(C_1 + C_2)(s+1)^2}.
$$

For every $g \in U$, the function Qg clearly belongs to $A_r(\Omega; D)$. In fact, it belongs to *U*: *a*) For every $j \in \{1, \ldots, J\} \setminus \{k\}$ and $h \in \{0, \ldots, s\}$, we have

$$
(Qg)^{[h]}(z,u_j) = \frac{Q(z)}{(z-u_j)^h} g(z)
$$

hence

ne polynomial
\n
$$
Q(z) = \frac{P(z)}{2(C_1 + C_2)(s+1)^2}.
$$
\nthe function Qg clearly belongs to $A_r(\Omega; D)$. In fact,
\n $j \in \{1, ..., J\} \setminus \{k\}$ and $h \in \{0, ..., s\}$, we have
\n
$$
(Qg)^{[h]}(z, u_j) = \frac{Q(z)}{(z - u_j)^h} g(z)
$$
\n
$$
\left| (Qg)^{[h]}(z, u_j) \right| \le \frac{C_1}{2(C_1 + C_2)(s+1)^2} \cdot \frac{1}{s} \le \frac{1}{2s(s+1)^2}
$$
\nsuch that $|z - u_j| \le 1/r$.

for every $z \in \Omega$ such that $|z - u_j| \leq 1/r$.

b) For $h \in \{0, \ldots, s\}$, we also have

$$
\left| (Qg)^{[h]}(z, u_j) \right| \leq \frac{C_1}{2(C_1 + C_2)(s+1)^2} \cdot \frac{1}{s} \leq \frac{1}{2s(s+1)^2}
$$
\nor every $z \in \Omega$ such that $|z - u_j| \leq 1/r$.

\nb) For $h \in \{0, ..., s\}$, we also have

\n
$$
(Qg)^{[h]}(z, u_k) = \frac{\sum_{l=0}^{h-1} c_l g^{[h-l]}(z, u_k) + (c_h + \dots + c_{(N+1)(J-1)}(z - u_k)^{(N+1)(J-1)-h)} g^{[0]}(z, u_k)}{2(C_1 + C_2)(s+1)^2}
$$
\nence

\n
$$
\left| (Qg)^{[h]}(z, u_k) \right| \leq \frac{(s+1)C_2}{2(C_1 + C_2)(s+1)^2} \cdot \frac{1}{s} \leq \frac{1}{2s(s+1)}
$$
\nr every $z \in \Omega$ such that $|z - u_k| \leq 1/r$.

\nc) For every $z \in K_s$, it is clear that

\n
$$
|(Qg)(z)| \leq \frac{C_1}{2(C_1 + C_2)(s+1)^2} \cdot \frac{1}{s} \leq \frac{1}{2s(s+1)^2}.
$$
\nIt this stage, we consider the continuous linear functional

hence

$$
2(C_1 + C_2)(s+1)^2
$$

$$
\left| (Qg)^{[h]}(z, u_k) \right| \le \frac{(s+1)C_2}{2(C_1 + C_2)(s+1)^2} \cdot \frac{1}{s} \le \frac{1}{2s(s+1)}
$$

for every $z \in \Omega$ such that $|z - u_k| \leq 1/r$.

c) For every $z \in K_s$, it is clear that

$$
|(Qg)(z)|\leq \frac{C_1}{2(C_1+C_2)(s+1)^2}\cdot \frac{1}{s}\leq \frac{1}{2s(s+1)^2}.
$$

At this stage, we consider the continuous linear functional

$$
| \leq \frac{C_1}{2(C_1 + C_2)(s+1)^2} \cdot \frac{1}{s} \leq \frac{1}{2s(}
$$

the continuous linear functional

$$
\eta = \sum_{n=0}^{N} \alpha_{k,n} \sum_{j=0}^{n} Q^{[n-j]}(u_k) \eta_{u_k,j}.
$$

The coefficient of $\eta_{u_k,N}$ is $\alpha_{k,N}Q^{[0]}(u_k)$ and differs from 0. Moreover as $N > N(k)$, η does not belong to span U° . Therefore there is $f \in U$ such that $|\langle f, \eta \rangle| > q$. As Qf belongs to U , we finally arrive at the following contradiction:

We have

$$
|\langle Qf,\zeta\rangle|\leq q
$$

because $\zeta \in qU^{\circ}$, as well as

$$
\begin{aligned}\n\text{(Qf, }\zeta) &= \left| \sum_{j=1}^{J} \sum_{n=0}^{N} \alpha_{j,n} \langle Qf, \eta_{u_j, n} \rangle \right| \\
&= \left| \sum_{j=1}^{J} \alpha_{k,n} \langle Qf, \eta_{u_k, n} \rangle \right| \\
&= \left| \sum_{n=0}^{N} \alpha_{k,n} \langle Qf, \eta_{u_k, n} \rangle \right| \\
&= \left| \sum_{n=0}^{N} \alpha_{k,n} \sum_{j=0}^{n} Q^{[n-j]}(u_k) f^{[j]}(u_k) \right| \\
&= \left| \left\langle f, \sum_{n=0}^{N} \alpha_{k,n} \sum_{j=0}^{n} Q^{[n-j]}(u_k) \eta_{u_k, j} \right\rangle \right| \\
&= |\langle f, \eta \rangle| \\
&> q.\n\end{aligned}
$$

Thus our statement is proved \blacksquare

At this stage, we can extend Theorem *4* of *(4)* in the following way.

Proposition 3.6: The finite subset $D = \{u_1, \ldots, u_J\}$ of $\partial\Omega$ is regularly asymptotic *for Q if and only if the following condition (*) is satisfied:*

(*) There is $r \in \mathbb{N}$ such that, for every compact subset K of Ω and $j_0 \in \{1, ..., J\}$,
there is an integer $p \in \mathbb{N}$ such that, for every $h > 0$, there is $f \in A_r(\Omega; D)$
verifying
 $|f(z)| \le 1$ for all $z \in K \cup \left(\bigcup_{j=$ *there is an integer* $p \in \mathbb{N}$ *such that, for every* $h > 0$ *, there is* $f \in A_r(\Omega; D)$ *verifying*

$$
|f(z)| \leq 1 \qquad \text{for all } z \in K \bigcup \left(\bigcup_{j=1}^{J} \left\{ u \in \Omega : |u - u_j| \leq \frac{1}{r} \right\} \right)
$$

and

$$
|f^{[p]}(u_{j_0})|>h.
$$

Proof: The condition is necessary. Indeed, by Proposition 3.3, there is an integer $r \in \mathbb{N}$ such that

$$
|f^{[p]}(u_{j_0})| > h.
$$

he condition is necessary. Indeed, by Proposition 3.3, the
at

$$
S: A_r(\Omega; D) \to \omega(D \times N_0), \qquad f \mapsto \left(f^{[n]}(u)\right)_{(u,n) \in D \times N_0}
$$

is a continuous, surjective and linear map. Let us fix a compact subset K of Ω and an integer *j*⁰ in $\{1,\ldots,J\}$. There is then an integer $s \in \mathbb{N}$ such that $K \subset K_s$. As, for $n \in \mathbb{N}_0$, the continuous linear functionals $\eta_{u_{j_0},n}$ on $A_r(\Omega; D)$ are linearly independent, Theorem 1.1 tells us that the dimension of the vector is a continuous, surjective and linear map. Let us fix a compact subset K of Ω and an integer j_0 in $\{1,\ldots,J\}$. There is then an integer $s \in \mathbb{N}$ such that $K \subset K_s$. As, for $n \in \mathbb{N}_0$, the continuous linear

space

$$
\operatorname{span} \left\{ \eta_{u_{j_0},n} : n \in \mathbb{N}_0 \right\} \cap \operatorname{span} V_{D,r,s}^{\circ}
$$

span $V_{D,r,s}^{\circ}$. Hence, for every $h > 0$, there is $f \in V_{D,r,s}$ such that

$$
|f^{[p]}(u_{j_0})|=|\langle f,\eta_{u_{j_0},p}\rangle|>h.
$$

Hence the conclusion.

The condition is sufficient. Indeed, by Theorem 3.5, it is enough to prove that, for every $j \in \{1, \ldots, J\}$, the map and M. Valdivia

on.

is sufficient. Indeed, by Theo
 S_j: $A_r(\Omega; D) \rightarrow \omega(N_0)$,

$$
S_j: A_r(\Omega; D) \to \omega(N_0), \qquad f \mapsto \left(f^{[n]}(u_j)\right)_{n \in \mathbb{N}_0}
$$

is surjective. Let us fix $j \in \{1, \ldots, J\}$. As, for $n \in \mathbb{N}_0$, the continuous linear functionals $\eta_n = \eta_{u_i,n}$ are linearly independent, by Theorem 1.1, we just need to prove that, for every $s \in \mathbb{N}$, the vector space

$$
\operatorname{span}\{\eta_n:n\in I\!\!N_0\}\cap\operatorname{span} V^\circ_{D,r,s}
$$

has finite dimension. Let us fix $s \in \mathbb{N}$ and denote by p_j the least integer satisfying condition (*) for $K = K_{\bullet}$ and $j_0 = j$. There is then $k > 0$ such that, for every $g \in A_r(\Omega; D)$ verifying $|g(z)| \leq 1$ for every element *z* of the set Figure 1. Let us fix $s \in \mathbb{N}$ and denote by p_j the least in
 $\inf Y = K_s$ and $j_0 = j$. There is then $k > 0$ such
 $\inf \{ \text{sing } |g(z)| \leq 1 \text{ for every element } z \text{ of the set }$
 $\mathcal{K} = K_s \bigcup \left(\bigcup_{u \in D} \left\{ t \in \Omega : |t - u| \leq \frac{1}{r} \right\} \right),$
 $|g^{[n]}(u$

$$
\mathcal{K} = K_{s} \bigcup \left(\bigcup_{u \in D} \left\{ t \in \Omega : |t - u| \leq \frac{1}{r} \right\} \right),
$$

$$
|I^{[n]}(u_{j})| \leq k \quad \text{for all } n \in \{0, \ldots, p_{j} - 1\}.
$$

one has

$$
|g^{[n]}(u_j)| \leq k \quad \text{for all } n \in \{0,\ldots,p_j-1\}
$$

At this point, to conclude, it is sufficient to prove that a functional of the type

$$
\delta = \sum_{n=0}^{N} \alpha_n \eta_n \quad \text{with } N > p_j + s, \ \alpha_n \in \mathbb{C} \text{ and } \alpha_N \neq 0
$$

never belongs to span $V_{D,r,s}^{\circ}$. This we do by contradiction. Let us suppose that such a functional δ belongs to $\tilde{h}V_{D,r,s}^{\delta}$ for some $h > 0$. We need some preparation. We choose an integer d greater than the diameter of K and set successively η_n with $N > p_j + s$
 $\dot{p}_{n,r,s}$. This we do by contr
 $\dot{p}_{n,r,s}$ for some $h > 0$. When diameter of K and s
 $\alpha = \sup\{|\alpha_0|, \ldots, |\alpha_N|\}$
 $\gamma = (z - u_j)^{N-p_j}$

$$
\alpha = \sup\{| \alpha_0 |, \dots, | \alpha_N| \}
$$

\n
$$
P(z) = (z - u_j)^{N - p_j} \prod_{1 \le k \le J, k \ne j} (z - u_k)^N
$$

\n
$$
L = \sup\left\{|P^{[n]}(u_j)| : n = 0, \dots, N\right\}.
$$

\n
$$
(\Omega; D) \text{ such that } |f(z)| \le 1 \text{ for every } z \in
$$

\n
$$
|f^{[p_j]}(u_j)| > \frac{s(s + 2)hd^{N} + 2L\alpha N^2k}{|\alpha_N P^{[N - p_j]}(u_j)|}.
$$

\nOf course *a* belongs to *A*₋(*O*₁*D*₁: more

Now we choose $f \in A_r(\Omega; D)$ such that $|f(z)| \leq 1$ for every $z \in \mathcal{K}$ and

$$
|f^{[p_j]}(u_j)| > \frac{s(s+2)hd^{NJ} + 2L\alpha N^2k}{|\alpha_N P^{[N-p_j]}(u_j)|}
$$

Finally we set $g = Pf$. Of course g belongs to $A_r(\Omega; D)$; more precisely from

$$
L = \sup \left\{ |P^{[n]}(u_j)| : n = 0, ..., N \right\}.
$$

\ne choose $f \in A_r(\Omega; D)$ such that $|f(z)| \le 1$ for every $z \in K$ and
\n
$$
|f^{[p_j]}(u_j)| > \frac{s(s+2)hd^{Nj} + 2L\alpha N^2k}{|\alpha_N P^{[N-p_j]}(u_j)|}.
$$

\nwe set $g = Pf$. Of course g belongs to $A_r(\Omega; D)$; more precisely from
\n
$$
p_{D,r,s}(g) = \sup_{u \in D} \left(||Pf||_{K_s} + \sup \left\{ \sum_{l=0}^s \left| \frac{P(z)f(z)}{(z-u)^l} \right| : z \in \Omega, |z-u| \le \frac{1}{r} \right\} \right)
$$

\n $\le d^{Nj} + (s+1)d^{Nj}$
\n $= (s+2)d^{Nj}$

we get that g belongs to $s(s + 2)d^{NJ}V_{D,r,s}$ and hence g satisfies

$$
|\langle g,\delta\rangle|\leq hs(s+2)d^{NJ}.
$$

But we also have

 $|f^{[N-i]}(u_j)| \leq k$ for every $t \in \{N-p_j+1,\ldots,N\}$

and this leads to the following contradiction:

$$
|\langle g, \delta \rangle| = \left| \sum_{n=0}^{N} \alpha_n g^{[n]}(u_j) \right|
$$

\n
$$
= \left| \sum_{n=0}^{N} \alpha_n \sum_{i=0}^{n} P^{[i]}(u_j) f^{[n-i]}(u_j) \right|
$$

\n
$$
= \left| \sum_{n=N}^{N} \alpha_n \sum_{i=N-p_j}^{n} P^{[i]}(u_j) f^{[n-i]}(u_j) \right|
$$

\n
$$
\geq |\alpha_N| \left| P^{[N-p_j]}(u_j) f^{[p_j]}(u_j) \right| - |\alpha_N| \sum_{i=N-p_j+1}^{N} P^{[i]}(u_j) | f^{[N-i]}(u_j) \right|
$$

\n
$$
- \sum_{n=N-p_j}^{N-1} |\alpha_n| \sum_{i=N-p_j}^{n} P^{[i]}(u_j) | f^{[n-i]}(u_j) |
$$

\n
$$
\geq s(s+2)hd^{N} + 2L\alpha N^2k - \alpha NLk - N^2\alpha Lk
$$

\n
$$
> s(s+2)hd^{N}.
$$

Thus the assertion is proved **^U**

Now by use of the previous result and of ideas of [4), we are going to establish a first generalization of Carleman's result.

Notations: For $u \in \mathbb{C}$ and $A \subset \mathbb{C}$, let us set

$$
\delta_1(u, A) = \inf\{|u - z| : z \in A\}
$$
 and $\delta_2(u, A) = \sup\{|u - z| : z \in A\}.$

Definition: The boundary $\partial\Omega$ is *quasi-connected at* $u \in \partial\Omega$ *if, for every* $\varepsilon, \delta > 0$ such that $0 < \varepsilon < \delta$, there is a connected subset *A* of $\partial\Omega$ such that off $\{ |u - z| : z \in A \}$ and $\delta_2(u, A) = \sup\{|u - z| : z \in A\}$

de boundary $\partial\Omega$ is quasi-connected at $u \in \partial\Omega$

there is a connected subset A of $\partial\Omega$ such that
 $\delta_2(u, A) < \delta$ and $\delta_1(u, A) < \varepsilon \delta_2(u, A)$.

Let us mention that in Section 5, we will prove that $\partial\Omega$ is quasi-connected at $u \in \partial\Omega$ *if the connected component of u in* $\partial\Omega$ *contains more than one point. So if* Ω *is simply connected,* $\partial\Omega$ *is quasi-connected at every point of* $\partial\Omega$ *.*

Theorem 3.7: If $\partial\Omega$ is quasi-connected at every point of the finite subset D of $\partial\Omega$. *then D is regularly asymptotic for* Ω .

Proof: As $D = \{u_1, \ldots, u_J\}$ is finite, there is $r \in N$ such that the disks

is: connected at every point
for
$$
\Omega
$$
.

$$
\Big\{z \in \mathbb{C}: |z - u_j| \leq \frac{1}{r}\Big\}
$$

$$
\dots, J
$$
. Let us fix $j \in \mathbb{C}$

are pairwise disjoint for $j \in \{1, ..., J\}$. Let us fix $j \in \{1, ..., J\}$ and a compact subset *K* of Ω . We are going to prove that Proposition 3.6 applies with $p = 1$. Of course there are pairwise disjoint for $j \in K$ of Ω . We are going to provide $|z - \alpha|$. is $C > 0$ such that $|z - \alpha| \cdot |z - \beta| < C^2$ for every

$$
z \in \mathcal{K} = K \bigcup \left(\bigcup_{u \in D} \left\{ t \in \mathbb{C} : |t - u| \leq \frac{1}{r} \right\} \right)
$$

and every $\alpha, \beta \in \mathbb{C}$ such that $|\alpha - u_j| \leq 1/r$ and $|\beta - u_j| \leq 1/r$. Given $h > 0$, by hypothesis, there is a connected subset *A* of $\partial\Omega$ such that

$$
z \in \mathcal{K} = K \bigcup \left(\bigcup_{u \in D} \left\{ t \in \mathbb{G} : |t - u| \leq \frac{1}{r} \right\} \right)
$$
\n
$$
z \in \mathcal{K} = K \bigcup \left(\bigcup_{u \in D} \left\{ t \in \mathbb{G} : |t - u| \leq \frac{1}{r} \right\} \right)
$$
\n
$$
\text{try } \alpha, \beta \in \mathbb{C} \text{ such that } |\alpha - u_j| \leq 1/r \text{ and } |\beta - u_j| \leq 1/r. \text{ Given } h
$$
\n
$$
\text{esis, there is a connected subset } A \text{ of } \partial \Omega \text{ such that}
$$
\n
$$
\delta_2(u_j, A) < \frac{1}{r} \quad \text{and} \quad 0 < \delta_1(u_j, A) < \inf \left\{ \frac{1}{2r}, \frac{1}{16C^2h^2} \right\} \delta_2(u_j, A).
$$
\n
$$
\text{re there are points } \alpha \text{ and } \beta \text{ in } A \text{ such that}
$$

Therefore there are points α and β in *A* such that

$$
|u_j-\alpha|<\inf\left\{\frac{1}{2r},\frac{1}{16C^2h^2}\right\}|u_j-\beta|.
$$

Then there is a determination *g* of $\sqrt{(-\alpha)(-\beta)}$ which is holomorphic on $\Omega \cup V$ for

some open neighbourhood *V* of *D*. So $f = g/C$

a) belongs to $A_r(\Omega; D)$

b) verifies $|f(z)| < 1$ for every $z \in K$

c) verifies
 $|f^{[1]}(u$ some open neighbourhood *V* of *D*. So $f = g/C$

a) belongs to $A_r(\Omega; D)$

b) verifies $|f(z)| < 1$ for every $z \in \mathcal{K}$

c) verifies

D)
\n1 for every
$$
z \in K
$$

\n
$$
|f^{[1]}(u_j)| = \frac{1}{C} \lim_{z \in \Omega, z \to u_j} \left| \frac{g(z) - g(u_j)}{z - u_j} \right|
$$
\n
$$
= \frac{|2u_j - (\alpha + \beta)|}{2C|u_j - \alpha|^{1/2}|u_j - \beta|^{1/2}}
$$
\n
$$
\geq \frac{1 - \left|\frac{u_j - \alpha}{u_j - \beta}\right|}{2C \left|\frac{|u_j - \alpha|}{u_j - \beta}\right|^{1/2}}
$$
\n
$$
> \frac{1 - 1/2}{2C \cdot \frac{1}{4C\hbar}}
$$
\n
$$
= h,
$$

hence the conclusion by Proposition 3.6 **^U**

Let us also mention the following result.

Proposition 3.8: Let D be a finite subset of $\partial\Omega$. Let us suppose moreover the *existence of a subset* $\{d_{u,n} : u \in D, n \in \mathbb{N}_0\}$ of $(0,+\infty)$ such that, for every subset $u \in D, n \in \mathbb{N}_0$ *of* $\mathbb C$ *such that* $|c_{u,n}| \le d_{u,n}$ for every $u \in D$ and $n \in \mathbb{N}_0$, there **is a Composition 3.8:** Let D be a finite subset of $\partial\Omega$. Let us su
existence of a subset $\{d_{u,n} : u \in D, n \in \mathbb{N}_0\}$ of $(0, +\infty)$ such the
 $\{c_{u,n} : u \in D, n \in \mathbb{N}_0\}$ of \mathcal{F} such that $|c_{u,n}| \leq d_{u,n}$ for every **i** On the Existence of Holomorphic Fund
 Proposition 3.8: Let D be a finite subset of $\partial\Omega$. Let us suppose

existence of a subset $\{d_{u,n}: u \in D, n \in \mathbb{N}_0\}$ of $(0, +\infty)$ such that, fo
 $\{c_{u,n}: u \in D, n \in \mathbb{N}_0\}$ of

Then there is $\rho \in \mathbb{N}^{\mathbb{N}}$ *such that, for every subset* $\{c_{u,n}: u \in D, n \in \mathbb{N}_0\}$ as above,

Proof: The set

$$
C = \left\{ (c_{u,n})_{(u,n)\in D\times N_0} : |c_{u,n}| \le d_{u,n} \text{ for all } (u,n) \in D \times N_0 \right\}
$$

is clearly an absolutely convex and compact subset of $\omega(D \times N_0)$. By the Proposition 12/(b) of [3], there are then $\rho \in \mathbb{N}^N$ and a subset *M* of B_{D,r_1,ρ_1} such that $TM = C$. Hence the conclusion \Box

4. If *D* **is infinite**

Let us recall that every subset *D* of $\partial\Omega$ which is regularly asymptotic for Ω is countable.

- Notations: Let $D = \{u_j : j \in \mathbb{N}\}\)$. Then:
- 1) For every $\rho = (r_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$, we set

D is infinite

\nrecall that every subset
$$
D
$$
 of $\partial\Omega$ which is regularly asymptotic for Ω is co-
\n**itations:** Let $D = \{u_j : j \in \mathbb{N}\}$. Then:

\nFor every $\rho = (r_n)_{n \in \mathbb{N}} \in \mathbb{N}^N$, we set

\n
$$
A_{\rho}(\Omega; D) = \bigcap_{j=1}^{\infty} A_{r_j}(\Omega; \{u_j\})
$$
\n
$$
= \left\{ f \in A(\Omega; D) : \sup_{z \in \Omega, |z - u_j| \le 1/r_j} |f(z)| < \infty \text{ for all } j \in \mathbb{N} \right\}.
$$
\n
$$
\Omega; D) \text{ is a vector subspace of } A(\Omega; D) \text{ and}
$$
\n
$$
1 \perp A(\Omega; D) = A(\Omega; D).
$$

So $A_{\rho}(\Omega; D)$ is a vector subspace of $A(\Omega; D)$ and

$$
\bigcup_{\rho \in \mathbb{N}^N} A_{\rho}(\Omega; D) = A(\Omega; D).
$$

2) For every $\rho \in \mathbb{N}^{\mathbb{N}}$ and $n \in \mathbb{N}$,

$$
\bigcup_{\rho \in \mathbb{N}^N} A_{\rho}(\Omega; D) = A(\Omega; D).
$$

r every $\rho \in \mathbb{N}^N$ and $n \in \mathbb{N}$,

$$
p_{D,\rho,n} : A_{\rho}(\Omega; D) \to [0, +\infty), \qquad f \mapsto \sup\{p_{u_j, r_j, n} : j \in \{1, ..., n\}\}
$$

is a norm on $A_{\rho}(\Omega; D)$ and

$$
P_{D,\rho}=\{p_{D,\rho,n}:n\in I\!\!N\}
$$

a countable system of norms on $A_{\rho}(\Omega; D)$ endowing it with a finer locally convex topola countable system of norms on $A_{\rho}(1; D)$ endowing it with a finer locally convex topology than the one induced by $\mathcal{H}(\Omega)$. From now on, if $D = \{u_j : j \in \mathbb{N}\}$ and if $\rho \in \mathbb{N}^N$, the notation $A_{\rho}(\Omega; D)$ will re the notation $A_{\rho}(\Omega; D)$ will refer to the locally convex space $(A_{\rho}(\Omega; D), P_{D,\rho})$. So

$$
V_{D,\rho,n} = \left\{ f \in A_{\rho}(\Omega; D) : p_{D,\rho,n}(f) \leq \frac{1}{n} \right\} \qquad (n \in \mathbb{N})
$$

is a fundamental sequence of neighbourhoods of the origin in $(A_{\rho}(\Omega; D), P_{D,\rho})$. 3) We fix once for all an infinite partition

$$
\{\{n_{j,k}:k\in I\!\!N\}:j\in I\!\!N\}
$$

of $\{2n : n \in \mathbb{N}\}\$. Then, for every $\rho \in \mathbb{N}^{\mathbb{N}}$,

$$
B_{D,\rho}=\bigcap_{j=1}^\infty B_{u_j,r_{2j-1},\rho_{(j)}}
$$

where $\rho_{(j)}$ is the sequence $(r_{n_{j,k}})_{k\in\mathbb{N}}$. Of course, $B_{D,\rho}$ is an absolutely convex and compact subset of $A(\Omega; D)$; moreover it is a bounded subset of the space $(A_{\rho'}(\Omega; D), P_{D,\rho'})$ where ρ' is the sequence $(r_{2n-1})_{n\in\mathbb{N}}$.

Let us remark that these notations depend heavily on the enumeration of the points of *D* but any enumeration will do.

Proposition 4.1: If $D = \{u_j : j \in \mathbb{N}\}\$, then, for every $\rho \in \mathbb{N}^N$, $A_\rho(\Omega; D)$ is a *Fréchet space.* Let us remark that these notations depend heavily on the enumeration of the points

but any enumeration will do.
 Proposition 4.1: *If* $D = \{u_j : j \in \mathbb{N}\}$, then, for every $\rho \in \mathbb{N}^N$, $A_\rho(\Omega; D)$ is a

chet space.

Proof: One can go on with a direct proof as in Proposition 3.1 or use the technique of the (LB) -spaces as we do hereafter \blacksquare

representation of the space $A(\Omega; D)$ made of absolutely convex and compact sets.

Now as in [3], once again, for every $\rho \in \mathbb{N}^N$, we may successively introduce the sets

\n For example, the use notations depend heavily on the enumeration will do.\n \n in 4.1: If
$$
D = \{u_j : j \in \mathbb{N}\}
$$
, then, for every $\rho \in \mathbb{N}^N$.\n

\n\n For example, $a = \{u_j : j \in \mathbb{N}\}$, then, for every $\rho \in \mathbb{N}^N$.\n

\n\n For example, $a = \{u_j : j \in \mathbb{N}\}$, the family $\{B_{D,\rho} : \rho \in \mathbb{N}^N\}$.\n

\n\n For example, $A(\Omega; D)$ made of absolutely convex and complex, and $B_{D,r_1,\ldots,r_n} = \bigcup \{B_{D,\sigma} : \sigma \in \mathbb{N}^N, s_1 = r_1, \ldots, s_n = r_n\}$.\n

\n\n For example, $F_{D,r_1,\ldots,r_n} = \text{span } B_{D,r_1,\ldots,r_n}$.\n

\n\n For example, $B_{D,r_1,\ldots,r_n} = \text{span } B_{D,r_1,\ldots,r_n}$.\n

\n\n For example, $B_{D,r_1,\ldots,r_n} = \text{span } B_{D,r_1,\ldots,r_n}$.\n

\n\n For example, $B_{D,r_1,\ldots,r_n} = \text{span } B_{D,r_1,\ldots,r_n}$.\n

\n\n For example, $B_{D,r_1,\ldots,r_n} = \text{span } B_{D,r_1,\ldots,r_n}$.\n

\n\n For example, $B_{D,r_1,\ldots,r_n} = \text{span } B_{D,r_1,\ldots,r_n}$.\n

\n\n For example, $B_{D,r_1,\ldots,r_n} = \text{span } B_{D,r_1,\ldots,r_n}$.\n

\n\n For example, $B_{D,r_1,\ldots,r_n} = \text{span } B_{D,r_1,\ldots,r_n}$.\n

\n\n For example, B_{D,r_1,\ldots,r_n

for every $n \in \mathbb{N}$ and

$$
F_{D,\rho}=\bigcap_{n=1}^{\infty} F_{D,r_1,\ldots,r_n}.
$$

One can describe directly these sets in our case. In particular, one gets $F_{D,\rho}$ = $A_{\rho'}(\Omega;D)$. This provides another way to establish that, for every $\rho \in \mathbb{N}^N$, $A_{\rho}(\Omega;D)$ is a Fréchet space. $F_{D,\rho} = \prod_{n=1}^{\infty} F_{D,n}$

ese sets in our c

ther way to estab
 $j \in \mathbb{N}$, we have
 $A(\Omega; D) = \bigcup_{\rho \in \mathbb{N}^N}$

Definition: If $D = \{u_j : j \in \mathbb{N}\}\)$, we have

$$
A(\Omega; D) = \bigcup_{\rho \in \mathbb{N}^N} A_{\rho}(\Omega; D)
$$

and, for every $\rho, \sigma \in \mathbb{N}^N$ such that $\rho \leq \sigma$, the canonical injection from $A_\rho(\Omega; D)$ into $A_{\sigma}(\Omega; D)$ is continuous. Therefore we may endow $A(\Omega; D)$ with the locally convex topology τ of the inductive limit of these Fréchet spaces. Of course τ is finer than the topology of $A(\Omega; D)$ but we must insist on the fact that $(A(\Omega; D), \tau)$ is *not* an (LF)-space.

However some results similar to those obtained in the case when *D is* finite, can be established.

Definition: If $\rho = (r_n)_{n \in \mathbb{N}} \in \mathbb{N}^N$, the subset $D = \{u_j : j \in \mathbb{N}\}\)$ of $\partial\Omega$ is *p-regularly asymptotic for* Ω if the restriction of the map *T* to $A_{\rho}(\Omega; D)$ is surjective.

Theorem 4.3: Let $D = \{u_j : j \in \mathbb{N}\}\$ be a subset of $\partial\Omega$ having no accumulation *point. The following conditions are equivalent:*

(a) *D* is regularly asymptotic for Ω .

(b) For every $j \in \mathbb{N}$ and every sequence $(c_n)_{n \in \mathbb{N}}$ of complex numbers, there is ρ *-regularly asymptotic for* Ω if the restriction of the mi
 Theorem 4.3: Let $D = \{u_j : j \in \mathbb{N}\}$ be a subse

point. The following conditions are equivalent:

(a) D is regularly asymptotic for Ω .

(b) For eve (b) For every $j \in \mathbb{N}$ and every sequence $A(\Omega; D)$ such that $f(z) \approx \sum_{n=0}^{\infty} c_n(z - u_j)^r$
(c) There is $\rho \in \mathbb{N}^{\mathbb{N}}$ such that D is ρ -regularity Proof: (a) \Rightarrow (b) and (c) \Rightarrow (a) are trivial.
(b) \Rightarrow (c): L

(c) There is $\rho \in \mathbb{N}^{\mathbb{N}}$ such that D is ρ -regularly asymptotic for Ω .

Proof: (a) \Rightarrow (b) and (c) \Rightarrow (a) are trivial.
(b) \Rightarrow (c): Let us first introduce a sequence $\rho \in \mathbb{N}^N$. As *D* has no accumulation point, there is a sequence $\tau = (t_j)_{j \in \mathbb{N}}$ such that the disks $\{z \in \mathbb{C} : |z - u_j| \leq 1/t_j\}$ are pairwise disjoint. We set $r_1 = t_1$ and obtain the other elements as follows, by induction. If r_1, \ldots, r_m are determined, we denote by d_m the distance of u_{m+1} to

$$
H_m = K_m \bigcup \left(\bigcup_{j=1}^m \left\{ z \in \mathbb{G} : |z - u_j| \le \frac{1}{t_j} \right\} \right).
$$

and
$$
H_m = K_m \bigcup \left(\bigcup_{j=1}^m \left\{ z \in \mathbb{G} : |z - u_j| \le \frac{1}{t_j} \right\} \right).
$$

and
$$
u_{m+1} | < \inf \left\{ \frac{d_m}{4}, \frac{1}{t_{m+1}} \right\} \qquad \text{and} \qquad d(v_m, H_m) \ge \frac{d_m}{2}
$$

and
$$
u_{m+1} | < \inf \left\{ \frac{d_m}{4}, \frac{1}{t_{m+1}} \right\} \qquad \text{and} \qquad d(v_m, H_m) \ge \frac{d_m}{2}
$$

As $\{u_{m+1}\}\$ is a regularly asymptotic set for Ω , u_{m+1} is not an isolated point in $\partial\Omega$; therefore there is $v_m \in \partial \Omega$ such that

This is a sequence
$$
t = (0, 1)
$$
 for all $t = 1$ and obtain the data $\{x \in \varphi : |x - a_1| = 1\}$ disjoint. We set $r_1 = t_1$ and obtain the other elements as follows, by r_m are determined, we denote by d_m the distance of u_{m+1} to $H_m = K_m \bigcup \left(\bigcup_{j=1}^m \left\{ z \in \mathbb{C} : |z - u_j| \leq \frac{1}{t_j} \right\} \right)$.
\n1) is a regularly asymptotic set for Ω , u_{m+1} is not an isolated point where is $v_m \in \partial\Omega$ such that $0 < |v_m - u_{m+1}| < \inf \left\{ \frac{d_m}{4}, \frac{1}{t_{m+1}} \right\}$ and $d(v_m, H_m) \geq \frac{d_m}{2}$.
\nchoose r_{m+1} in $I\!\!N$ such that $r_{m+1} \geq t_{m+1}$ and $1/r_{m+1} < |v_m - u_m|$.

Then we choose r_{m+1} in N such that $r_{m+1} \ge t_{m+1}$ and $1/r_{m+1} < |v_m - u_{m+1}|$.

As $\{\eta_{u,n} : u \in D, n \in \mathbb{N}_0\}$ is a subset of the dual space $(A_\rho(\Omega; D), P_{D,\rho})'$, the elements of which are linearly independent, by Theorem 1.1, all we need to prove is that, for every $s \in \mathbb{N}$, the vector space

$$
\operatorname{span}\{\eta_{u,n}:u\in D,n\in I\!\!N_0\}\cap\operatorname{span} V_{D,a,s}^{\circ}
$$

has finite dimension. Let us fix $s \in \mathbb{N}$ and, to simplify the notations, let us set $q = p_{D,a,s}$ and $U = V_{D,\rho,\beta}$. For every $j \in \mathbb{N}$,

we know already that

$$
\operatorname{span}\{\eta_{u_i,n}:n\in I\!\!N_0\}\cap\operatorname{span}U^\circ
$$

has finite dimension so there is an integer $N(j) \in \mathbb{N}$ such that

$$
\text{span}\{\eta_{u_j,n}:n\in\mathbb{N}_0\}\cap\text{span}\,U^{\circ}
$$
\ndimension so there is an integer $N(j)\in\mathbb{N}$ such that\n
$$
\left(\alpha_1,\ldots,\alpha_N\in\mathbb{C}:\alpha_N\neq0;\sum_{n=0}^N\alpha_k\eta_{u_j,n}\in\text{span}\,U^{\circ}\right)\Longrightarrow N\leq N(j).
$$
\n
$$
\text{de, it is then sufficient to prove that, if}
$$
\n
$$
\zeta=\sum_{j=1}^{m+1}\sum_{n=0}^N\alpha_{j,n}\eta_{u_j,n}\qquad\text{with }m\geq s
$$

To conclude, it is then sufficient to prove that, if

$$
\zeta = \sum_{j=1}^{m+1} \sum_{n=0}^{N} \alpha_{j,n} \eta_{u_j,n} \quad \text{with } m \geq s
$$

belongs to span U° , then a) and b) hereunder hold.

a) We have $\alpha_{m+1,n} = 0$ for every $n = 0, ..., N$. Indeed, if it is not the case, let $q \in \mathbb{N}$ be such that $\zeta \in qU^{\circ}$ and let *l* be the greatest integer such that $\alpha_{m+1,l} \neq 0$. We then introduce the polynomial Fractional M. Valdivia

Ipan U° , then a) and b) have $\alpha_{m+1,n} = 0$ for even

luch that $\zeta \in qU^{\circ}$ and let

luce the polynomial
 $P(z) = (z - u_1)^m$

ger d larger than the dian
 $|u_{m+1} - u_1|^{m+N} \cdots |u_{m+1}$

set **1** be the greatest integer such that α_{m+1}
 $+ N \dots (z - u_m)^{m+N} (z - u_{m+1})^l$

meter of H_m , choose an integer t such $|u_1 - u_m|^{m+N} 2^t > q s (s+2) d^{(m+N)(m+1)}$

$$
P(z) = (z - u_1)^{m+N} \cdots (z - u_m)^{m+N} (z - u_{m+1})^l
$$

and an integer d larger than the diameter of H_m , choose an integer t such that

$$
|u_{m+1}-u_1|^{m+N}\cdots|u_{m+1}-u_m|^{m+N}2^t>qs(s+2)d^{(m+N)(m+1)}
$$

and finally set

$$
g(z) = P(z) \cdot \left(\frac{d_m}{2(z-v_m)}\right)^t \quad \text{for all } z \in \Omega.
$$

It is clear that g belongs to $A_{\rho}(\Omega; D)$. Moreover from

$$
z) = P(z) \cdot \left(\frac{d_m}{2(z - v_m)}\right)^t \quad \text{for all } z
$$

gs to $A_{\rho}(\Omega; D)$. Moreover from

$$
\left|\frac{d_m}{2(z - v_m)}\right|^t \le 1 \quad \text{for all } z \in H_m
$$

$$
q(g) \le \sup_{1 \le j \le s} p_{u_j, r_j, s}(g)
$$

we easily get

$$
q(g) \leq \sup_{1 \leq j \leq s} p_{u_j, r_j, s}(g)
$$

\n
$$
\leq d^{(m+N)(m+1)} + (s+1)d^{(m+N)(m+1)}
$$

\n
$$
= (s+2)d^{(m+N)(m+1)}
$$

hence g belongs to $s(s + 2)d^{(m+N)(m+1)}U$ therefore

 \sim

$$
|\langle g,\zeta\rangle|\leq qs(s+2)d^{(m+N)(m+1)}.
$$

But we also have

$$
\left|\frac{d_m}{2(u_{m+1}-v_m)}\right|^t>2^t
$$

hence

$$
= (s + 2)d^{(m+1)(m+1)}/
$$

\nlongs to $s(s + 2)d^{(m+N)(m+1)}/U$ therefore
\n
$$
|\langle g, \zeta \rangle| \le qs(s + 2)d^{(m+N)(m+1)}.
$$

\no have
\n
$$
\left| \frac{d_m}{2(u_{m+1} - v_m)} \right|^t > 2^t
$$

\n
$$
|\langle g, \zeta \rangle| = \left| \sum_{j=1}^{m+1} \sum_{n=0}^N \alpha_{j,n} g^{[n]}(u_j) \right|
$$

\n
$$
= |g^{[l]}(u_{m+1})|
$$

\n
$$
= |u_{m+1} - u_1|^{m+N} \cdots |u_{m+1} - u_m|^{m+N} \cdot \left| \frac{d_m}{2(u_{m+1} - v_m)} \right|^t
$$

\n
$$
> |u_{m+1} - u_1|^{m+N} \cdots |u_{m+1} - u_m|^{m+N} \cdot 2^t
$$

\n
$$
> qs(s + 2)d^{(m+N)(m+1)}.
$$

Hence a contradiction.

b) We have $\alpha_{j,N} = 0$ if $N > \sup\{s, N(1), \ldots, N(s)\}\)$, by a proof very similar to the one of Theorem 3.5.

The proof is now complete' **5**

Corollary 4.4: *If* $D = \{u_j : j \in \mathbb{N}\}\$ is regularly asymptotic for Ω , then the kernel *of T has* 2'° *as algebraic dimension.*

Proof: The proof of Corollary 3.4 applies here too: one has just to replace $r \in \mathbb{N}$ by some appropriate $\rho \in \mathbb{N}^N$ and the space $A_r(\Omega; D)$ by $A_o(\Omega; D)$

Proposition 4.5: Let $D = \{u_j : j \in \mathbb{N}\}\$ be a subset of $\partial\Omega$ having no accumulation *point. This implies the existence of a sequence* $\tau = (t_i)_{i \in N} \in I\!\!N^{I\!N}$ such that the disks ${z \in \mathbb{C} : |z - u_i| \leq 1/t_i}$ are pairwise disjoint. Then the following conditions on a *sequence* $\rho \in \mathbb{N}^N$ verifying $\rho \geq \tau$ are equivalent:

(a) D is p-regularly asymptotic for R.

for every h > 0, there is $f \in A_o(\Omega; D)$ *verifying*

(a) *D* is *p*-regularity asymptotic for
$$
3i
$$
.
\n(b) For every compact subset K of Ω and every $j_0 \in \mathbb{N}$, there is $p \in \mathbb{N}$ such that, every $h > 0$, there is $f \in A_{\rho}(\Omega; D)$ verifying\n
$$
|f(z)| \leq 1 \quad \text{for all } z \in K \bigcup \left(\bigcup_{j=1}^J \left\{ u \in \Omega : |u - u_j| \leq \frac{1}{r_j} \right\} \right),
$$

and

 $|f^{[p]}(u_{i_0})| > h.$

Proof: The proof of (a) \Rightarrow (b) is essentially the same as the one of the necessity of the condition in Theorem 3.6: one just has to replace $A_r(\Omega; D)$ by $A_\rho(\Omega; D)$.

Slight modifications to the proof of the sufficiency of the condition in Theorem 3.6 give (b) \Rightarrow (a). One just needs to replace $A_r(\Omega; D)$ by $A_o(\Omega; D)$, to fix *j* in N, to impose moreover the condition $s > j$ on *s*, to replace $V_{D,r,s}$ by $V_{D,\rho,s}$, to set

$$
\mathcal{K} = K_{s} \bigcup \left(\bigcup_{j=1}^{s} \left\{ z \in \Omega : |z - u_{j}| \leq \frac{1}{r_{j}} \right\} \right)
$$

and

$$
P(z) = (z - u_j)^{N-p_j} \prod_{1 \leq k \leq s, k \neq j} (z - u_k)^N
$$

and to replace *PD,,,,* by *PD,p,.* \blacksquare

Theorem 4.6: Let $D = \{u_j : j \in \mathbb{N}\}\$ be a subset of $\partial\Omega$ having no accumulation *point. This implies the existence of a sequence* $\rho = (r_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$ *such that the disks* $\{z \in \mathbb{C}: |z - u_j| \leq 1/r_j\}$ for $j \in \mathbb{N}$ are pairwise disjoint.

If $\partial\Omega$ is quasi-connected at every point of D, then D is ρ -regularly asymptotic, hence *regularly asymptotic, for* Ω .

Proof: The proof is very similar to the one of Theorem 3.7. One fixes j in N , sets

$$
\mathcal{K} = K \bigcup \left(\bigcup_{k=1}^{j} \left\{ t \in \mathbb{C} : |t - u_j| \leq \frac{1}{r_j} \right\} \right)
$$

and chooses A with the condition $\delta_2(u_j, A) < 1/r_j$ instead of $\delta_2(u_j, A) < 1/r$. The conclusion then follows from the preceding proposition \Box

5. Generalizations of Carleman's results

We begin with the following

Theorem 5.1: *If* D is a non-empty subset of $\partial\Omega$ having no accumulation point and *if Oil is quasi-connected at*

every point of D, then D is regularly asymptotic for Ω .

Moreover, for every family $\{c_{u,n} : u \in D, n \in \mathbb{N}\}$ *of complex numbers, the set of the elements* f *of* $A(\Omega; D)$ *such that* $f(z) \approx \sum_{n=0}^{\infty} c_{u,n}(z-u)^n$ *for every* $u \in D$ *is a* **5.** Generalizations of Carleman's results

We begin with the following

We begin with the following

Theorem 5.1: If D is a non-empty subset of $\partial\Omega$ having no accumulation point and

if $\partial\Omega$ is quasi-connected at

ev *linear variety of dimension* 2^{\aleph_0} .

Proof: Having no accumulation point, *D* must be countable. So if *D is* finite, this is Theorem 3.7 and the Corollary 3.4, and if *D is* infinite but countable, it is a trivial consequence of Theorem 4.6 and of Corollary 4.4 \blacksquare

The following result gives an easy way to verify that $\partial\Omega$ is quasi-connected at some point.

Proposition 5.2: If the connected component C_u of $u \in \partial\Omega$ has more than one *point, then* $\partial\Omega$ *is quasi-connected at u.*

Proof: We are going to use twice the following property (cf. [6: (10.1))): *If A is a closed, connected subset and G a bounded, open subset of* $\mathbb C$ *such that* $A \neq G \cap A \neq \emptyset$ *, then every connected component of* $\overline{G} \cap A$ *has some point in the boundary*

of C.

Given $0 < \varepsilon < \delta < 1$, as C_u contains more than one point, there is $r_1 \in (0, \delta/2)$ such that $C_1 = C_u \cap \{z \in \mathbb{C} : |z - u| \leq r_1\} \neq C_u$. Let *C* be the connected component of C_1 containing u. Of course, C_u is a closed, connected subset and $b = \{z \in \mathbb{C} : |z - u| < r_1\}$ is a bounded, open subset of \mathbb{C} such that $C_u \neq b \cap C_u \neq \emptyset$. Therefore there is $z_1 \in C$ such that $|z_1 - u| = r_1$. Now we chose $r_2, r_3 > 0$ such that $r_2 < \varepsilon r_1$ and $r_1 < r_3$, and set $G = \{z \in \mathbb{C} : r_2 < |z - u| < r_3\}$. So we have $u \notin G$ and $z_1 \in G$, hence $C \neq G \cap C \neq \emptyset$ and the connected component *P* of $C \cap \overline{G}$ containing $z₁$ contains a point *z*₂ of the boundary of G. As $|z_2 - u| \neq r_3$, we must have $|z_2 - u| = r_2$. Therefore P is a connected subset of $\partial\Omega$ such that $\delta_1(u, P) = |z_2 - u| = r_2$ and $\delta_2(u, P) = |z_1 - u| = r_1$ hence $\delta_2(u, P) = r_1 < \delta$ and $0 < \delta_1(u, P) = r_2 < \varepsilon r_1 = \varepsilon \delta_2(u, P)$ **II**

Combining the previous two results, we get the following statement which constitutes the practical form of our result. Let us mention that it generalizes Proposition 10 of (4]:

If the connected component of $u \in \partial\Omega$ *has more than one point, then* $\{u\}$ *is regularly asymptotic for* Ω

as well as Corollary 1 of [4]:

If Ω is simply connected, then every point of $\partial\Omega$ is regularly asymptotic for Ω .

Theorem 5.3: If D is a non-empty subset of $\partial\Omega$ having no accumulation point and *if the connected component of every point of D in* $\partial\Omega$ *has more than one point, then D is regularly asymptotic for* Ω .

Moreover, for every family $\{c_{u,n} : u \in D, n \in \mathbb{N}\}$ *of complex numbers, the set of the elements f of* $A(\Omega; D)$ such that $f(z) \approx \sum_{n=0}^{\infty} c_{u,n} (z-u)^n$ at every $u \in D$ is a linear *Complete Constitutions* 327
 Moreover, for every family $\{c_{u,n}: u \in D, n \in \mathbb{N}\}$ *of complex numbers, the set of the*
 elements f of $A(\Omega; D)$ such that $f(z) \approx \sum_{n=0}^{\infty} c_{u,n}(z - u)^n$ at every $u \in D$ is a linear

var *variety of dimension* 2^{\aleph_0} .

References

- [1] Carleman, T.: *Lea Fonction., Quasi-Analytiques* (Coil. Monogr. Théorie Fonct.). Paris: Gauthier-Villars 1926.
- [2] Grothendieck, A.: Produits tensoriels topologiques et spaces nucléaires. Mem. Amer. Math. Soc. 16 (1955).
- [3] Valdivia, M.: Quasi-LB-spaces. J. London Math. Soc. 35 (1987), 149 168.
- [4] Valdivia, M.: *Interpolation in spaces of holomorphic* mappings *with asymptotic expansions.* Proc. R. Irish Acad. 91A (1991), 7 - 38.
- *[5] Valdivia, M.: Una propriedad de interpolacion en eapacios de funcionea holomorfaa con* desarrollos *asintoticos.* In: Homenaje al Prof. Dr. Nicere Hayek Calil. La Laguna (Tenerife/Spain): Secretariado de Public. Univ. La Laguna 1990, pp. 351 - 360.
- [6] Whyburn, G.T.: *Topological Analysis* (Princeton Mathematical Series: Vol. 23). Princeton (N.J.): Univ. Press 1964.

Received 01.02.1993; in revised form 22.09.1993