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On the Existence of Holomorphic Functions
Having Prescribed Asymptotic Expansions

J. Schmets and M. Valdivia

Abstract. A generalization of some results of T. Carleman in [1] is developped. The practical
form of it states that if the non-empty subset D of the boundary ‘89 of a domain Q of § has
no accumulation point and if the connected component in 31 of every u € D has more than
one point, then D is regularly asymptotic for €, i.e. for every family {cu,n : ¥ € D,n € INo}
of complex numbers, there is a holomorphic function f on Q which at every « € D has
o oCumn(z —u)" as asymptotic expansion at u. ’
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1. Generalities .

a) About the vector spaces. All the vector spaces we consider are over the field
¢ of the complex numbers. If A is a subset of a vector space, span A denotes 1ts linear
hull. If I is a set, w(I) denotes as usual the vector space

¢! endowed with the product topology. A subset {v; : i € I} of the a.lgebralc dual
of a vector space E has the interpolation property if, for every family {c; : i€l } of €,
there is z € E such that (z, v i) =c; foreveryie I

For future reference, let us mention the following result .of M. Eldelhelt a genera.la

ization of which to the case when E is a B-complete space can be found as Theorem 1
of [4].

. Theorem 1.1 (Interpolation): A subset {v; : i € I} of the topological dual E' of
a Fréchet space E has the interpolation property if and only if its elements are linearly
mdepcndent and such that, for every cqmcontmuow subset B of E', the vector space
span{v; : : € I} Nspan B has finite dimension.

b) About the asymptotic expansions. We begin with the following
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Deflnition: A holomorphic function f on a non-void domain Q of § has an asymp-
totic expansion at u € 0N if the limits

= 1
a0 xEﬂ"?—»u f(z)

and, for every n € IV,
f(2) = 720 aj(z —uy
ap = lim

€N, 1—u (2 -— U)"

exist and are finite. In such a case,
a) we say that the series 3 o
b) we write f(z) = Y oo

meo @n(z — u)™ is the asymptotic ezpansion of f at u
an(z—u)*atu

n=0
c) we use the notations »
fl"](u) =a, . for all n € N,
1z, u) = f(2) ' forall z € Q
[n—1} — fln=1] ‘
frluy= L@ =) e e V.

z—u
(So, in fact, we have _
f(z) - Z,—o aj(z — u)y

(z—u)»

"z, u) = forallz € Q,ne N

as well as

Jim Pl z,u) = l"l(u) for all n € INy.)

¢) Notations. Unless explicitly stated, throughout this paper, we use the followmg
notations:

a) Q1 is a non-void domain of .

b) {Km:meN}isa compact cover of such that (K1)°#0and K C (Km+1)°
for every m € IN. -

c) H(Q) is the Fréchet-Montel space of holomorpluc functions on {2, endowed with
the compact-open topology (i.e., for instance, with the countable system of norms
{Il -l : m € IV}). ' ' '

d) D is a non-void subset of Q. '

e) A(R2; D) is the set of the elements of H(2) which have an asymptotic expansion
at every point of D. Of course, it is a vector subspace of H(f). We endow it canonically
with the topology induced by H(2). Let us insist on this fact: from now on, A(Q; D)
is a topological vector subspace of H(R).

f) The notation T refers to the linear map

T: A D) »w(Dx No),  frs (fl ](u))(u e
g) For every ue D a.nd n € Ny, the notatlon Nu,n refers to the linear functional

Mun: A@D) =¢,  fr fI7(w), .
As the set P(2) of the restrictions to 2 of the polynomials is a vector subspace of
A(9; D), the next result proves that the linear functionals ny , for u € D and n € IN;
are linearly independent on any vector subspace of A(R2; D) containing P(2).
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Lemma 1.2: For every subset D of 3Q, {nu,n:u € D,n € INo} is a set of linearly
independent linear functionals on P(Q).

Proof: If it is not the case, there are a finite subset D' of :

D, an integer N € INy and elements ¢, , of § for u € D' and n € {0,...,N} such
that (P, cp Z"=o Cu,nMu,n) is 0 for every P € P(f), although the coefficients are
not all equal to 0. So we may suppose the existence of ug € D' and ng € {0,..., N} such
that cug,no # 0 and cq,,n = 0 for every n € {no +1,...,N}. Then the consideration of
the polynomial

P(z) = (z —up)"™° H (z- u)V+!

u€D'\(uo}

leads immediately to a contradiction @

d) About the regularly asymptotic sets. We begin with the following -
Definition. The set D is reqularly asymptotic for Q if, for every family

{cun:u € D,n€ Ny}

of @, there is a function f € A(Q; D) such that f(z) & 3222 ; cu,n(z — u)™ at u for every
u € D. So D is regularly asymptotic for 2 if and only if the linear map T is surjective
which happens if and only if the set {n.n : v € D,n € Ny} has the interpolation
property on A(S2; D).

In such a case, it is clear that no element of D can be an isolated point of 2. The
next result gives another restriction on such sets D.

Proposition 1.3: If D is regularly asymptotic for 2, then it has no accumulation
point. Hence it is countabdle.

Proof: If it is not the case, there is a sequence (u,,,);,.e;v of distinct points of
D converging to some ug € D with u, # ug for every m € IN. As D is regula.rly
asymptotic for 2, there is then f € A(Q; D) such that

oo
f(z2) = z cma(z —um)” at u,, for all m € INg
n=0
with 1 fme IN . .
= um
Cm,n—{o fm=0 forallneNo.
This leads directly to the following contradiction:
lim  f(zy= fYum)=1 forallmeN.
and

lim = f(z) = fO(ue) =0

2€Q, 1—u

Thus the statement is proven f
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Remark. However these restrictions on D are not sufficient to

ensure that D is regularly asymptotic for Q. If we set @ =¢ \ ({0} U {1/m :
m € IN}), it is clear that D = {0} has no isolated point of Q and that D has no
accumulation point. However, for every f € A(; D), there is a neighbourhood U of
0 such that f is holomorphic and bounded on U \ ({0} U {1/m : m € IN}). Hence f
must have a holomorphic extension to¢'\ {0,1,...,1/M} for some M € IN therefore to

¢\ {1,...,1/M}.

e) Aim of this paper. In 1], T. Carleman has proved the following:

a) Every finite subset D of the boundary of a bounded, convex and open subset
of ' is regularly asymptotic for ; for every family {cy,n : ¥ € D,n € Ny} of §, there
are infinitely many functions f € A(Q; D) such that f(2) = Y oo, cu,n(z — u)" at u for
every u € D (cf. [1: p. 31]).

b) {0} is regularly asymptotic for the open subset

Q={z€€: |zl <R} \{(z,0) : 2 < 0}

of @ (cf. [1: p. 37)).

We are going to generalize these results. We will first introduce some definitions and
a basic result when D is a singleton, then consider the case when D is finite, next discuss
the case when D is countable and finally state the generalizations we have obtained.

2. If D is a singleton

Let u be a point of Q. For every r € IN, we set

Ar(Qi{u}) = {f €A {u}): sup |f(2)l< 00}-

2€Q, |z—u|<1/r

Clearly A,(Q; {u}) is a vector subspace of A(Q; {u}) and

U A4-(9 {u}) = A(@; {u}).

r=1

Moreover an easy recursion on j € IV establishes that the boundedness of f € A(Q; {u})

on {z € Q: |z — u| < 1/r} implies for every j € IN the boundedness of fll(-,u) on the
same set. Therefore, for every n € IV,

Purnt Ar(@i{u}) = [0,400), frr || flli, + || £, )|

j=0

{z€Q:|2-u|<1/r}

is a semi-norm on A,(§; {u}); it is even a norm since § is a domain and since (K,,)° # @
for every n € IN. So

Pu,r = {pu,r,n ne N}
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is a countable system of semi-norms on A,(f; {u}), endowing this space with a metriz-

able locally convex topology which is finer than the one induced by H(2). In fact more

can be said: we will prove in the next section that (A,.(€Q; {u}), Pa,,) is a Fréchet space.
The sets

Varn = {f € AR {u}) : Purn(f) € = } (ne V)

constitute a fundamental basis of the neighbourhoods of the origin in (A,(R; {u}), Pa,r)-
So, for every sequence p = (my)nem of IV,

oo
Bu,r,p = n mnVu,r,n
n=1

is an absolutely convex and bounded subset of that space but more can be said here
too.

Proposition 2.1: For every u € 3Q, r € IN and u € INV | the set By, is an
absolutely convez and compact subset of H(2).

Proof: As B, , is an absolutely convex and bounded subset of the Fréchet-Montel
space H(), it is enough to prove that By, , is sequentially closed. Let (fi)reav be a
sequence of B, ., converging in H(Q) to f. First we establish that f has an asymptotic
expansion at u with '

M) = lim ()

for every j € INy. For every k € IN, as we have fi € By, r,,, we get at once |f£°](u)| <m,.

So from every subsequence of ( f,[:]] (u))kem, we can extract a subsequence converging to
some ag €. As we also have

Az - )|

Z2—u

|f[1](z,u')| -

for every k € IN and z € Q such that |2 — u| < 1/r, we get

f(z) —ao <

z—u

for every z €  such that |z — u| < 1/r, hence lim,eq, ;—a f(z) = ao. The conclusion s
then direct by use of a recursion.
It is then an easy matter to check that f belongs to B,,r,u. Hence the conclusxon ]
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3. If D is finite

If D= {uy,...,uy} is finite, we use the following notations:
a) For every r € IV,

A (D) = () An(9 {u})
u€D

={f€A(Q;D): sup |f(2)] < o0 forallueD}.
z€Q, |z-u|<l/r -

So A.(Q; D) is a vector subspace of A(Q; D) and
o0
J 4-(2; D) = A(; D).
Tr=1

b) For every r,n € IN,
PD,rn: Ar(@D) = [0,4+00),  f = sup{purn(f): u € D}
is a norm on A,(Q; D) and . | V
Pp,={ppyrn:n€ N}
is a countable system of norms on A (92; D) endowi;lg it with a finer locally convex

topology than the one induced by H(2). From now on, if D is finite and if r > 0, the
notation A,(Q; D) will refer to the locally convex space (A(Q; D), Pp,.). So

Voun={f € 4@ D) ipoaN < 1) mem)

is a fundamental sequence of neighbourhoods of the origin in A,(Q; D).
c) For every sequence p = (r,)nenw € IN¥,

BD,ﬂ = ﬂ B“,'hm
u€D

N

where p; is the sequence (ra+1)nemv. Of course, Bp,, is an absolutely convex and
compact subset of A(Q; D); moreover it is a bounded subset of the space A,, (; D).

Proposition 3.1: If D is finite, then, for every r € IV, A.(%;D) is a Fréchet
space. Co i )

Proof: Let (fi)ien be a Cauchy sequence. As it clearly is a Cauchy sequence in
H(R), it converges in H(f) to some f. Let us prove now that f belongs to A,(Q; D).
Let us fix u € D. Let us also fix J € INy. On one hand, for every k € IN, the
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function fU)(-,u) on Q has a finite limit f ¥ (u) at u. On the other hand, the sequence
(fb (*,u))kemv is uniformly Cauchy on {2 G Q:|z—u| < 1/r}. Therefore the two limits

8] — lﬂ
il e = im0
and »
: b]
xE}llI?ﬂu kllom f (z u)
exist, are finite and are equal. A direct recursion on j € INj establishes then that f has
an asymptotlc expansion at u.

It is finally a standard matter to prove that the sequence ( fk)geN converges in
A(;D)to f 0

_ The previous result is also a consequence of the following considerations which will
prove to be very fruitful (we refer the reader to {3] for the definition and the properties
of the quasi-LB spaces and representations).

" Proposition 3.2: If D is finite, then the family {Bp,: p € NV} is a quasi-LB
representation of the space A(Q; D), made of absolutely convez and compact sets.

Proof: By Proposition 2.1, for every p € IN®, Bp , is an absolutely convex and
compact subset of H(2) hence of A(R; D) since it is a subset of A(Q; D). It is also
clear that, for every p,0c € IN¥ such that p < o (i.e. rn < s, for every n € IV if
0 = (Sn)nen), we have Bp , C Bp,.

To conclude, it is then enough to check that U, e~ Bp , is equal to A(Q D). This
is a direct matter: every f € A(f; D) has an asymptotic expansion at every.element of
D so it is a bounded function on Uuyep{z € N : |z — u| < 1/r} for

some r € IN. Moreover, for every n € INy, there is s, € IN such that f € anD rn
Therefore f belongs to Bp , withry =r and rn41 = sy foreveryn € IN - B :

Now, as in [3), for every p = (rn)nemw € IN?, - we may introduce successively:
a) For every n € IN, the set :

Bp,ry,...ra = U{BD.o to0= (sn)neh" € Nw;él =T1y.038n = rn}—

In fact, it is a direct matter to check that in our case

_Bp,r, = Ar, (2 D)
and, for every n = 2,3,...,

BD."I yeesTn — (7.‘2VD.T| .1) n...n (rnVD,rl,n—_l)-
b) For every n € IV, the linear hull Fpr,ora of Bp,r,,...,r.. Of course, in our case,
we get at once Fp r,,..r. = Ar, (R2; D) for every n € IN. )
- ¢) The vector space Fp,, = 3%, Fp,r,,...,rn, i-€. Fpp = A, (; D) in our case.

At this point, [3] provides another way to prove that, for every r € IN, A,(; D) is
. & Fréchet space.
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Definition: If D is finite, we have
A(Q; D) = | J A-(9; D)

and, for every r,s € IN such that r < s, the canonical injection from A,(; D) into
A,(Q; D) is continuous. Therefore we may endow A(Q; D) with an (LF)-topology 7 by
considering the inductive limit of the sequence (A,(Q; D)),env of Fréchet spaces. Of
course, T is finer than the topology of A(Q; D).

Notations: If D = {u,,...,u;} is a finite subset of 3, then, in this section and
unless specifically stated, we use the following notations:
a) For every j € {1,...,J}, the notation Tj refers to the linear map

. . (nl(y;
Tj: AQ D) »w(lNo),  f - (fi")(uy)) e
which is continuous if we endow A(Q; D) with the topology 7 and L, is the vector
subspace span{n,; m :n € INy} of the topological dual (A(®; D), 7).

b) L = span(U]_, L;).

Now we are looking for necessary and sufficient conditions under which D is regularly
asymptotic for 2.

Definition: If r belongs to IV, the finite subset D of 9 is r-regularly asymptotic
for S if the restriction of the map T to A.(; D) is also surjective onto w(D x IVp).

Proposition 3.3: The finite subset D of 3 is_regularly asymptotic for Q if and
only if there is r € IN such that D s r-regularly asymptotic for Q.

Proof: The proof of Proposition 9 in [4] applies also to this case B

Corollary 3.4: If D is finite and is regularly asymptotic for Q, then the kernel of
T has 2% as algebraic dimension.

Proof: By the previous proposition, there is r € IV such that the restriction S of
T to A,(2; D) is a continuous and surjective linear map. To conclude, we just have to
prove that the Fréchet subspace ker S of A,(Q; D) is not finite-dimensional. If it were
finite-dimensional, it would have a topological complement M and the restriction of T
to M would appear as an isomorphism in between M and

w(D x IN) although M has a continuous norm B

The next result comes from [5). We repeat it here, with proof, for the sake of
completeness since the reference [5] is not readily accessible.

Theorem 3.5: The finite subset D of O is regularly asymptotic for  if and
only if, for every u € D and (cn)nem, € w(INy), there is f € A(;D) such that
f) = Yo en(z —u)" at u.

Proof: The condition is trivially necessary. The condition is also sufficient. Indeed,
if D is a singleton, the result is trivial. So let us consider the case D = {ur,...,us}
with an integer J > 2.
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For every j € {1,...,J}, Tj is clearly a surjective, linear and continuous map. So
the Fréchet space w(IVy) is equal to U2, T;A,(S2; D) hence there is r; € IV such that
TjAr; (2; D) is a second category vector subspace of w(INo). As a surjective, linear and
continuous map from the Fréchet space A,, (; D) onto its image, the restriction of T} is
a topological homomorphism. Therefore T; A, (2; D) is a Fréchet space hence is equal
to w(Ng).

To conclude, we are going to prove that, for r = sup{ry,...,rs}, the set

{ﬂu,n=u€D,n€I\’o}

has the interpolation property on A,(Q; D). By Theorem 1.1, as these
continuous linear functionals on A,(§2; D) are linearly independent, we just need to
prove that, for every s € IN, the dimension of the vector space L NspanVj _, is finite.
Let us fix s € IN and, in order to simplify the notations, let us set U = Vp,,,. For
every j € {1,...,J}, the restriction of T; to A,(Q; D) is surjective hence the dimension
of Lj NspanU?* is finite: there is N(j) € IN such that

N
(ﬂo,---,ﬂN €¢:ﬂN #0;2&-’7.‘,," € SPMU(’) = N< N(J)

n=0

To conclude, it is then sufficient to prove that

J N
¢= z zaj,nﬂu,-,u € spanU°

Jj=1n=0

with N > sup{s, N(1),...,N(J)} implies aj v =0 for every y =1,...,J.

This we do by contradiction: let us suppose the existence of such a functional ¢
with N > sup{s, N(1),...,N(J)} and ax,n # 0 for some k € {1,...,J}, belonging to
qU? for some g € IN.

We need some preparation. Let us denote by P(z) the polynomial

I G-u)™
1<5< 7, j#k
It can also be written as
P(z)=co+a(z—ur)+... +enenyu-n(z — ul,)(N“)(]")
with ¢ # 0. Then we choose a closed disk B in(, centered at the origin and containing
J 1
K.U g{zeﬂﬂz—uﬂs ;}

Finally we set

o[ L] hetoad i 0]
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C2 =sup {"Cb +---+ C(N+])(J_])(Z - uk)(N'H)“_l)-h”B :h=0,... ,6}

and introduce the polynomial

P(z) ;
) =5+ C)(s + 17

For every g € U, the function Qg clearly belongs to A,(; D). In fact, it belongs to U:
a) For every j € {1,...,J}\ {k} and h € {0,..., s}, we have

(Q9)*M(z,u5) = %W)
(2 uj)
hence. ' C 1 1
@) < gereyeTir s S mey

for every z € Q2 such that |z —u;| < 1/r.
b) For k € {0,...,s}, we also have

Q)M (z,ux) =
oo gz, up) + (en+ - + cvanyson)(z — up ) N+DU-1D=h) glo)( 1y, )
3(Cr + Ca)(s +1)2

hence - ' )
[h] < (3 + 1 C2 . l < 1
[CORICENIE 3Cr + ) A1 3 S 25 +1)
for every z € Q such that |z — ug| < 1/r.
c) For every z € K,, it is clear that
C, 1 1
< =< .
QNN < e T oe Ty s S BEvip

At this stage, we consider the continuous linear functional

N n .
=3 arn Y Q"N (up)n, ;.

- n=0 =0

The coefficient of 1, v is ar,vQ%(us) and differs from 0. Moreover as N > N(k), n
does not belong to spanU®°. Therefore there is f € U such that |(f,n)] > q. As Qf
belongs to U, we finally arrive at the following contradiction:

We have

(Qf,¢) <q
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because ( € qU°®, as well as

J N
KRAOI =D a;n(Qf 04;.0)

J=1n=0

= zak n(Qf)ﬂuh, )

n=0

= Z Qi n Z Q["_’](uk)fm(uk)

n=0 =0

N
= <f, > ain E Ql",-ﬂ(uk)nu.,j>

n=0 =0

= |(f,n)l

> q.

Thus our statement is proved B
At this stage, we can extend Theorem 4 of (4] in the following way.
Proposition 3.6: The finite subset D = {u1,-..,us} of BN is regularly asymptotic
for Q if and only if the following condition (*) is satisfied:
(*) There is r € IN such that, for every compact subset K of Q and jo € {1,...,J},
there is an integer p € IN such that, for every h > 0, there is f € A, (Q; D)

verifying
. J 1
If(z)l <1 | for all z € K| (;=U1 {u €EQ:|u—uj| < ;})
and h
| P (ujo)l > .

Proof: The condition is necessary. Indeed, by Proposition 3.3, there is an integer
r € IN such that
S: A% D D x IN), (£ ¢w))
@D)»w(DxBo), o (fw)
is a continuous, surjective and linear map. Let us fix a compact subset K of Q and an
integer jo in {1,...,J}. There is then an integer s € IV such that K C K,. As, for
n € INo, the continuous linear functionals 1y;,,» on A.(Q; D) are linearly independent,
Theorem 1.1 tells us that the dimension of the vector
space
span {nu; n:n € No} Nspan Vb, re

is finite. Therefore there is an integer p € IV such that r]u, ,» does not belong to
span Vp _,. Hence, for every h > 0, there is f € Vp,,,, such that

|£P (i)l = 1S, 1a;, 001 > b
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Hence the conclusion.
The condition is sufficient. Indeed, by Theorem 3.5, it is enough to prove that, for
every j € {1,...,J}, the map

Si: ALBD) » (W), fo (M)

is surjective. Let us fix j € {1,...,J}. As, for n € INy, the continuous linear functionals
fin = Nu;,n are linearly independent, by Theorem 1.1, we just need to prove that, for
every 8 € IN, the vector space

span{n, : n € No} NspanVp ,

has finite dimension. Let us fix s € IV and denote by p; the least integer satisfying
condition (*) for K = K, and jo = j. There is then k& > 0 such that, for every
g € A.(; D) verifying |g(z)| < 1 for every element z of the set

)c:K,U(U {tEQ:It—uIS%}),

u€D

one has ‘
19" (u;)| <k forallne{0,...,p; — 1}.

At this point, to conclude, it is sufficient to prove that a functional of the type

N
6=Za,,n,. with N > pj + 3, a, €§ and ay #0
n=0
never belongs to spanVy ,. This we do by contradiction. Let us suppose that such a
functional 6 belongs to AV ., for some h > 0. We need some preparation. We choose
an integer d greater than the diameter of K and set successively

a= sup{laol,...,la;v|}
P(z)=(z —u,')N_P" H (z—u;,)N
1<k<T, ket

L =sup {|Pl"l(u,)| ‘n= 0,...,N} .
Now we choose f € A,(R; D) such that |f(z)| <1 for every z € K and

s(s + 2)hdN7 + 2LaN%k
|oen PIN=Pi}(u;)|

| i) uj)| >
Finally we set g = Pf. Of course g belongs to A,(€; D); more precisely from

P)f(z) :zéQ,|z—u|51})

(z —u)

PD,re(9) = SIélID) (”Pf"K' + sup {Z

=0

<dV7 4 (s +1)aN’
= (s +2)aV’
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we get that g belongs to s(s + 2)d¥’Vp ., and hence g satisfies
19,81 < hs(s + 2)d7.
But we also have
IfIN=9(u;)| <k for every te{N-pj+1,...,N}

and this leads to the following contradiction:

N
l{g: &) = | ang™l(u;)

n;o
=D an(PH"I(x;)
N
=D @n Y Pl(u;)fin(u;)
N n

=| X e 3 Py

n=N-p; t=N-—p;

2 ool [PIN =21 1031 )| ~ faun > [P1wy)| | AV =9uy)|
t=N-p;+1
- el 3 |PH)| | A=u)|
n=N-—p; t=N-p;

> s(s +2)hd™’ + 2LaN?k — aNLk — N?aLk
> s(s + 2)hd™’. ~

Thus the assertion is proved B

Now by use of the previous result and of ideas of [4], we are going to establish a
first generalization of Carleman’s result.

Notations: For u €€ and A C¢, let us set

61(u, A) =inf{lu — 2| : 2 € A} and &(u,A) =sup{ju — 2| : z € 4}.
Definition: The boundary 9Q is quasi-connected at u € 99 if, for every £,6 > 0
such that 0 < € < §, there is a connected subset 4 of 9 such that
62(u,A) <6 and  6(u,A) < eby(u, A).

Let us mention that in Section 5, we will prove that 99 is quasi-connected at u € 99
if the connected component of u in I contsins more than one point. So if O is simply
connected, OS) is quasi-connected at every point of O,
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Theorem 3.7: If O is quasi-connected at every point of the finite subset D of 052,
then D is regularly asymptotic for Q.

Proof: As D = {uy,...,uy} is finite, there is r € IN such that the disks

{ree:t-uis<l

are pairwise disjoint for j € {1,...,J}. Let us fix j € {1,...,J} and a compact subset
K of Q. We are going to prove that Proposition 3.6 applies with p = 1. Of course there
is C > 0 such that |z — a| - |z — 8| < C? for every

zGlC:KU(U {t€¢7:|t—u|>$%})

u€D

and every a,f8 € ¢ such that |a — u;| < 1/r and |f — u;| < 1/r. Given h > 0, by
hypothesis, there is a connected subset A of 3Q such that

1 1 1
b2(uj, A) < " and 0 < 61(uj, A) <mf{ 1602h2}62(u,~,A).

Therefore there are points a and 8 in A such that

’ 1
[uj a|<1nf{ 16C2h2}| uj — A

Then there is a determination g of /(- — a)(- — 8) which is holomorphic on QU V for
some open neighbourhood V of D. So f = ¢/C

a) belongs to 4,(Q; D)
b) verifies |f(2)| < 1 for every z € K
c) verifies
9(2) — 9(u;)
Gﬂ z—ou, Z - u)'
— |2u; — (a + B)|
2C|u; — a|'/?|u; — B|1/2
1- |35
1/2
2c|tuzsl|
?
1- 1/2
2C-x
=k,

1Al =

v

>

hence the conclusion by Proposition 3.6 B8

Let us also mention the following result.
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Proposition 3.8: Let D be a finite subset of 0. Let us suppose moreover the
ezistence of a subset {dy,n : u € D,n € INg} of (0,400) such that, for every subset
{ca,n :u € D,n € INo} of @ such that |cy,n| < dy,n for every u € D and n € Ny, there
is f € A(Y; D) such that f(z) ~ 320 cun(z — u)™ at every u € D.

Then there is p € INN such that, for every subset {cu,n:u € D,n € INy} as above,
there is g € Bp,,, p, such that g(z) = Y02 | cu,n(z — u)™ at every u € D.

Proof: The set

C= {(cu,n)(u,n)GDxNO : |Cu,n| < du,n for all (u,n) €D x No}

is clearly an absolutely convex and compact subset of w(D x INp). By the Proposition
12/(b) of (3], there are then p € N and a subset M of Bp,,,, such that TM = C.
Hence the conclusion 1 . : .

4. If D is infinite

Let us recall that every subset D of 8Q which is regularly asymptotic for Q is éégmta.ble.

Notations: Let D = {u;:j € IN}. Then:
1) For every p = (rn)nenv € NP | we set

Ap(4 D) =[] Ary (2 {u5})

j=1

= {f € A(Q;D): sup |f(2)] < oo forallj e N} .
2€Q, [s-u; |<1/7; -

So A,(); D) is a vector subspace of A(§2; D) and

J 4.(9;D) = A(; D).
PENN ' '

2) For every p€ INY and n € IV,
PD,pn : Ap($; D) = [0, +00), f - sup{pu’.,,,.',. 1] € {1,...,n}}
is a norm on A4,(Q; D) and ' | ’ '
Pp, = {PD,pn:n € N}
a countable sysEem of norms on A,(; D) endowing it with a ﬁnér locally conv;:x f’.bpol-

ogy than the one induced by #(£2). From now on, if D = {u;:j € IN} and if p € NV
the notation A4,(Q; D) will refer to the locally convex space (4,(R; D), Pp,). So

’

VD.;;,n = {f € A,(9; D) :PD,p,n(f) < %} (n € N)



322 J. Schmets and M. Valdivia

is a fundamental sequence of neighbourhoods of the origin in (4,($}; D), Pp,,)-
3) We fix once for all an infinite partition

{{n,',g:kGW}:jGIN}

of {2n: n € IN}. Then, for every p € NV,

oo
Bp, = n B“iv'li—l:ﬁ(;’)

j=1

where p(;) is the sequence (rn; , Jrev- Of course, Bp,, is an absolutely convex and com-
pact subset of A(Q2; D); moreover it is a bounded subset of the space (A,(; D), Pp,»)
where p’ is the sequence (rzn—1)nen-

Let us remark that these notations depend heavily on the enumeration of the points
of D but any enumeration will do.

Proposition 4.1: If D = {u; : j € IN}, then, for every p € NN, A, (D) isa
Fréchet space.

Proof: One can go on with a direct proof as in Proposition 3.1 or use the technique
of the (LB)-spaces as we do hereafter @

Proposition 4.2: If D = {u;: j € IN}, the family {Bp, : p € NV} is a quasi-LB
representation of the space A(Q; D) made of absolutely convez and compact sets.

Now as in [3], once again, for every p € IN N we may successively introduce the
sets

N
’ BD,r‘,...,r.‘:U{BD,v:aeN )8l=rl)"'78ﬂ=rﬂ}
FD,r;,...,r,. = span BD,rl,...,r..

for every n € IN and
(=
FD’p = m FD,rl,...,r,.-

n=1
One can describe directly these sets in our case. In particular, one gets Fp, =
Ay (2 D). This provides another way to establish that, for every p € IV N A,(9;D)
is a Fréchet space.

Definition: If D = {u;: j € IN}, we have

A@;D)= | A4,(D)

PENN

and, for every p,0 € INF such that p < o, the canonical injection from A,(; D)
into A,(f; D) is continuous. Therefore we may endow A(Q2; D) with the locally convex
topology 7 of the inductive limit of these Fréchet spaces. Of course 7 is finer than
the topology of A(2; D) but we must insist on the fact that (A(Q; D),7) is not an
(LF)-space.

However some results similar to those obtained in the case when D is finite, can be
established.
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Definition: If p = (ro)nesv € INP, the subset D = {u; : j € IN} of 30 is
p-regularly asymptotic for Q if the restriction of the map T to A,(Q; D) is surjective.

Theorem 4.3: Let D = {uj: j € IN} be a subset of N having no accumulation
point. The following conditions are equivalent:

(a) D is regularly asymptotic for Q.

(b) For every j € IN and every sequence (cn)neiN of complez numbers, there is
J € A(2; D) such that f(z) = Y oryca(z — uj)" ot uj.

(¢) There is p € IN™ such that D is p-regularly asymptotic for Q.

Proof: (a) = (b) and (c) = (a) are trivial.

(b) = (c): Let us first introduce a sequence p € INM. As D has no accumulation
point, there is a sequence 7 = (¢;)jenv such that the disks {z € : |z — uj| < 1/¢t;} are
pairwise disjoint. We set r; = ¢, and obtain the other elements as follows, by induction.
If ry,...,rm are determined, we denote by d,, the distance of upm4; to
™ 1
H,,.:K",U L)l{2€¢:|2—ujlst—j}

)=

As {um41} is a regularly asymptotic set for Q, um41 is not an isolated point in 9
therefore there is v, € Q2 such that

0.< [vm — tms1] < inf{d—'", L} and  d(vm, Hm) > 3.
4 tmt1 2
Then we choose rm4g in IN such that rmyy > tmirand 1/rmy1 < |[Um — Umaa]-
As {un : u € D,n € INy} is a subset of the dual space (4,(Q; D), Pp,,), the
elements of which are linearly independent, by Theorem 1.1, all we need to prove is
that, for every s € IN, the vector space

span{ny,n:u € D,n € Ny} NspanVp ,,
has finite dimension. Let us fix s € IN and, to simplify the notations, let us set ¢ = pp

and U = Vp ,,. Forevery j€ N,
we know already that

19,8

span{nu;,» : n € INg} NspanU°

has finite dimension so there is an integer N(j) € IN such that

.
(al,...,aN €F:an #£0; 3 awnun € spanv°) = N < N(j).

n=0
To conclude, it is then sufficient to prove that, if

m+1 N

(= E Za,-,,.nui',, with m> s

Jj=1 n=0
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belongs to span U°, then a) and b) hereunder hold. .

a) We have am41,n = 0 for every n = 0,...,N. Indeed, if it is not the case, let
g € IN be such that { € qU° and let [ be the greatest integer such that am41,1 7 0. We
then introduce the polynomial

P(Z) = (Z - ul)m+N e (Z - um)m+N(z - um.H)'
and an integer d larger than the diameter of H,,, choose an integer ¢ such that
Ium+l - u1|m+N ce |um+1 - um|m+N2‘ > qs(s + 2)d(m+N)(m+l)

and finally set
() = P&)- (5772

- ')m)

It is clear that g belongs to A,(2; D). Moreover from

t _ ]
) forall z € Q.

t

dm

—_—] <
(e — o) 1 4for all 2€ Hp,

we easily get
q(9) < sup Pu;,r;,0(9)
1<i<s

< d(m+N)(m+l) +(8 + l)d(m+N)(m+l)
= (8 + 2)d(m+N)(m+l)

hence g belongs to s(s + 2)d(™+N(m+1y therefore
(g, ¢)| < gs(s + 2)dtm+M)m+1),

But we also have .

d—m > 2‘
2(um+1 _vrvl)
hence :
m+1 N
K. Ol =Y" 3 asngl™(w))
=1 n=0
= |9m(“m+l)|
. N . N dm ¢ -
= |u —-u m oo |u —-u m . | —
[um+1 — ] um+1 = ] O
> |u,,.+1 - 01|m+N (XX Ium.H - u,,,|"'+~ . 2‘

> gs(s 4 2)d(m+N)m+1) .

Hence a contradiction.

b) We have a; v = 0 if N > sup{s, N(1),...,N(s)}, by a proof very similar to the
one of Theorem 3.5.

The proof is now complete’ B
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Corollary 4.4: If D = {u;: j € IN} is regularly asymptotic for Q, then the kernel
of T has 2%° as algebraic dimension.

Proof: The proof of Corollary 3.4 applies here too: one has just to replace r € IV
by some appropriate p € IN and the space 4,(; D) by 4,(Q;D) 8 »

Proposition 4.5: Let D = {u;: j € IN} be a subset of 8Q having no accumulation
point. This implies the ezistence of a sequence T = (t;)jen € INV such that the disks
{ze@ : |z~ u,~| < 1/t;} are pairwise disjoint. Then the following conditions on a
sequence p € INVN yerifying p > 1 are equivalent: ' A

(a) D is p-regularly asymptotic for Q.

(b) For every compact subset K of Q) and every jo € IN, there is p € IN such that,
for every h > 0, there is f € A,(Q; D) verifying

J -
[f(2)l <1 f‘"“"ZGKU(U{ueﬂtlu—uﬂs%}),
3

J=1

and
'fbl(“io)l > h. .
Proof: The proof of (a) = (b) is essentially the same as the one of the necessity
of the condition in Theorem 3.6: one just has to replace 4,(Q; D) by 4,(2; D).
Slight modifications to the proof of the sufficiency of the condition in Theorem 3.6
give (b) = (a). One just needs to replace A,(Q; D) by A,(; D), to fix j in IV, to
impose moreover the condition s > j on s, to replace Vp ., by Vp,,.,, to set

K=K,|J (g{zenzlz—uﬂs%})

P)=(z-uw)" % [[ (-w)?,

1<k<a, kit

and

and to replace pp,r,, by pp,ps B

Theorem 4.6: Let D = {u; : j € IN} be a subset of IQ having no accumulation
point. This implies the existence of a sequence p = (rn)nen € INV such that the duka.~
{z €@ : |z — uj| < 1/r;} for j € IN are pairwise disjoint.

' If O is quasi-connected at every point of D, then D is p-regularly aaymptotsc, hence
regu!arly asymptotic, for Q.

Proof: The proof is very similar to the one of Theorem 3.7. One fixes j in N, séts

)C=KU(LiJ {te¢':lt-uj|5,l,.})

and chooses A with the condition 63(uj, A) < 1/r; instead of &;(u;, A) < 1/r. The
conclusion then follows from the preceding proposition @
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5. Generalizations of Carleman’s results

We begin with the following

Theorem 5.1: If D is a non-empty subset of O having no accumulation point and
if O is quasi-connected at

every point of D, then D is regularly asymptotic for Q.
. Moreover, for every family {cyn : u € D,n € IN} of complez numbers, the set of
the elements f of A(Q2; D) such that f(2) = Y or,cun(z — u)" for everyu € D is a
linear variety of dimension 2%°.

Proof: Having no accumulation point, D must be countable. So if D is finite, this
is Theorem 3.7 and the Corollary 3.4, and if D is infinite but countable, it is a trivial
consequence of Theorem 4.6 and of Corollary 4.4 @

The following result gives an easy way to verify that 9§ is quasi-connected at some
point.

Proposition 5.2: If the connected component Cy of u € 9Q has more than one
point, then OQ is gquasi-connected at u.

Proof: We are going to use twice the following property (cf. [6: (10.1)]): If A s a
closed, connected subset and G a bounded, open subset of § such that A£GNA#G,
then every connected component of G N A has some point in the boundary

of G.

Given 0 < € < § < 1, as Cy contains more than one point, there is r; € (0,6/2) such
that C;, =CyN{z €@ : |2 — u} < r;} # Cy. Let C be the connected component of C,
containing u. Of course, C, is a closed, connected subset and b= {z €€ : |z —u| < r; }
is a bounded, open subset of ¢’ such that C, # bN C, # @. Therefore there is z; € C
such that |z; — u| = r;. Now we chose r2,r3 > 0 such that r, < er; and r; < r3,
and set G = {2 € : r; < |z—-1u|l < r3}. Sowe have u € G and z; € G, hence
C # GNC # 0 and the connected component P of CNG containing z; contains a point
z; of the boundary of G. As |22 — u| # r3, we must have |z; — u| = rp. Therefore P is a
connected subset of 9§ such that §;(u,P) = |22 —u|=r; and §3(u, P) = |z1 —u|=n,
hence 62(u,P)=r; < 6and 0 < 6;(u,P)=r; < er) = 562(14 P) »

Combining the previous two results, we get the following statement which consti-

tutes the practical form of our result Let us mention that it generalizes Proposition 10
of [4]):

If the connected component ofu € 0N has more than one point, then {u} is regularly
asymptotic for )

as well a8 Corollary 1 of [4]:
If Q is simply connected, then every point of O is regularly asymptotic for Q.

. Theorem 5.3: If D is a non-empty subset of 3Q having no accumulation point and
if the connected component of every point of D in O has more than one point, then D
18 regularly asymptotic for §).
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Moreover, for every family {cy,n : u € D,n € IN} of complez numbers, the set of the
elements f of A(Q; D) such that f(z) = 3 oo cun(z — u)" ot every u € D is a linear
variety of dimension 2R,
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