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Spline Approximation Methods 
Cutting Off Singularities 

S. Roch 

Abstract. The topic of this paper is some types of singular behavior of spline approximation 
methods for one-dimensional singular integral operators which are caused by discontinuities 
in the coefficients or by non-smooth geometries of the underlying curves. These singularities 
can be cutted off by a modification of the approximation method which is closely related to 
the finite or infinite section method for discrete Toeplitz operators. Using Banach algebra 
techniques, one can derive stability criteria for a large variety of modified methods (including 
Galerkin, collocation, and qualocation 
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1. Introduction 
As a model situation, we consider the Galerkin method for solving the singular integral 
equation

Au	((a+x+ + a_—)I + (b++ +	 U = f	 (1) 

where 0± and b± are complex numbers, x± is the characteristic function of the positive 
and negative semi-axis, respectively, and Sg is the operator of singular integration, 

+0O 

(Sj,u)(t) = -	 11?). 
1 J u(s) ds

	(t E 
 

irt	s — f 

For the Galerkin method for solving equation (1) we replace (1) by a sequence of ap-
proximation equations

LnAunLnf	(uES)	 (2) 

where S,, is a spline space and L is the associated Galerkin projection. The spline 
spaces considered here are supposed to be of a very natural structure, namely, we start 
with a mother spline p, that is, with a bounded, measurable, and compactly supported 
function p satisfying the conditions 

p(r—k)1	for xEll?	 (3) 
kElZ 
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and

> f W(t + k)W(t) dt - z k 54 0	for zET.	 (4)
kEZ 

(observe that the sums in (3) and (4) are actually finite by the boundedness of supp ç). 
Then we set k(t) := y(nt — k) and define the spline space 5,, as the smallest closed 
subspace of L = LP (1R) containing all functions çoi,, with k E E. For example one can 
take p = xIo,iJ, the characteristic function of the interval [0, 11, or = X[o,i] * ... * x[o,i] 
the d-fold convolution of X[o,i) by itself. Then (3) and (4) are satisfied, and Sn is just the 
space of all LP -functions which are polynomials of degree d over-each interval [k, k + 1], 
and which are (d - 1)-times continuously differentiable on R. 

A basic observation which is usually attributed to de Boor is that the spaces 5,, c L 
and l = lP() are isomorphic : If the function E X kk,, is in Sn, then the coefficient 
sequence (xk) is in 1" and conversely, and, moreover, the mappings 

E,,: 1" - 5n, (xk)	>2Xk2kn	and	E_,, 5n	l, 12Xk%2kn	(xk) 

are continuous and sup,, II EnII II E_ ,,II <00. 
The Galerkzn projection L,, is the operator mapping LP onto 5,, such that (L,,f, kn) 

(f,So kn) for all I E LP and k E X . Condition (4) ensures the existence of L,,, 
whereas (3) involves the strong convergence of L,, to the identity operator I as n —+ CC. 
The natural question for (2) is whether this method applies to (1), i.e., whether (2) is 
uniquely solvable for all n no and for all right sides f E LP, and whether the sequence 
(tzn)n>no converges to a solution u of equation (1). Since L,, converges strongly to 
I, the applicability of (2) is equivalent to the stability of the sequence (L,,AIsj (a 
sequence (An ) of operators is stable if An is invertible for all sufficiently large n, and if 
SUPn II 4 ' II <ca). 

Let us first consider stability of (L,,AIsj in the special case of constant coefficients, 
that is, a+ = a_ =: a and b+ = b_ =: b. Clearly, this sequence is stable if and only 
if the sequence (E_nLnAEn) of operators on 1" is stable. This sequence shows two 
peculiarities: the operators EL,,AE,, are independent of n (hence, this sequence is 
stable if and only if the operator E_ 1 L 1 AE, is invertible), and the representation of the 
operator E_nLnAEn with respect to the standard basis of P yields a Toeplitz matrix, 

E_nLnAEn = al + bT°(g)	 (5) 

where g is a certain piecewise continuous function on the unit circle T. 
If is sufficiently smooth, then g can be represented as 

= EjEZ sgn(y + 112)K.1p)(y +3)12 

jEZ I(Fo)(y + j)2 

where F denotes Fourier transform (see [4]). The operator T° (g) is defined as follows: 
Let 9. denote the nth Fourier coefficient of g. Then TO (g) acts on finitely supported 
sequences (xk) e P via T°(g)(xk) = (yk), where Yk = ,7gk_zxz. Since T°(g) is 
invertible if and only if g is invertible (thought of a function in L(T)), we have the 
following:
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The approximation equations for the Galerkin method (2) for the operator A with 
constant coefficients are of Toe plitz structure, and this method is stable if and only if 
the function a + bg is invertible. 

Let us now return to the general case of equation (1). The operators E_L71AE 
are again independent of ii, but now 

E_LAE = (a-f-P + a_Q) +(b+P + b_Q)T°(g) + K	 (6) 

where P : (xk) ( ... , O,O.xo,x i ,x 2 , ... ) , Q = I - P. and K is a certain compact 
perturbation which originates from basis splines Wk,, having the discontinuity point 0 
in the interior of their supports. The appearance of a non-zero perturbation K involves 
serious complications: It is by no means easy to determine K explicitely. Even if K 
would be explicitely known, there seems to be no general way to decide invertibility of 
the operators (6). And, thirdly, K destroies the nice structure of the approximation 
equations (observe that (6) is a block Toeplitz operator if K = 0). 

Analogous effects can be observed in other situations: Galerkin methods for Mellin 
convolution operators over lip , collocation and qualocation methods for these operators, 
Galerkin methods for singular integral operators with piecewise continuous coefficients 
over smooth closed curves and for singular integral operators with continuous coefficients 
over curves with corners and endpoints, etc. To have an example for the latter case 
consider the singular integral operator al + bS0 with constant coefficients over the unit 
square 0. Provide 0 with equidistant partitions, and let S° and L stand for the 
corresponding spline space and Galerkin projection, respectively. 

The spline Galerkin method 

L(aI + bS0)u = Lf	(u E S)	 (7) 

can be studied by localizing over 0. For example, at a corner of 0. (7) behaves as the 
equation

rL(al LC'	 rLr	cL 

where L is the infinite angle 1R U i1R, and S and Lf are spline spaces and Galerkin 
projections related with Z. If LI is mapped one-to-one onto the real axis 11? by identifying 
iiW with JR_, the space S Z goes over into S,,, the projection L into L, and the 
operator al + bSL into 

al + b(+S+ + x_ S x_ + x_JNx+ - 

where (Jf)(t) = f(—t), and N,9 refers to the Hankel operator 

00 

(Nf)(t) - if f(s) ds
	(t€iR). 

in	s - 
0 

The naturally appearing functions X± again involve compact perturbations.
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2. Doubly-indiced approximation sequences 

Probably, it was Chandler and Graham [2] who first proposed a way to overcome these 
difficulties. When studying integral equations of the second kind they realized that the 
behavior of the approximation system becomes much better if the spline space S is 
replaced by the modified spline space 

S,, , := closLPspan92 k } kEz	( J kJ 2 i). 

This space results from the original one by omitting a finite number of basis splines 
in a neighbourhood of the "singular point" 0. Pröfidorf and Rathsfeld [5] successfully 
applied this approach to collocation and quadrature methods for Mellin operators, and 
they pointed put its close relationship to the finite section method for operators in the 
Toeplitz algebra. Elschner [3] combined modified spline spaces with Mellin techniques 
to study stability and convergence of Galerkin and collocation methods with piecewise 
polynomial splines for Mellin convolution equations and Wiener-Hopf equations. 

Instead of modifying the spline space S. we prefer to work in the original space but 
with modified approximation sequences. Define operators 

Q	1" - l,	(xi) i- (. . . , x__ 21 x__ 1 , 0 7 . .. , 0 1 x, xj1, ...) 

and consider instead of (2) the approximation system 

EnQi E_ n Ln AEnQtE_nni = EnQi E_nLnf	(u,,, E Sn ).	(8) 

The operators EQE_L are projections into 5,, again. To force their strong conver-
gence to the identity operator as (n, i) -4 oo we have to restrict the natural index set 

>< + by choosing a suitable subset T ç > such that i/n -* 0 as n - 00 and 
(n, i) E T (otherwise we could fix n and let i go to infinity to obtain E,,QE_,,L,, - 0). 
For example one can take 

T = {(n,i) E	x	i <n 1	with some fixed 6 > o}. 

Generally, an approximation method ( AnI)( fl ;)ET is called applicable to the equation 
Au = I if there is an (no, to) E T such that the equations 

	

Ani uni = EnQi E_nLnf	(u,, 1 e 5,,)	 (9) 

possess unique solutions Uni for all (n, i) > (n0 , io) (that means n no and i 2 i 0 ), if the 
sequence (u,,I)(,, I)ET is bounded, and if the sequence (Ut(,,))flEZ+ converges in the norm 
of LP to a solution u of the equation Au = f for each monotonically increasing sequence 

- T. The sequence ( Anj)(nj)ET is said to be stable if there exists an (no ,io) 
such that A,, 1 is invertible whenever (n,i) > (no,io) and if sup ( fll ) > ( f1 0 1 O) II A ,'IP < oo. 
Let us finally agree to call a bounded sequence ( Ani)(n,1)ET strongly convergent to the 
operator A if the (common) sequence (A t( n) ) e converges strongly to A for each 
monotonically increasing sequence t: Z -# T.
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If A is the model operator (1), then the sequence (EnQ 1 E_nLnAEnQ1E_n) is stable 
if and only if the sequence 

	

(Q;E_ n Ln AEn Q I ) = (Q((a+P + a_Q) + (bP + b_Q)T°(g) + K)Q)	(10) 

is stable. The stability of this sequence is subject to a general theorem concerning finite 
and infinite sections of operators in a Toeplitz algebra (see [1: Section 7.68], (7) and [9) 
and Theorem 3 below; for references on the history of the topic see [1)). What results 
is that (10) is stable if and only if 

1. the operator (aP P + a_Q) + (b+ P + b_Q)T°(g) is Fredholm 
2. the operators QT°(a_ + b_g)Q + P and PT°(a + bg)P + Q are invertible 
3. the point 0 lies outside a certain curved triangle (which is a common straight 

triangle in case p = 2) with vertices 1,(a_ + b_)/(a_ - b_) and (a + b+)/(a+ - bk). 

This result indeed solves our problems: all conditions are verifiable, and the struc-
ture of the approximation system becomes sufficiently nice since IIQ1 KQ1II -+ 0 as 
i -4 oo and, thus, the unpleasent operator K can be neglected. 

3. Banach algebras of approximation sequences 

Stability problems can be reformulated into invertibility problems in Banach algebras 
in the following way: Let .7 stand for the set of all bounded sequences (An ) of operators 
An : S -* S. such that IR A )II := sup II AL II < oo. Provided with elementwise 
operations, .F becomes a Banach algebra, and the subset K; of I containing all sequences 
(Ku ) with II K II - 0 forms a closed two-sided ideal in I. It is elementary to show that 
a sequence (An) E I is stable if and only if the coset (An ) + K; is invertible in the 
quotient algebra I/K. 

For doubly-indiced sequences one analogously defines an algebra 1T consisting of 
sequences (Anj)(flI)Er, and the ideal K; has to he replaced by the ideal K;" of all se-
quences (K) such that, given e > 0, there is an (no,io) E T with II KnJnII < e 
whenever (n,i) > (no,io). The latter will be abbreviated henceforth to IIK. i L.11 : 0 
as (n,i) - 00. 

In [4), a subalgebra of I was introduced which contains a large variety of approxi-
mation sequences for singular integral operators (but without cutting-off factors), and 
a stability criterion for these sequences had been derived. Similarly, we are going to 
define a subalgebra of 1T which is, on the one hand, large enough to contain a bulk 
of approximation sequences (including sequences with cutting-off factors) and, on the 
other hand, small enough to be effectively treatable. 

For the readers convenience, we start with recalling and specifying to the one-dimen-
sional context some definitions and results of [4). Given an integer n we let V. denote 
the discrete shift operator 11n :1' - l,(xk) '-4 (Xk_n), and for each real number  we let 
{ x} stand for the smallest integer which is not less than x. Further we fix a real number 
r. Now define Ar as the smallest closed subalgebra of I which encloses all sequences 
of the form (EnT°(a)E_n) where a is an arbitrary piecewise continuous function which 
possesses a finite total variation and which is continuous on T \ {1}, and all sequences
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( EnV{n+r) PV_ (tn+r) E_n)nE+ with t running through the reals. One can show for 
example that A0 contains the Ga.lerkin approximation sequences with trial space S = 
S and test space S both for singular integral operators al + bSJR (where a and b are 
piecewise continuous on the one-point compactification JR of 111 by oc and continuous 
on JR \ ) as for Mellin convolutions, whereas A_ contains c-collocation sequences for 
these operators (even with general piecewise continuous coefficients), and the algebra 
A0 is also suitable to investigate certain qualocation and quadrature methods. 

In the following proposition we introduce certain homomorphisms W and W as-
sociating with each sequence (An ) a linear bounded operator. For brevity, we simply 
denote these operators by W(A) and W(A) in place of the - more correct - nota-
tions W((A)) and W3((A)), respectively. Let further L(X) stand for the algebra of 
all bounded linear operators and K(X) for the ideal of all compact linear operators on 
the Banach space X. 

Proposition 1: Let (An ) E Ar. Then the following is true: 
(a) There is an operator W(A) E L(L P ) such that the sequence (A n ) converges 

strongly to W(A) as ii -p 00, and the mapping W : A,. - L(L P ) is a continuous 
algebra homomorphism. 

(b) For each s E JR, there is an operator W(A) E L(1P ) such that the sequence 
( V_ {sn+r} E_ n An En V{sn+r)) converges strongly to W(A) as n -i oc, and the mapping 
W,, : A,. - L(IP) is a continuous algebra homomorphism. 

(c) The cosets E_AE+K(l P ) are independent of n, and if W(A) denotes one 
of them, then the mapping W : A,. - L(P)/K(P) is a continuous algebra homomor-
phism. 

Theorem 1 (see [4]): A sequence (An ) E Ar is stable if and only if the operators 
W(A) and W,(A) (s E 11?) as well as the coset W(A) are invertible. 

Our result concerning cutting-off methods will be of the same form: we are going to 
construct a subalgebra AT of 1T and homomorphisms WT and WT with s E J? such 
that the analogue of Theorem 1 holds. Given r E JR we let AT stand for the smallest 
closed subalgebra of .FT which contains 

(i) all (constant with respect to i) sequences (A	i)€T with ( A )e+ E Ar (that 
rn is, Ar can be viewed as a subalgebra of AT when identifying the sequences ( A ) z+ 

and (Afl)(fl,l)ET). 
(ii) all sequences (E V{ yn+r)QI V_ {gfl+r} E_ fl)(fl,j)ET with y E R. 

The following proposition gives some hint how to introduce the desired honiomor-
phisnis. 

Proposition 2: Let (A 1 ) E	Then the following is true: 

(a) The strong limits W((Afl,) flE +) exist for each fixed i, and they are independent 
of i.

(b) The strong limits	 exist for each fixed i and s € R. 
(c) The cos ets E_A 1 ET, + K(lP ) are independent of(n,i) € T. 

Proof: All occurring mappings are continuous algebra homomorphisms. So it suf-
fices to verify the assertions for the sequences in (i) and (ii) in place of (A 1 ). If
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(A) = (An)(fl,j)ET with (A)€+ E Ar, then Proposition 1 yields immediately all 
what we want, and for sequences of the form (ii) the assertion is easily verified I 

The preceding proposition shows that it is correct to define the homomorphism 
WT: AT - L(LP ) by 

	

WT(( AnI)(fl,i)Er) := W((A)€+)	for some i	 (11) 

and the homomorphism W : A ' - L(IP )/K(IP ) by 

WT 

	

,((Anj)(fl,j)ET) := E_A,E + K(l")	for some (n,i).	(12) 

The definition of WT for .s E JR is less obvious: we let .F(1 P ) refer to the algebra of all 
bounded sequences (An ) with A E L(IP ) provided with elementwise operations and the 
supremum norm. The subset (lP ) of .F(lP ) consisting of all sequences (K,,) of compact 
operators K,, with Il K,, -+ 0 forms a closed two-sided ideal in .T(1P ). Now define 

wf((Afl)(flI)ET) := ( W3((Aflj) flE + ))iE+ + 9(l).	 (13) 

One can straightforwardly check that WT is a continuous algebra homomorphism map-
ping A' into .F(IP)/9(1P). 

Here is the main result on stability of sequences with cutting-off factors. 

Theorem 2: A sequence (A,,) E AT r is stable if and only if 

(a) the operator WT(An) is invertible 
(b) the cosets WT(An) are invertible for all S E JR 
(c) the coset W(A,, 1 ) is invertible. 

Condition (b) is equivalent to the stability of the sequence (W((A,,1),,€z+))€z+. 
A criterion for this stability will be quoted in Theorem 3 below. 

Of course, Theorem 1 can be rediscovered from Theorem 2 since, for (A,, 1 ) = 
(An)(,,,1)ET with	E Ar, 

W(A,, t ) W(A,,), W37'(A,, 1 ) = ( W3(A,,))€+ + 9(l"), W,(A,, 1 ) = W(A,,).

and since a constant sequence is stable if and only if its generating operator is invertible. 

Proof of Theorem 2: The proof proceeds analogously as those of Theorem 1 in 
[4]. We only mark the essential steps. 

Step 1. The set çT := A'flK T is a dosed two-sided ideal of AT , and if (G,, 1 ) E 
then

WT(G,U) = 0,	WT(G,,1) = 0 (s e IR),	W,(G,,1) 0.	(14) 

The identities (14) are immediate consequences of the definition of the norm convergence 
of doubly-indiced sequences. 

Step 2. The collection 3T of all sequences of the form (L,,KIsj(,,,,)ET + (G,,1) 
with K E K(LP ) and (G,,.) E çT belongs to A T and forms a closed two-sided ideal of
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this algebra. Indeed, for the inclusion jT c A it would clearly suffice to show that 
(LnKIs ) is in Ar. But now we cannot refer to [4] since these sequences were included 
into Ar in the multidimensional context by definition. In the one-dimensional setting 
considered here one can actually prove the desired inclusion in the following way: 

• Show that (L n fIIs) E Ar whenever f is continuous on JR. This can be done by 
approximating I by a piecewise constant function which, on its hand, is constituted 
by shifted characteristic functions x+ . Using the inclusion (EPE_) E Ar one 
easily derives that the sequence ( Ln x+IIs) is in Ar. 

• Show that (LnSj,Is) E A,.. For this, it remains to show that the function g 
introduced in Section 1 is piecewise continuous on T and continuous on T \ 1) .. but 
this is well known (see [6: 10.4 and 10.8]). 

• Show that (L(Sjfi fI - fSø)Is,) E Ar. This is a simple consequence of the com-
mutator property

]LfI - fL II -0	as n - 00	 (15) 

(see [4: Theorem 3/(a))). Indeed, (15) entails that 

(LfIIs, )(LSIRIs ) - (LSIs )( LnfI Is) - ( L(fSg - SJRfI)Is) E K. 

• The operators SIRfI - ISJR are compact, and each compact operator on LP can be 
approximated by sums of products of operators of this form. 

The proof that 3T is evert an ideal follows easily: if (A) E AT, then 

(An i )(L n KIs + G 1 ) = (Lw(A)KIs + AG 1 + (AL - LW(A1))KIs). 

The first term is in 3T since W(A 1 )K is compact, and the other two terms are even 
in gT Thus, yT is a left ideal, and analogously one verifies the right ideal property. 

Step 3. Denote the canonical homomorphism from AT onto the quotient algebra 
AT/JT by 4. The analogue of Proposition 15/(b) in [4] is the following: A coset 
(A) + gT E AT/cT is invertible in AT/ cT if and only if the operator W(A 1 ) is 
invertible in L(LP ) and if the coset I(A) is invertible in AT/JT (observe that, by 
(14), the operator W(A 1 ) actually depends on the coset (A 1 ) + cT only). The proof 
goes as in [1: 7.9 - 7.111. 

Step 4. If f e C(IR), then the coset 4((Lfl fIIsfl )()ET) belongs to the center of 
AT/JT. For a proof it remains to show that 

(Ln fIIs, )(A 1 ) - (Ani )(Ln fIIs) E 

for all sequences of the form (i) and (ii). Concerning the first ones, see Proposition 17 in 
[4), and for (ii) one has to take into account that the operators A 1 are of diagonal form 
and that the operators E_LfE are also of diagonal form up to certain perturbations 
tending to zero in the operator norm. The simple proof of the latter assertion is based 
on the commutator property (Theorem 3/(a) of [4]) and can be implicitely found in the 
proof of Proposition 17 of [4].
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Step 5. Taking into account the inclusion 

(Ln fIIsj(L n gIs) - (LfgIIs) E G, 

which is involved by the commutator property (15) again, it is not hard to derive that 
the set

13= {'(L nfIIs) with .f € C(IR)}

is a commutative Banach algebra belonging to the center of ..4T/JT, that the maximal 
ideal space of 8 is homeomorphic to lie, and that the maximal ideal associated with 
s€ JR is

	

{(LfrIs) with f € C(JR) and f(s) o}.	 (16) 

Let Jj' denote the smallest closed two-sided ideal of A/JT containing the maximal 
ideal (16), write AT, for the quotient algebra (A/JT)/J3T , and let 4 refer to the 
canonical homomorphism from A T onto A '3 . Then Allan's local principle (compare [4] 
or [1: 1.34]) gives the following: 

The coset 4(A) is invertible in A'/J T if and only if all coseis 4',(A) with S E JR 
are invertible in A 

Step 6. The mapping ',(A) '—* WT(A 1 ) is correctly defined, and the image of 
A'/JT under this mapping is inverse closed in .F(P')/g(IP). Indeed, we have already 
remarked that WT(G) = 0 whenever (G 1 ) € Q, and from [4: Proposition 18] we 
conclude that WT((LKIs )(n,i)ET) = 0 for all compact K. Thus, WT(A 1) depends 
on I(A 1 ) only. Furthermore, [4: Proposition 181 entails that 

W,T((LfI si) = { (f(.$)IIs) +c(1 P) if s 54 00 
f(oo)+K(1P )	ifs=oo 

whence easily follows that WT( A I) depends on $ 3 (A 1 ) only. This shows the correct-
ness of the definitions, and for characterizing the images of the mappings WI', we let 
T" denote the smallest closed subalgebra of L(EP) which contains the operators P and 
T°(a) with a running again through the piecewise continuous functions with finite total 
variation on T which are continuous on T\ {1}, and we let .F(TP ) refer to the smallest 
closed subalgebra of F(lP ) containing all constant sequences (A) with A € 71' as well 
as the sequence (Q). It is well known that the algebra 71' encloses the ideal K(lP) 
and that .F(T 1') contains Q(lP ), and that the algebras T1'/K(lP ) and'(TP )/g(lP ) are 
inverse closed in L(lP )/K(lP ) and .(lP)/c(lP), respectively. Further it is immediate 
that

w;1((EflT°(a)E_fl)(fl,)ET) = (7°(a))1+ + c(l") 

WI'(( EnV(jn +r) PV_ {,n+r) E_n)(n,i)ET) (P) 1 + + 9(l") 

WI'((En V(Sn+r)Qi V_ (3n+r) E_n)(fl,!)ET) = (Qi)E+ + 9(l") 

whence follows that the image of AT under WI' is just .F(TP)/G(lP) in case s 00 and, 
similarly, the image of ..4' under W1 is TP /K(lP ). This gives our claim.
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Step 7. The mappings

ATr, 3, (A i ) + (lP ) _4 s (En V{sn+r} Ai V_ {sn + r} E_ n )	(17) 

with s 54 oo and

W : TP /K(1P ) -* A"A + K(1") i- OO (EAE_)	 (18) r,00' 

are correctly defined, and

= lTT( WT( A 1))	for all (A) E At'.	 (19) 

Let us verify the correctness of (17) in case .s = 0 for example. What we have to show is 
that (E V r) G i V_ (r) E_ n ) is in gT whenever (G 1 ) e 9(1P ). For, we can suppose without 
loss that

G	IKkI ifi=io 
'o	ifiio 

where Kk, is the rank one operator having a 1 at the kith place of its matrix representa-
tion whereas the other entries are zero (this is justified since each compact operator on 

can be uniformly approximated by finite sums of operators of the form Kk,). Let us 
further agree to abbreviate the sequence (En V{r} BV— (r) E_ n ) by [B] for the moment. 
Now we get the desired assertion as follows: The sequences 1Ql and [A] with A E T 
belong to A ' by definition; hence the sequence 

( [ 1/k_I.] [P1 [Q] [" —kl - [%Tk+ i—ol [P [Q] [V -k-li) [.J"kd 

= [(Vk_I O PQ I VIO _k - Vk+1_l0PQlVO_k_1)Kk1] 

belongs to A ' , too. But, as one easily checks, 

(Vk_I O PQI VIO _k - Vk+1_.0PQ1V10_k_1)KkI = 

which gives the correctness of (17) for s = 0. The proof for s 54 0 is similar. For the 
correctness of (18), it remains to verify that 4 S (EKE—) = 0 whenever K E K(IP). 
We again suppose witbut loss that K = Kk,. If f is continuous on JR and f(oo) = 1, 
then it is evident that fEflKk,E_ = 0 whenever the support of f is sufficiently small. 
This in combination with the commutator relation gives the desired correctness. 

Finally, the mappings WT with .s E JR are continuous algebra homomorphisms, and 
so we verify (19) only for the generating sequences of the form (i) or (ii). For (i) we 
can refer to [4: Prop. 20], and for A 1 = E fl V{yn+r}QI V_ {yn+r} E_n the verification is 
straightforward. Indeed, let for example .s = 0. Then 

WT(A1) - I (Q). + (1P ) if y = 0 
l(I)+c( l )	ify0' 

Thus, in case y = 0, (19) follows at once, and in case y 0, (19) reduces to 

O (EnV{Yn+ r} Q I V_ {Vn+ r) E_ n ) = 4 o(IIs) .	 (20)
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This is evidently true if the generating mother spline W is the function xlo,IJ• Indeed, 
in this situation one has 

En V{yn+r)Q V_ {yn+,.} E_n = Lflx,R\MIIs 

with M = [(-i + {yn + r})/n,(i - 1 + {yn + r})/n], and for (n,i) E T and n large 
enough, the functions XJR\M and 1 coincide locally in a neighborhood of 0. The case 
of general can be traced back to this case again by invoking the commutator relation 
(compare [41). 

As an immediate consequence of (19) we conclude that 'I(A) is invertible in AT 
if and only if WT(A ) is invertible, and summarizing Steps 3, 5 and 7 we obtain the 
following: 

The coset (A 1 ) + cTis invertible in A'/cT if and only if WT(Ai) and WT(A) 
are invertible for all s E JR. 

Step 8. We claim that the stability of (A) E AT involves the invertibility of 
WT(AI) and WT(A) for all s E JR. Suppose 

sup	"A	< oo.	 (21)
(,')^!(o,o) 

Then the sequences (An,)nE+ are stable for all i > io, and these sequences belong 
to A,. (recall that Q = I + compact). From [4] we conclude that W$((Aflj)flEz+) and 
W((A fl ,) flE +) are invertible and, thus, Proposition 2 yields our claim for WT and W,,. 
Concerning W' we emphasize that (21) gives moreover 

sup II W,((An)nEz+)-' < 00 

whence the stability of (Ws((Afll)flEz+))jez+ follows. 

Now we can finish the proof of Theorem 2: If (A 1 ) is stable, then WT(A) and 
WT(A 1) are invertible. Since the images of WT are inverse closed, this implies invert-
ibility of WT(A 1 ) in F(TP)/g(lP) and TP/K(lP) if s 0 oo and .s = oo, respectively. 
Then, by (19), 4I 5 (A 1 ) is invertible and, as a consequence of Allan's local principle, 
4'(A 1 ) is invertible in AT/JT. Now, by Step 3, the coset (A 1 ) + ' is invertible in 
Ari'/cT , but this of course implies invertibility of (An,) + K2 T in which, finally, 
involves stability of (An,) again U 

Remark. Theorems 1 and 2 can be generalized to larger algebras, say Ac2,,. and 
A c,r, which contain A,. and AT as their subalgebras. Thereby, Il stands for any fixed 
closed subset of the unit circle, and the algebra A0 ,, originates from A, by adding all 
sequences of the form (EnT°(a)E_)€+ where a is piecewise continuous on T, con-
tinuous on T\1, and has finite total variation. The algebra a,,. is defined analogously. 
Let t E T and write Yt for the operator mapping fr onto itself via ( xk) '.-+(xk t_k). One 
can show that, for all (An ) EA0 , and t E D, there is an operator W1 (A) on L' such 
that

- Wt(An)
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strongly as n -+ oo, and the mapping W t : Ail, - L(LP ) is a continuous algebra 
homomorphism. Clearly, W'(A) = W(A) for all (An ) E A. Let now (A n,) E 4. 
Then the strong limits W'((Anj) flE z+) exist for each i, and they are independent of i. 
We denote one of them by W4.(A 1 ). The generalization of Theorem 2 reads as follows: 

A sequence (A) E A ,r is stable if and only ifW4(A) and WT(A.) are invertible 
for all tecz and sElR. 

One example for an approximation sequence which belongs to A{t, _ 1 },o (but not 
to A0 = A ( 1),0 ) is the modified quadrature method considered in [5: Equation 0(10)] 
(which is actually equivalent to a trigonometric collocation method). 

4. Finite sections of Toeplitz operators 

In this section we are going to derive a stability criterion for sequences in F(TP ) ( resp. 
an invertibility criterion in .F(TP)/c(lP)) which is needed to examine condition (b) in 
Theorem 2. The basic observation is the following one. 

Proposition 3: If (An ) E .F(T P ), then (EAE_) E Ao. 

Proof: It is obviously sufficient to show that the sequences (EAE_ T,) with A E 7P 
and (EQT,E_) belong to A13 . For the first one, this is immediate from the definition; 
for the second one we find 

(ETI QnE_) = (EV_PVE_) - (EVPV_E_) 

which is also in A0 U 

Since the sequences (As ) and (EAE_) are simultaneously stable or not, Theorem 
1 yields in this situation: The sequence (An) is stable if and only if W(EAE_ T,) and 
W,(EAE_R ) are invertible for all s E 1R. A detailed analysis shows that most of 
these conditions are redundant. 

Theorem 3: Let (A n ) E Y(T). The sequence (An ) is stable if and only if 
W(EAE_) and W,(EAE_) are invertible for s  {-1,0,1,00}. 

Proof: One has

'0 ifsE(—,O) 
'P WS(EIIPE_fl) TI

ifs=0 
ifs E (0, oc) 

lP4-K(IP ) if.s=oo 
'I if s E (-00, —1) U (1, 00) I 

W.(EThQE_R) =

	

0 ifs E (-1,1) 
P ifs=1 
I+K(l) ifs=oo 

Wa(EnT°(a)E_n) = I T°(a) if .s E (-00, oo) 
T°(a) + K(lP ) if 5 = 00
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(compare [41 and recall that Q = I - F). Taking these identities into account one 
easily gets W,(EAE_) = W,(EAE_) whenever s and s' belong to the same of 
the intervals (—oo, —1), (-1,0), (0,1) and (1.00). Further, the upper-seinicontinuity 
of the mapping s i-4 I4,(EAE_)II (see, e.g., [1: Theorem 1.34/(b)]) involves that, 
if ,(EAE_) is invertible for some s, then is invertible for all s' 
in a certain neighbourhood of s. Finally, we have already seen that S(EAE_) 
is invertible if and only if W,(EAE_) is invertible. Combining these things we 
conclude that invertibility of W,(E AE_) for s E (-1,0, 1,00 } implies invertibility 
of W,(ET,AThE_,,) for all s E JR I 

Theorem 3 can be generalized to sequences involving operators T°(a) with a being 
piecewise continuous on ci and continuous on T \ Q. One only has to include into its 
formulation the invertibility of all operators Wt(EAE_) with t E Q. Furthermore, 
Proposition 3 remains' valid with A0 replaced by A, with arbitrary r. 

5. Examples 

We are going to illustrate the preceding theorems by a few examples. 

Example 1. Let the functions a and b be piecewise continuous on JR and continuous 
on JR \ 10, 11, and let K be a compact operator. Then the Galerkin approximation 
sequence

(An) := (L n (aI + bS,R + K)Is)	 (22) 

for the singular integral operator A = al + bSJR + K belongs to the algebra A0 (see [4]), 
and Theorem 1 yields the following 

Proposition 4: The sequence (A n ) given by (22) is stable if and only if 
(a) the operator A is invertible on 
(b) the operators a(s) + b(s)T°(g) are invertible on 1" for s E 111 \ (0,1) 
(c) the operators 

(a(s + 0)P + a(s - 0)Q) + (b(s + 0)P + b(s - 0)Q)T°(g) + K. 

(with certain compact operators K,) are invertible on 1 P for s E (0, 1) 
(d) the operator 

(a(+oo)P + a(—oo)Q) + (b(+oo)P + b(-00)Q)7°(g) 

is Fedholm on l. 

In this form, the proposition holds even for matrix-valued coefficients. Conditions 
(b) and (d) are effective: the operator in (b) is invertible if and only if the function 
a(s) + b(s)g is invertible, and the Fredholmness of the operator in (d) is subject to the 
Gohberg—Krupnik symbol calculus for singular integral operators. On the other hand 
there seems to be no evident way to verify condition (c). This suggests to modify (22) 
by introducing cutting-off factors at 0 and 1. The resulting approximation sequence 

(An ,) =	 (23)
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belongs to A since

= 

and Theorem 2 states that (23) is stable if and only if conditions (a), (b) and (d) hold 
and if the condition 

(c)' the sequences 

(Q((a(s + O)P + a(s - O)Q) + (b(s + O)P + b(s - O)Q)T°(g) + K IQj 
IiE7L 

are stable for s = 0 and s = 1 

holds. This stability can be examined by means of Theorem 3, and summarizing these 
results we finally get the following 

Proposition 5: The sequence (23) is stable if and only if conditions (a), (b) and 
(d) of Proposition . are satisfied and if, for s=O and s=1, 

(c)" the operators 

(a(s + 0)P + a(s - 0)Q) + (b(s + 0)P + b(s - 0)Q)T°(g) 

are Fredholm on l, the Toe plitz operators 

PT°(a(s —0) + b(s - 0))P + Q and PT°(a(s + 0)+ b(s + 0)g)P + Q 

(with (z) = g(1/z)) are invertible on l, and the singular integral operators 

X[-i,i] I + X\(—1,l]((a(s + O)x+ + a(s - O)x	)I 

+ (b(s + °)x+ + b(s - 

are invertible on 

Now condition (c)" is also verifiable (at least in scalar case): the Fredholmness of the 
first operator is a matter of symbol calculus again and, concerning the other operators, 
recall that scalar Toeplitz operators and singular integral operators are invertible if (and 
only if) they are Fredholm and if their index is zero (Coburn's theorem). So it remains 
to employ the well known index formulas for these operators. 

Example 2. Here we consider the same approximation method as in Example 1 for 
the operator,

A = X[o, l I(aI + bS1 + + M°(c)) 1 o ,i1 I + XIR\[O,Ij' 

wher a and b are'complex numbers, M°(c) is the Mellin convolution operator 

(M°(c)u)(t) = I k () u(s)	(t € +)



Spline Approximation Methods	343 

and c is just the Mellin transform of the kernel function k. Under the additional as-
sumption P x(o,IJ it is shown in [5] and [8] that 

E_LM°(c)E = G(c) + K 

where G(c) has matrix representation (k( and K is compact. Moreover, 
G(c) belongs to the Toeplitz algebra 7P, and the Gohberg—Krupnik symbol of G(c) is 
given on T x JR (with JR referring to the compactification of JR by the two points +00 
and —oo) by

(G(c))(t, z) = t c(z) if t =1 

In particular, this involves that (LM°(c)Is) E A. These results remain valid for 
arbitrary generating functions 

The common Galerkin method (LAIs) again possesses two singular points, namely 
0 and 1, and so we modify this method by introducing cutting-off factors as follows: 

(An .) :=	 (24) 

Proposition 6: The sequence (24) is stable if and onl!,, if 
(a) the operator A is invertible on L" 
(b) the operator PT°(a + bg)P + G(c) + Q is Fredholm on l, the Toeplitz operator 

PT°(a + bg)P + Q is invertible on 1", and the singular integral operator 

X[ 1 , 00)(0I + bSIR+ + M°(C))X[l,c)I + X(—oo,i) 

is invertible on 
(c) the Toeplitz operator PT°(a + b)P + Q is invertible on lP, and the singular 

integral operator
aX(_,,_]I + bX(_,_I)S(_,_IJ + X[—i,00)' 

is invertible on L". 

Herein, conditions (a), (b) and (c) correspond to the invertibility of the operators 
Wr(A), W(A) and W(A 1 ), respectively. The other homomorphisms figuring in 
Theorem 2 are not relevant here since 

1 1	 ifseJR\[0,1] 
W. (Ani) = PT°(a + bg)P + Q if s € (0,1) 

I+K(l")	 ifs=oo 

and so their invertibility is either evident or a consequence of condition (b) in this 
proposition. 

The case b = 0, i.e. the pure Mellin operator, is of particular interest. In this 
setting, the conditions in Proposition 6 reduceto the following-ones: 

(a)' the Mellin operator A = x[o, I ](aI+M°(c))xIo,IjI+x,R\[o,]II is invertible on 
(b)' the operator aP + G(c) + Q is Fredholm on 1', and the operator 

XI l ,)(aI + M°(C))XII. 00)I + X(—co,1]' 

is invertible on L 

whereas condition (c) is already implied by (a). Examining conditions (a)' and (b)' via 
symbol calculus we finally get
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Proposition 7: Let A = Xlo,I]( aI +M°(c))X[o. I ]I+X 1,\(O,I lI. Then sequence (24) 
is stable if and only if 

(a) the function a + c does not vanish on 11? 
(b) the winding number of this function with respect to the origin is equal to 0 

It is rather interesting to observe that the conditions in this proposition are com-
pletely independent of the choice of the generating mother spline W (whereas the function 
g in Proposition 6 depends heavily on p). Thus, if one possible spline Galerkin method 
with cutting-off applies to the Mellin operator in condition (a) of Proposition 7, then 
all of these methods apply! 

Example 3. As a last application we consider the operator 

	

I	 I 
1 J u(s)ds	1 f u(s)ds (Au)(t) = u(t) + -	+ -	 (t € [0, 1])	(25) in	s+t	7r	2—s—i 

	

0	 0 

with two fixed singularities at 0 and 1 and, more generally, operators of the form 

	

A = aI + a2 Sj,?b2 1 - a3 M°(c3 )b3 1 + a4 Ui .JM°(c4 )JU_ 1 b4 1	(26) 

where U±1 are the shift operators (U± 1 f)(t) f(t ± 1) and J is the flip operator 
(.Jf)(i) = f(—t). Further we suppose that a 1 (i) = 1 for t € 1R \ [0,1] and that a3 (t) = 
b(t) = 0 whenever t E JR \ [0, 11 and j > 1. The operator (25) actually results from 
(26) by choosing a 1	I, a2	0.a3 = a4 = b3 = b4 = X[o,ij, and c3 = c4 = n with
n(z) = 1/sinhir(z +i/p). 

For the approximative solution of the equation Au = f we again consider a Galerkin 
method which cuts off the singular points 0 and 1: 

(A),=	 (27) 

This sequence is inAf. To verify this one has to prove that 

E_ n Ln .1M°(c4 )JE - JG(c4 )J € K(l") 

where .1 is the discrete flip operator sending (xk) into ( x_ k_j), and one has to take into 
account that the algebra TP is invariant under the mapping C JCJ. 

For the next proposition, we set for brevity 

A(s) = 4 1 (s) + a2 (s)b2 (s)g	and	A(s) = a 1 ('s) + a2(s)b2(s) 

B = a3 (0 + 0)b3 (0 + 0)c3 

C = a4 (1 - 0)b4 (1 - 0)c4. 

Proposition 8: The method (27) for the operator (26) is stable if and only if 

(a) the operator A is invertible on L"



Spline Approximation Methods	345 

(b) the operator PT°(A(0+0))P+G(B)+Q is Fredhoim on l, the Toeplitz operator 
PT°(A(0 + 0))P + Q is invertible on 1", and the operator 

X( 1 , ) (aI(0 + 0)1 + a2 (0 + 0)b2 (0 + 0)S,+ + M 0 (B))X(i3O0) 1 + X(-o,I)I 

is invertible on 
(c) the operators T°(A(s)) are invertible for all s E [0. 1] (or, what is the same, the 

functions A(s) are invertible) 
(d) the operator PT0(A(1 —0))P+G(C)+Q is Fredholm on jP, the Toeplitz operator 

PT°(A(1 - 0))P + Q is invertible on l, and the operator 

X(1, 00)(01(1 - 0)1 - a2 (1 - 0)b2 (1 - 0)S 1 + + M0 (C)) XlI) I + X(—c,I)' 

is invertible on L. 

Conditions (a) - (d) correspond to the invertibility of WT(A,II), WT(A1) WT(A,) 
with s E (0, 1), and WT(A3), respectively. The invertibility of WT( A i) for s E \[0, 11 
is obvious since

WT(A -  II+K(IP)I	ifs E li?\[0,1] 
$ ''fh 	ifs=oo 
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