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Spline Approximation Methods
Cutting Off Singularities

S. Roch

Abstract. The topic of this paper is some types of singular behavior of spline approximation
methods for one-dimensional singular integral operators which are caused by discontinuities
in the coefficients or by non-smooth geometries of the underlying curves. These singularities
can be cutted off by a modification of the approximation method which is closely related to
the finite or infinite section method for discrete Toeplitz operators. Using Banach algebra
techniques, one can derive stability criteria for a large variety of modified methods (including
Galerkin, collocation, and qualocation
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i. Introduction

As a model situation, we consider the Galerkin method for solving the singular integral
equation ’

Au = ((a+x+ +a-x-) +(bix+ +b—x—)5m)u =f (1)
where a4 and by are complex numbers, x4 is the characteristic function of the positive
and negative semi-axis, respectively, and Sp is the operator of singular integration,

+oo
(Smu)(t)=;ll¢/:(_s)tds (te R).

—OoC

For the Galerkin method for solving equation (1) we replace (1) by a sequence of ap-
proximation equations

LoAup =L,f (un € Sn) (2)

where S, is a spline space and L, is the associated Galerkin projection. The spline
spaces considered here are supposed to be of a very natural structure, namely, we start
with a mother spline ¢, that is, with a bounded, measurable, and compactly supported
function ¢ satisfying the conditions

Zcp(:r—k)zl for r€ R . (3)
kEZ .
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Z/tp(t+k)mdt-zk3é0 for 2§T. (4)

KEZ

(observe that the sums in (3) and (4) are actually finite by the boundedness of supp ).
Then we set @in(t) := @(nt — k) and define the spline space S, as the smallest closed
subspace of L? = LP(IR) containing all functions g, with k € Z. For example one can
take ¢ = x|o,1], the characteristic function of the interval [0, 1], or ¢ = X[0.1]* -+ *X[0.1]:
the d-fold convolution of (o ;) by itself. Then (3) and (4) are satisfied, and S, is just the .
space of all L?-functions which are polynomials of degree d over each interval [k, k + 1],
and which are (d — 1)-times continuously differentiable on IR.

A basic observation which is usually attributed to de Boor is that the spaces S, C L?
and [P = [P(Z) are isomorphic : If the function > Zkpkn is in Sy, then the coefficient
sequence (z) is in I? and conversely, and, moreover, the mappings

E,: IP— S, (zx) - wakn and E_,: S, P, prkn — (zk)

are continuous and sup,, ||Eg|| |[|E-n|| < 0.

The Galerkin projection Ly, is the operator mapping L? onto S, such that (L, f, pxn)
= (f,pkn) for all f € L? and k € Z. Condition (4) ensures the existence of L,
whereas (3) involves the strong convergence of L, to the identity operator I as n — oo.
The natural question for (2) is whether this method applies to (1), i.e., whether (2) is
uniquely solvable for all n > ng and for all right sides f € LP, and whether the sequence
(4n)n3n, converges to a solution u of equation (1). Since L, converges strongly to
I, the applicability of (2) is equivalent to the stability of the sequence (L.A|s,) (a
sequence (A, ) of operators is stable if A, is invertible for all sufficiently large n, and if
sup, [|A;']] < o).

Let us first consider stability of (L, A|s, ) in the special case of constant coefficients,
that is, a4 = a_ =: a and by = b_ =: b. Clearly, this sequence is stable if and only
if the sequence (E_,L,AE,) of operators on I? is stable. This sequence shows two
peculiarities: the operators E,L,AE, are independent of n (hence, this sequence is
stable if and only if the operator E_,L, AE, is invertible), and the representation of the
operator E_,,L, AE, with respect to the standard basis of I? yields a Toeplitz matrix,

E_,L,AE, = al +bT°(g) (5)

where g is a certain piecewise continuous function on the unit circle T.
If v is sufficiently smooth, then g can be represented as

2 jezsen(y+1/2)[(Fe)(y + 7)1
Yiez (Fo)(y +7)2

where F denotes Fourier transform (see (4]). The operator T°(g) is defined as follows:
Let g» denote the nth Fourier coefficient of g. Then T?(g) -acts on finitely supported
sequences (rx) € IP via T%(g)(zx) = (yx), where yx = Y iez 9x—1x1. Since T%(g) is
invertible if and only if g is invertible (thought of a function in L%°(T')), we have the
following:

g(e*™) =
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The approzimation equations for the Galerkin method (2) for the operator A with
constant coefficients are of Toeplitz structure, and this method s stable if and only if
the function a + bg is snvertible.

Let us now return to the general case of equation (1). The operators E_,L,AE,
are again independent of n, but now

AY

E_wLnAEn = (a4 P +a-Q) +(b+ P +5_Q)T°(9) + K (6)

where P : (z¢) — (...,0,0,29,21,22,...),Q = I — P, and K is a certain compact
perturbation which originates from basis splines @i, having the discontinuity point 0
in the interior of their supports. The appearance of a non-zero perturbation K involves
serious complications: It is by no means easy to determine K explicitely. .Even if K
would be explicitely known, there seems to be no general way to decide invertibility of
the operators (6). And, thirdly, K destroies the nice structure of the approximation
equations (observe that (6) is a block Toeplitz operator if K = 0).

Analogous effects can be observed in other situations: Galerkin methods for Mellin
convolution operators over IRt collocation and qualocation methods for these operators,
Galerkin methods for singular integral operators with piecewise continuous coefficients
over smooth closed curves and for singular integral operators with continuous coefficients
over curves with corners and endpoints, etc. To have an example for the latter case
consider the singular integral operator al + bSg with constant coefficients over the unit
square O. Provide O with equidistant partitions, and let ST and LY stand for the
corresponding spline space and Galerkin projection, respectively.

The spline Galerkin method

L3(al +bSg)un = L3f  (un € S7) - (M

can be studied by localizing over O. For example, at a corner of 0, (7) behaves as the
equation

Li(al +bS, ) un = LEF  (un € SE)

where / is the infinite angle R* U7R*, and 5,{ and Lf are spline spaces and Galerkin
projections related with £. If Z is mapped one-to-one onto the real axis IR by identifying
tIR* with R_, the space Sf goes over into S,, the projection L,{ into L, and the
operator al + b5, into

al + b(x+5mx+ + x-Smrx- +x-INzx4 - x+Ng,er-)1

r

where (J f)(t) = f(—t), and Ng refers to the Hankel operator

W =% [ Lra wern
0

The naturally appearing functions x+ again involve compact perturbations.
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2. Doubly-indiced approximation sequences

Probably, it was Chandler and Graham [2] who first proposed a way to overcome these
difficulties. When studying integral equations of the second kind they realized that the
behavior of the approximation system becomes much better if the spline space S, is
replaced by the modified spline space

Sn,i := closprspan {@in }kez (1k| 2 7).

This space results from the original one by omitting a finite number of basis splines
in a neighbourhood of the "singular point” 0. Pré8dorf and Rathsfeld [5] successfully
applied this approach to collocation and quadrature methods for Mellin operators, and
they pointed put its close relationship to the finite section method for operators in the
Toeplitz algebra. Elschner [3] combined modified spline spaces with Mellin techniques
to study stability and convergence of Galerkin and collocation methods with piecewise
polynomial splines for Mellin convolution equations and Wiener-Hopf equations.

Instead of modifying the spline space S,, we prefer to work in the original space but
with modified approximation sequences. Define operators

Q,‘ R L Ip, (Ik) — ( ey Teju2y T—j~1, 0, ceey 0, Tiy Tig, )
and consider instead of (2) the approximation system
EQiE_oL,AE,Q;E_,u,; = E,QiE_,L,f (uni € Sn). (8)

The operators E,Q;E_,L, are projections into S, again. To force their strong conver-
gence to the identity operator as (n,i) — oo we have to restrict the natural index set
Z* x Z* by choosing a suitable subset T C Z* x Z+ such that i/n - 0asn — oo and
(n.1) € T (otherwise we could fix n and let i go to infinity to obtain E,Q;E_,Ln, — 0).
For example one can take )

T={(n,i) € Z* x Z*| i <n'"* with some fixed §> o}.

Generally, an approximation method (Ani)(n,iyer is called applicable to the equatioh
Au = f if there is an (ng,1p) € T such that the equations

Aniuni = EnQiE—nLnf (uni € Sn) (9)

possess unique solutions un; for all (n,:) > (ng, i) (that meansn > ny and i > 1), if the
sequence (Uni)(n,i)e7 is bounded, and if the sequence (uy(n))nez+ converges in the norm
of L? to a solution u of the equation Au = f for each monotonically increasing sequence
t: Z* — T. The sequence (Ani)(n,ijeT is said to be stable if there exists an (no,10)
such that Ag; is invertible whenever (n,i) > (ng,io) and if sup(",i)z("mo)”A;,-l I < oo.
Let us finally agree to call a bounded sequence (Ani)(n,iyeT strongly convergent to the
operator A if the (common) sequence (Ay(n))nez+ converges strongly to A for each
monotonically increasing sequence ¢t : Z+ — T.
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If A is the model operator (1), then the sequence (E,QiE_,L,AE,Q;E_,) is stable
if and only if the sequence '

(QE-nLnAEnQ) = (Qi((a+ P +a-Q) + (b4 P +b_Q)T*(g) + K)Q:)  (10)

is stable. The stability of this sequence is subject to a general theorem concerning finite
and infinite sections of operators in a Toeplitz algebra (see [1: Section 7.68), (7] and [9]
and Theorem 3 below; for references on the history of the topic see [1]). What results
is that (10) is stable if and only if

" 1. the operator (a4 P +a-Q) + (b4+ P + b_Q)T(g) is Fredholm
2. the operators QT%(a— + b_g)Q + P and PT°(ay + by g)P + Q are invertible

3. the point 0 lies outside a certain curved triangle (which is a common straight
triangle in case p = 2) with vertices 1,(a~ +b_)/(a— —b-) and (a4 + b4)/(ay — by ).

This result indeed solves our problems: all conditions are verifiable, and the struc-
ture of the approximation system becomes sufficiently nice since ||Q:KQ;|| — 0 as
1 — o0 and, thus, the unpleasent operator K can be neglected.

3. Banach algebras of approximation sequences

Stability problems can be reformulated into invertibility problems in Banach algebras
in the following way: Let F stand for the set of all bounded sequences (A, ) of operators
An : Sn — Sp such that ||(An)|| := sup, ||[AnLall < co. Provided with elementwise
operations, F becomes a Banach algebra, and the subset K of F containing all sequences
(Kn) with |Ky|| — 0 forms a closed two-sided ideal in F. It is elementary to show that
a sequence (A,) € F is stable if and only if the coset (4,) 4+ K is invertible in the
quotient algebra F/K.

For doubly-indiced sequences one analogously defines an algebra F7 consisting of
sequences (An;)(n,i)eT, and the ideal K has to be replaced by the ideal X7 of all se-
quences (Kn;) such that, given € > 0, there is an (ng,i9) € T with ||KniL,| < €
whenever (n,) > (no,zo) The latter will be abbreviated henceforth to || KniLnfl — 0

as (n,1) — oo.

In [4], a subalgebra of F was introduced which contains a large variety of approxi-
mation sequences for singular integral operators (but without cutting-off factors) and
a stability criterion for these sequences had been derived. Similarly, we are going to
define a subalgebra of F7 which is, on the one hand, large enough to contain a bulk
of approximation sequences (mcludmg sequences w:th cutting-off factors) and, on the
other hand, small enough to be effectively treatable.

For the readers convenience, we start with recalling and specifying to the one-dimen-
sional context some definitions and results of [4]. Given an integer n we let V,, denote
the discrete shift operator V,, : IP — [P (z4) — (zk-n), and for each real number z we let
{z} stand for the smallest integer which is not less than z. Further we fix a real number
r. Now define A, as the smallest closed subalgebra of F which encloses all sequences
of the form (E,T%(a)E_,) where a is an arbitrary piecewise continuous function which
possesses a finite total variation and which is continuous on T\ {1}, and all sequences
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(EaVitn+r) PV_(tn4r} E-n)nez+ With t running through the reals. One can show for
example that Ay contains the Galerkin approximation sequences with trial space S, =
S¢ and test space S¥ both for singular integral operators al + bSg (where a and b are
piecewise continuous on the one-point compactification Rof R by oo and continuous
on R \ Z) as for Mellin convolutions, whereas A_, contains e-collocation sequences for
these operators (even with general piecewise continuous coefficients), and the algebra
Ap is also suitable to investigate certain qualocation and quadrature methods.

In the following proposition we introduce certain homomorphisms W and W, as-
sociating with each sequence (A,) a linear bounded operator. For brevity, we simply
denote these operators by W(A,) and W,(A,) in place of the - more correct - nota-
tions W((A,)) and W,((A,)), respectively. Let further L(X) stand for the algebra of
all bounded linear operators and K(X) for the ideal of all compact linear operators on
the Banach space X.

Proposition 1: Let (A,) € A,. Then the following is true:

(a) There is an operator W(A,) € L(LP) such that the sequence (Ay) converges
strongly to W(A,) as n — oo, and the mapping W : A, — L(LP) is a continuous
algebra homomorphism.

(b) For each s € IR, there is an operator W,(A,) € L(IP) such that the sequence
(V_ysn+r} E—nAnEnVientyry) converges strongly to W,(A,) as n — oo, and the mapping
W, : Ar — L(IP) is a continuous algebra homomorphism.

(c) The cosets E_, A, Eq+ K(IP) are independent of n, and if Woo(A,) denotes one
of them, then the mapping Wo, : A, — L(IP)/K(IP) is a continuous algebra homomor-
phism. .

Theorem 1 (see [4]): A sequence (A,) € A, is stable if and only if the operators
W(A,) and W,(A,) (s € R) as well as the coset Woo(A,) are invertible.

Our result concerning cutting-off methods will be of the same form: we are going to
construct a subalgebra AT of F7 and homomorphisms Wy and WTI with s € R such
that the analogue of Theorem 1 holds. Given r € R we let AT stand for the smallest
closed subalgebra of F7 which contains

(1) all (constant with respect to i) sequences (An )(n,iyeT With (An)nez+ € A, (that
is, A, can be viewed as a subalgebra of A?7 when identifying the sequences (A, )necz+

and (An)(n5)eT)- o

(ll) all sequences (E V{yn+r}QiV—{yn+r}E—n)(n )HET with y € R.

The following proposition gives some hint how to lnt.roduce the de51red homomor-
phisms.

Proposition 2: Let (A,;) € AT. Then the following is true:

(a) The strong limits W((Ani)nez+) ezist for each fized i, and they are independent
of 1. . .
(b) The strong limits W,((Ani)nez+) ezist for each fized i and s € R.
(c) The cosets E_, AniE, + K(IP) are independent of (n,i) €T.

Proof: All occurring mappings are continuous algebra homomorphisms. So it suf-
fices to verify the assertions for the sequences in (i) and (ii) in place of (An;). If
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(Ani) = (An)(n,iyer With (An)pez+ € A,, then Proposition 1 yields immediately all
what we want, and for sequences of the form (ii) the assertion is easily verified ®

The preceding proposition shows that it is correct to define the homomorphism
Wr: AT — L(LP) by

Wr((Ani)(n,iyer) := W((Ani)nez+)  for somei (11)
and the homomorphism W2 : AT — L(IP)/K(IP) by
W;((Anf)(n‘,‘)eT) = E_pAniE, + K(IP) for some (n, 7). (12)

The definition of WT for s € R is less obvious: we let F(IP) refer to the algebra of all
bounded sequences (A, ) with A, € L(IP) provided with elementwise operations and the
supremum norm. The subset G(I?) of F(IP) consisting of all sequences (K,,) of compact
operators K, with ||K,|| — 0 forms a closed two-sided ideal in F(I?). Now define

W/ ((Ani)niyer) := (Wa((Ani)nez+))icz+ + G(P). (13)

One can straightforwardly check that WY is a continuous algebra homomorphism map-
ping AT into F(IP)/G(IP). :

Here is the main result on stability of sequences with cutting-off factors.

Theorem 2: A sequence (An;) € AT is stable if and only if

(a) the operator Wr(An:) is invertible

(b) the cosets WI(An;) are invertible for all s € R

(c) the coset WL (An;) is invertible. ‘

Condition (b) is equivalent to the stability of the sequence (W,((Ani)nez+))icz+-
A criterion for this stability will be quoted in Theorem 3 below.

Of course, Theorem 1 can be rediscovered from Theorem 2 since, for (An;) =
(An)(n,er With (An)nez+ € Ar,

Wr(Ani) = W(An), W] (An) = (Wy(An))iezs +G(P), WI(Ani) = Weo(An),

and since a constant sequence is stable if and only if its generating operator is invertible.

Proof of Theorem 2: The proof proceeds analogously as those of Theorem 1 in
[4]. We only mark the essential steps.

Step 1. Theset GT := ATNKT is a closed two-sided ideal of AT and if (Gni) € 67,
then
Wr(Gai) =0, W]J(Gni)=0 (s€R), WZI(Gn)=0. (14)

The identities (14) are immediate consequences of the definition of the norm convergence
of doubly-indiced sequences.

Steﬁ 2. The collection J7 of all sequences of the form (L,K]|s, Yn,iyer + (Gni)
with K € K(LP) and (Gni) € GT belongs to AT and forms a closed two-sided ideal of
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this algebra. Indeed, for the inclusion J7 C A7 it would clearly suffice to show that
(LnK]|s,) is in A,. But now we cannot refer to [4] since these sequences were included
into A, in the multidimensional context by definition. In the one-dimensional setting
considered here one can actually prove the desired inclusion in the following way:

e Show that (L.fI|s,) € A, whenever f is continuous on JR. This can be done by
approximating f by a piecewise constant function which, on its hand, is constituted
by shifted characteristic functions x4. Using the inclusion (E,PE_,) € A, one
easily derives that the sequence (L,x+1|s,) is in A,.

o Show that (L,SRls,) € A,. For this, it remains to show that the function g
introduced in Section 1 is piecewise continuous on T and continuous on T'\ {1}, but
this is well known (see [6: 10.4 and 10.8}).

e Show that (L,(SrfI — me)|s ) € A,. This is a simple consequence of the com-
mutator property

HLnfI— fL,|| =0 as n—o o0 . (15)
(sec [4: Theorem 3/(a)]). Indeed, (15) entails that

(Laf115,)(LuSgls.) = (LaSwls, (LafIls,) = (La(fSk - SrfD)ls,) € K.

o The operators Spfl — fSg are compact, and each compact operator on L? can be
approximated by sums of products of operators of this form.

The proof that J7T is everi an ideal follows easily: if (An;) € AT, then
(Ani)(LnKls, + Gni) = (LaW(An)K s, + AniGni + (AniLn — LaW(4ni))K]s, )

The first term is in J7 since W(A,;)K is compact, and the other two terms are even
in G7. Thus, J7 is a left ideal, and analogously one verifies the right ideal property.

Step 8. Denote the canonical homomorphism from A7 onto the quotient algebra
AT/JT by ®. The analogue of Proposition 15/(b) in [4] is the following: A coset
(Ani) + 6T € AT/GT is invertible in AT /GT if and only if the operator W(Ayn;) is
invertible in L(LP) and if the coset ®(A,;) is invertible in .AZ‘/JT (observe that, by
(14), the operator W(A,;) actually depends on the coset (Ap;) + G7 only). The proof
goes as in [1: 7.9 - 7.11].

Step 4. If f € C(R), then the coset ®((Ln fI|sn)(n.iyeT) belongs to the center of
AT/JT. For a proof it remains to show that

(LafI|s,)(Ani) — (Ani)(LnfIls,) € TT

for all sequences of the form (i) and (ii). Concerning the first ones, see Proposition 17 in
[4]), and for (ii) one has to take into account that the operators A,; are of diagonal form
and that the operators E_, L, fE,, are also of diagonal form up to certain perturbations
tending to zero in the operator norm. The simple proof of the latter assertion is based
on the commutator property (Theorem 3/(a) of [4]) and can be implicitely found in the
proof of Proposition 17 of [4].
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Step 5. Taking into account the inclusion

(Lnflls.)(Lnglls,) — (Lafglls,) € G,

which is involved by the commutator property (15) again, it is not hard to derive that
the set

B:= {#(Laflls,) with feC(R))

is a commutative Banach algebra belonging to the center of AT/ J7T, that the maximal
ideal space of B is homeomorphic to IR, and that the maximal ideal associated with
sERis

{(I)(L,.fllsn) with f € C(IR) and f(s):O}. (16)

Let JT denote the smallest closed two-sided ideal of AT/JT containing the maximal
ideal (16), write AT, for the quotient algebra (AT/JT)/JT, and let &, refer to the
canonical homomorphism from A7 onto A;’:,. Then Allan’s local principle (compare [4]
or [1: 1.34]) gives the following:

The coset ®( Ay;) is invertible in AT/ J7T if and only if all cosets ®,(An) withs € R

are snvertible in AZ:,.

Step 6. The mapping ®,(An;) — WT(A,;) is correctly defined, and the image of
AT/JT under this mapping is inverse closed in F(I?)/G(IP). Indeed, we have already
remarked that WT(Gni) = 0 whenever (G,i) € G, and from [4: Proposition 18] we
conclude that W ((L,K]|s, )(n,iyer) = 0 for all compact K. Thus, WT(A,;) depends
on ®(Apn;) only. Furthermore, [4: Proposition 18] entails that

_J(f(s))s,) + G(IP) if s # o0
WT(LafI |s,)) = {f(oo) lss) £607) s £ oo

whence easily follows that W?(A,..—) depends on ®,(A,;) only. This shows the correct-
ness of the definitions, and for characterizing the images of the mappings WT, we let
TP denote the smallest closed subalgebra of L(IP) which contains the operators P and
T%(a) with @ running again through the piecewise continuous functions with finite total
variation on T which are continuous on T \ {1}, and we let F(T?) refer to the smallest
closed subalgebra of F(I?) containing all constant sequences (4) with A € TP as well
as the sequence (Qn). It is well known that the algebra TP encloses the ideal K(IP)
and that F(7?) contains G(I?), and that the algebras 77/ K(I?) and' F(T?)/G(IP) are
inverse closed in L(IP)/K(I?) and F(IP)/G(IP), respectively. Further it is immediate
that ~
W, (EnT*(@)E-n)(n,er) = (T°(a))icz+ + G(IP)

WS (EaVientr} PV-(sntr) E=n)nier) = (P)icz+ + G(IP)
W (EaVientr)QiV=(ontr) E—n)mirer) = (Qi)iez+ + G(IP)

whence follows that the image of AT under W is just F(7?)/G(I?) in case s # oo and,
similarly, the image of AT under WZ is T?/K(I?). This gives our claim. :
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Step 7. The mappings ,
W) F(TP)/G(P) — AL, (A) + G(P) = By(EnVisnir)AiVo(ansnyEn) - (17)
with s # oo and
WL . TP/K(IP) = A, A+ K(IP) — ®u(E.AE_,) (18)
are correctly defined, and
 ®,(Ani) = WI(WT(An))  forall (An) € AT (19)

Let us verify the correctness of (17) in case s = 0 for example. What we have to show is
that (E,V(;}GiV_(;} E_p) isin GT whenever (G;) € G(IP). For, we can suppose without

loss that
_J K ifi=1

Gi= { 0 if 1 £ 19
where K, is the rank one operator having a 1 at the klth place of its matrix representa-
tion whereas the other entries are zero (this is justified since each compact operator on
I? can be uniformly approximated by finite sums of operators of the form Kj;). Let us
further agree to abbreviate the sequence (E,V{;) BV_(;)E_,) by [B] for the moment.
Now we get the desired assertion as follows: The sequences [@Q;] and [A] with 4 € TP
belong to AT by definition; hence the sequence

(Vi IPUQUIVio—s] = Ve1—ia[PNQUIViom ] Kkl
= [(Vk—ioPQiV-’o—k - Vk+1—ioPQ.'V.'o-k-1)Ku]
belongs to A7, too. But, as one easily checks,
(Vk-ioPQiVio—k - Vk+l—-’oPQiVio—k—l)Kkl =G,

which gives the correctness of (17) for s = 0. The proof for s # 0 is similar. For the
correctness of (18), it remains to verify that ®,(E,KE_,) = 0 whenever K € K(IP).
We again suppose without loss that K = K. If f is continuous on IR and f(co0) = 1,
then it is evident that fE, Ky E_, = 0 whenever the support of f is sufficiently small.
This in combination with the commutator relation gives the desired correctness.

Finally, the mappings WT with s € IR are continuous algebra homomorphisms, and
so we verify (19) only for the generating sequences of the form (i) or (ii). For (i) we
can refer to [4: Prop. 20], and for Api = EqV{yn4r}QiV_{yn+r}E—n the verification is
straightforward. Indeed, let for example s = 0. Then

N J(@)+G(P) ify=0
W (4ns) = {(I)+g(v’) ify#£0 °

Thus, in case y = 0, (19) follows at once, and in case y # 0, (19) reduces to

Po(EnVign+r} QiV-(yn+r} E-n) = ®o(I|s,). ‘ (20)



Spline Approximation Methods 339

This is evidently true if the generating mother spline ¢ is the function X[0,1]- Indeed,
in this situation one has

En V{yn+r)QiV—{yn+r} E—n = LnXR\MIIS,.

with M = [(=i + {yn + r})/n,(: = 1 + {yn + r})/n], and for (n,i) € T and n large
enough, the functions x g\m and 1 coincide locally in a neighborhood of 0. The case
of general @ can be traced back to this case again by invoking the commutator relation
(compare [4]).

As an immediate consequence of (19) we conclude that @,(An;) is invertible in A7,
if and only if WTI(A,;) is invertible, and summarizing Steps 3, 5 and 7 we obtain the
following:

The coset (Ani) +G7 is invertible in AT /GT if and only if Wr(An;) and WT(An;)
are invertible for all s € RR.

Step 8. We claim that the stability of (An;) € AT involves the invertibility of
Wr(A4ni) and WT(A,;) for all s € IR. Suppose

sup  [JAZ][l < oo. - (21)
(,4)2(n0,40)

Then the sequences (Ani)nez+ are stable for all : > 1, and these sequences belong
to A, (recall that Q; = I + compact). From [4] we conclude that W,((A4ni)nez+) and
W((Ani)nez+) are invertible and, thus, Proposition 2 yields our claim for Wr and W..
Concerning WT we emphasize that (21) gives moreover

sup IWs((Anidnez+) 'l < o

219

whence the stability of (W,((Ani)nez+))icz+ follows.

Now we can finish the proof of Theorem 2: If (A,;) is stable, then Wr(A,;) and
WT(A,;) are invertible. Since the images of W are inverse closed, this implies invert-
ibility of WT(A,;) in F(T?)/G(IP) and T?/K(IP) if s # oo and s = oo, respectively.
Then, by (19), ®,(An;) is invertible and, as a consequence of Allan’s local principle,
®(An;) is invertible in AT/J7T. Now, by Step 3, the coset (An;) + G7 is invertible in
AT /GT but this of course implies invertibility of (4ni) + K7 in FT/KT which, finally,
involves stability of (Ani) again @

Remark. Theorems 1 and 2 can be generalized to larger algebras, say Aq . and
Ag,,, which contain A, and AT as their subalgebras. Thereby, Q stands for any fixed
closed subset of the unit circle, and the algebra Ag , originates from A, by adding all
sequences of the form (E,T%(a)E_,),cz+ where a is piecewise continuous on T, con-
tinuous on T\ Q, and has finite total variation. The algebra AJ, , is defined analogously.
Let t € T and write Y; for the operator mapping I? onto itself via (zx) — (zx t~*). One
can show that, for all (4,) € Aq, and t € Q, there is an operator W*(A4,) on L? such
that

En)fz_lE—n{annnE—nLn — Wt(An)
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strongly as n — 00, and the mapping W* : Aq, — L(LP) is a continuous algebra
homomorphism. Clearly, W!(A,) = W(A,) for all (An) € A,. Let now (An;) € Af-;,,.
Then the strong limits W*((Ani)nez+) exist for each i, and they are independent of i.
We denote one of them by Wi(Ay;). The generalization of Theorem 2 reads as follows:

A sequence (Api) € AE,, 18 stable if and only if Wh(A,;) and WT (A,;) are invertible
for alit € Q and s € R.
One example for an approximation sequence which belongs to Af1,-1},0 (but not

to Ao = A{1},0) is the modified quadrature method considered in [5: Equation 0(10)]
(which is actually equivalent to a trigonometric collocation method).

4. Finite sections of Toeplitz operators

In this section we are going to derive a stability criterion for sequences in F (T?) (resp.
an invertibility criterion in F(7?)/G(I?)) which is needed to examine condition (b) in
Theorem 2. The basic observation is the following one.

Proposition 3: If (A,) € F(TP), then (EnAnE_,) € A,.

Proof: It is obviously sufficient to show that the sequences (EnAE_,)with A€ TP
and (E,QnE_,) belong to Ay. For the first one, this is immediate from the definition;
for the second one we find

(EnQnE_p) = (EaVonPVoE_,) — (EoVaPV_,E_,)

which is alsoin 4 B

Since the sequences (A,) and (E, A, E_,) are simultaneously stable or not, Theorem
1 yields in this situation: The sequence (An) is stable if and only if W(E,AnE_,) and
W,(EnAnE_,) are invertible for all s € IR. A detailed analysis shows that most of
these conditions are redundant.

Theorem 3: Let (A,) € F(TP). The sequence (An) is stable if and only if
W(E,AnE_,;) and W,(E, A, E_,)) are invertible for s € {—1,0,1,00}.

Proof: One has

o if s € (—00,0)
P ifs=0
Wo(EnPE-n) = I (if s € (0,00)
P+ K(iIP) if s =00
I if s € (—o0,—1)U(1,00)
Q ifs=-1
W(E,Q.E_.)=¢ O ifs€(-1,1)
P fs=1
I+ K(I?) if s=o00
T%(a) if 8 € (—00, 00)

W,(E,,To(a)E_,.) = {T"(a) + K(IP) ifs=o00
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(compare [4] and recall that Q = I — P). Taking these identities into account one
easily gets W (E,AoE_,)) = Wy (E,A,E_,) whenever s and s' belong to the same of
the intervals (—o0,~1), (—1,0), (0,1) and (1,00). Further, the upper-semicontinuity
of the mapping s — ||®,(E,AnE-,)|| (see, e.g., [I: Theorem 1.34/(b)]) involves that,
if ®,(EnAnE_,) is invertible for some s, then ®,(E,A,E_,) is invertible for all s'
in a certain neighbourhood of s. Finally, we have already seen that ®,(E,A,E_,)
is invertible if and only if W,(E,A,E_,) is invertible. Combining these things we
conclude that invertibility of W,(E,A,E_,) for s € {~1,0,1,00} implies invertibility
of Wy(EnAnE_y) forallse R ®

Theorem 3 can be generalized to sequences involving operators T%(a) with a being
piecewise continuous on {2 and continuous on T \ . One only has to include into its
formulation the invertibility of all operators W*(E, A, E_,) with t € Q. Furthermore,
Proposition 3 remains valid with Ay replaced by A, with arbitrary r.

5. Examples

We are going to illustrate the preceding theorems by a few examples.

Example 1. Let the functions a and b be piecewise continuous on IR and continuous
on R\ {0,1}, and let K be a compact operator. Then the Galerkin approximation
sequence

(An) == (Lu(al +bSr + K)ls,) (22)

for the smgula.r integral operator A = al +bSr+ K belongs to the algebra A, (see [4]),
and Theorem 1 yields the following

Proposition 4: The sequence (A,) given by (22) is stable if and only if
(a) the operator A is invertible on LP

(b) the operators a(s) + b(s)T°(g) are invertible on IP for s € R\ {0,1}
(c) the operators

(a(s +0)P + a(s — 0)Q) + (b(s + 0)P + ¥s — 0)Q)T°(g9) + K,

(with certain compact operators K,) are invertible on IP for s € {0,1}
(d) the operator .

(a(+00)P + a(~00)Q) + (b(+00) P + b(—c0)Q)T*(9)
1s Fredholm on IP.

In this form, the proposition holds even for matrix-valued coefficients. -Conditions
(b) and (d) are effective: the operator in (b) is invertible if and only if the function
a(s) + b(s)g is invertible, and the Fredholmness of the operator in (d) is subject to the
Gohberg-Krupnik symbol calculus for singular integral operators. On the other hand
there seems to be no evident way to verify condition (c). This suggests to modify (22)
by introducing cutting-off factors at 0 and 1. The resulting approximation sequence

(4n) = (EnQiVaQiV-nE-nAnEnQiVaQiVonE-nls, ) (23)
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belongs to Al since

(Er;innQiV—nE—n) = (EnQiE—n)(Env{n}in—(n}E—n)

and Theorem 2 states that (23) is stable if and only if conditions (a), (b) and (d) hold
and if the condition

(c)’ the sequences
(@:((ats + 0P + als ~0)Q) + (b(s + )P + (s ~0)Q)T°(9) + K. )Q:) __ .
ﬁre stable for s =0 and 5=1

holds. This stability can be examined by means of Theorem 3, and summarizing these
results we finally get the following

Proposition 5: The sequence (23) is stable if and only if conditions (a), (b) and
(d) of Proposition 4 are satisfied and if, for s=0 and s=1,

(c)” the operators.
(a(s + 0)P + a(s — 0)Q) + (b(s + 0)P + b(s — 0)Q)T°(g)
are Fredholm on [P, the Toeplitz operators |
PT%(a(s —0)+b(s —0)§)P+Q and PT(a(s +0)+ b(s + 0)g)P +Q

(with §(z) = g(1/z)) are invertible on IP, and the singular integral operators

X(-1) + XR\{-1.1) ((a(s +0)xm+ +a(s = O)xgr-)!
+ (bs + 0)xer + bls = Oxm-)Sw) xmy-1]

are invertible on LP.

Now condition (c)” is also verifiable (at least in scalar case): the Fredholmness of the
first operator is a matter of symbol calculus again and, concerning the other operators,
recall that scalar Toeplitz operators and singular integral operators are invertible if (and
only if) they are Fredholm and if their index is zero (Coburn’s theorem). So it remains
to employ the well known index formulas for these operators.

Example 2. Here we consider the same approximation method as in Example 1 for
the operator

A = xpo1(al + bSge £ M°(c))xpo)] + X myjour ]

where a émd b are’ complex numbers, M°(c) is the Melliu_'convolufion qpera.-tor

| (M°(c)uikg) - 7k (%) o te r)

0
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and c is just the Mellin transform of the kernel function k. Under the additional as-
sumption ¢ = x|p,) it is shown in (5] and (8] that

E_nL.M°(c)E, =G(c) + K
where G(c) has matrix representation (k(ﬁ%)m#ﬂ,l);’fm=l and K is compact. Moreover,
G(c) belongs to the Toeplitz algebra 77, and the Gohberg-Krupnik symbol of G(c) is
given on T x IR (with IR referring to the compactification of IR by the two points +o00
and —oo) by

c(z) ift=1

COUBE S
In particular, this involves that (L,M°(c)|s.) € Ao- These results remain valid for
arbitrary generating functions . : :

The common Galerkin method (L, A|s, ) again possesses two singular points, namely
0 and 1, and so we modify this method by introducing cutting-off factors as follows:

(Ani) = (E,,Q.-V,.Q;V_,.E_,.L,,AE,,QiV,,QiV_,.E_,.). (24)

Proposition 6: The sequence (24) is stable if and only if

(a) the operator A is snvertible on LP

(b) the operator PT%(a + bg)P + G(c) + Q is F‘redholm on I, the Toeplitz operator
PT®(a + bg)P + Q is invertible on I?, and the singular mtegral operator

X(1,00)(a] + bSR+ + MO(C))X{l,oo)I + X(—Oéyl] _
18 mverttble on L?

(¢) the Toeplitz aperator PT%(a + b3)P + Q is invertible on IP, and the smgular
integral operator

_ X (=00, -111 + BX(=00,-1)S(=o0,-1] + X[-1,00 ]
1s 1nvertible on LP. ‘ ) ,

Herein, conditions (a), (b) and (c) correspond to the invertibility of the operators
Wr(An;), W& (An;) and WT(Apy;), respectively. The other homomorphisms figuring in
Theorem 2 are not relevant here since

i {1 if s € IR\ [0,1]
W] (Ani) = { PT%(a+bg)P +Q ifs€(0,1)
: : I+ K(IP) if s =00
and so their 1nvert1b111ty is either evident or a consequence of condltlon (b) in this
proposition.
The case b = 0, i.e. the pure Mellin operator, is of particular interest. In this
setting, the conditions in Proposition 6 reduce’to the following ones: !
(a)’ the Mellin operator A = X[o.l](GI.*' M°(c))x[0,,]I+xR\[o,,]I is invertible on L?
(b)’ the operator aP + G(c) + Q is Fredholm on IP, and the operator

X(1.00) (@I + M°(€))x(1,00) T + X(=00,1)]
1s invertible on LP '

whereas condition (c) is already implied by (a). Examining conditions (a)” and (b)’ via
symbol calculus we finally get
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Proposition 7: Let A = xpo)(el + M°(c))x[0.,]f+ Xm\jo,1)L. Then sequence (24)
15 stable 3f and only if

(a) the function a + c does not vanish on IR

(b) the winding number of this function with respect to the origin 13 equal to 0.

It is rather interesting to observe that the conditions in this proposition are com-
pletely independent of the choice of the generating mother spline ¢ (whereas the function
g in Proposition 6 depends heavily on ¢). Thus, if one possible spline Galerkin method

with cutting-off applies to the Mellin operator in condition (a) of Proposition 7, then
all of these methods apply!

Example 3. As a last application we consider the operator

_ 1 u(s)ds 1 u(s)ds
() =)+ — [HI2 4 [ oy (a5
0 0

with two fixed singularities at 0 zAmAd 1 and, more generally, operators of the form
A=ail +azSRrbyI + azM°(c3)bs ] + agUy JM®(cq)JU_ by I (26)

where Uy, are the shift operators (U4 f)(t) = f(t £ 1) and J is the flip operator
(Jf)t) = f(—t). Further we suppose that a,(t) = 1 for t € R\ [0,1] and that a;(t) =
bj(t) = 0 whenever t € R\ [0,1] and j > 1. The operator (25) actually results from
(26) by choosing @) = l,a3 = 0,a3 = a4 = by = by = X[o,1], and €3 = ¢4 = n with
n(z) = 1/sinhn(z +¢/p). )

For the approximative solution of the equation Au = f we again consider a Galerkin
method which cuts off the singular points 0 and 1:

(4n) = (EaQiVaQiVonEonLnAEaQiVaQiVinE ). (27)
This sequence is in AJ. To verify this one has to prove that
E_yLadM°(cq)JEqn — JG(ca)J € K(IP)

where J is the discrete flip o‘pverator sending (zx ) into (z_k—) ), and one has to take into
account that the algebra 77 is invariant under the mapping C — JCJ.
For the next proposition, we set for brevity

A(s) = ay(s) + az(s)by(s)g and fi(s) = a1(3)+a2(s)b2(s)§
B = (13(0 + 0)b3(0 + 0)03
C=a4(l —O)bq(l—O)C.;. )
Proposition 8: The method (27) for the operator (26) is stable if and only if

(a) the operator A is invertible on LP
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(b) the operator PT°(A(0+0))P+G(B)+Q is Fredholm on P, the Toeplitz operator
PT°(A(0 + 0))P + Q is invertible on IP, and the operator

X(1,00) (al(o + 0)1 + a2(0 + 0)b2(0 + 0)Sr+ + MO(B)) X(1,000d + X(=00,}

1s invertsble on LP

(c) the operators T°(A(s)) are invertible for all s € [0.1] (or, what is the same, the
functions A(s) are invertible)

(dz the operator PTO(fi(l —0))P+G(C)+Q is Fredholm on IP, the Toeplitz operator
PT°(A(1 — 0))P + Q is invertible on IP, and the operator

Xit,e00 (@11 = 0)1 = az(1 = 0)ba(1 = 0)S s + M(C)) X001 ] + X(-co)]
18 inverttble on LP.

Conditions (a) - (d) correspond to the invertibility of Wy (Ap;), W'OT(A,,.-), Wf(A,,,-)
with s € (0,1), and W' (A,;), respectively. The invertibility of WX (A,;) for s € R\[0, 1]
is obvious since ; \[0.1]

T NI ifse R\ 0,1
e (A"')‘{HK(IP) if s = oo :
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