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On the Oscillatory Behaviour of Solutions

of 

Second Order Nonlinear Difference Equations 
E. Thandapani and S. Pandian 

Abstract. By using simple discrete inqualities sufficient conditions are provided for the so-
lution {y,j of a difference equation of the form (-Ay) + qa+if(y+i) = r (n € 
No; {a}, {q.}, {r} C JR; f : JR —+ JR) to be oscillatory or to satisfy lim inf_.00 l y.I = 0. 
Also two other results are established for all solutions of this equation to be oscillatory when 
rn = 0 for all n E iN0. 
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1. Introduction 

The problem of oscillation and non-oscillation of solutions of difference equations has 
received a great amount of attention in the last few years (see, e.g., [1 - 6, 9,11 - 15, 17 - 
20, 22 - 31, 33 - 48, 51) and the references cited therein). It is interesting to study second 
order non-linear difference equations because they are discrete analogues of differential 
equations having physical applications as evidenced, i.e., by [7, 32, 49, 501. 

In [3] Szmanda considered the difference equation 

L(aLt,) + q,f(yn) = 0	 (E1) 

(n € 1N0 ; {a}, {y.}, {qn} C JR; f : JR — 11?) where I is a continuous function such 
that uf(u) > 0 for u 0 0 and the sequence {q,,} takes positive as well as negative , values 
for sufficiently large n. He obtained the following	 . 

Theorem A: Let (a) be a non-decreasing sequence of positive reaLs and 

n—i 

limi>s(iq+qfl=oo 
n^oo an 

a=no 
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where i > 0,
= max{q,0}	and	q = min{q,0}. 

Then every bounded solution {y,,) of equation (E1 ) is either oscillatory or has the prop-
erty urn in	= 0. 

Hooker and Patula [13] considered the difference equation 

L. 2 y_1 + qny = 0
	

(E2)


(n € No; {q,,} C R; -y € 1R) and proved the following 
Theorem B: Let {qn} C in be a positive sequence such that q > 0 for n N (1 < 

N € N) and let y be a quotient of positive integers. Then the difference equation (E2) 
is oscillatory if and only if 

00	 00 
>Jnqn =oo incase 7>1	and	>nqn=oo incase 0<7<1. 

Kulenovic and Budincevic [14] considered the difference equation 

L(aiy) + q if(y + i) = 0	 (E3) 

(n € No; {an },{qn } C JR;f : 1R -, iR) and they generalized some of the results of 
Hooker and Patula [13]. 

In all the above results, the authors obtained conditions for the oscillation of all 
solutions by assuming some sign condition on the sequence {qn } and only for the oscil-
lation of bounded solutions no sign condition on that sequence is assumed. For details 
one can refer to the recent monograph by Agarwal [1]. 

Here we consider the second order difference equation 

L(aAy) + q +if(y +) =
	

(E) 

(n € No; {a}, {qn} C .11?; F: JR - in) where the sequence {qn} is allowed to change 
signs and we give sufficient conditions for any solution {y,,) of equation (E) to be 
either csdllatory or to satisfy the condition IyI = 0. Two other results give 
sufficient conditions for all solutions of equation (E) to be oscillatory in the case when 
r. = 0 for all n. The results presented here differ in several aspects from those of other 
authors due firstly to the fact that the sequence {qn} can change signs and secondly 
to the fact that our results will cover also unbounded solutions. Examples illustrating 
some of our results are also inserted. The results obtained here are motivated from 
those of [8] and [16]. For general background on difference equations see [1, 10, 21].



On the Oscillatory Behaviour of Solutions	349 

2. Some basic lemmas 
Consider the difference equation 

6(a. Ay.) + qntf(y1) = rn	 (1) 
(n E iWo; {a}, {qn},{rn } C I?; f : 11? - JR) where an > 0 for all n E iW0 . By a solution 
of equation (1) we mean a non-trivial sequence {y,,} C JR satisfying (1) for all n E Wa. 
A solution {yn} of equation (1) is said to be oscillatori,, if it is neither essentially positive 
nor essentially negative and it is said to be non-oscillatory otherwise. 

The following conditions will be utilized as they are needed: 

1/a=oo	 (2) 

	

uf(u)>O	for all uO	 (3) 
1(u) - 1(v) = g(u, v)(u - v) for u, v 54 0 (g a non-negative function)	(4) 

I rnI< oo.	 (5) 

We let
Z0={no,no+1,...,a} 

where a, no E No are such that no < a or a = oo. In the last case Z'0 is denoted by 
Z, 0 . For convenience we assume empty sums to be zero and empty products to be one. 
Also, to simplify notation we let w, = an Ly,, for any non-oscillatory solution {yn } of 
equation (1). 

In this section we present two lemmas which are interesting in their own right and 
which will be used in the proofs of our main results given in Section 3. 

Lemma 1: Let the function 

K = K(n,s,y) : Zn o X Zn0 X Jfl+ 
_, JR 

be such that, for fixed n and 3, the function K(n,s,.) is non-decreasing. Let {P} C JR 
be a given sequence and {y,}, {x} be sequences defined on n E Z,,0 and satisfying, for 
all nE Zn,,, 

y ^! F,, + E K(n,s,y,)	and	Z n = F,, + E K(n,s,x,).	(6) 

Then x,, y,, for all n E Z,,0. 
Proof: When n = no, the result is obvious. Suppose there exists an integer t E Z,,0 

such that
Z+i > Y*+i	and	z, <y, for all 3 t. 

Then
n—i 

x	— Yi+i	>(K(t+1,3,x.)_K(t+1,s,y8)) 50 
a= n0 

which is a contradiction I
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Remark: The importance of the lemma is that once the discrete inequality in (6) 
i8 known, then a lower bound (x.) can be found by replacing the inequality by an 
equation and solving the latter. 

The following lemma is a discrete analogue of [8: Lemma 2]. 
Lemma 2: Suppose that conditions (3) and (4) hold. Let {y,,} be a positive (nega-

tive) solution of difference equation (1) for n E Z < 0 , for some positive integer N 1 such 
that no N1 <a < oo. Let there exist N E Z 1 and a positive constant m such that 

	

wN1 
+ 

n-i	N—i wg(y.,y,^i) _	 r, )+	>m	(7) (+ - 
f(a+i)	a=N, a.f(y.)f(y+) f(yN,) '=N, 

for all ii E Z. Then

	

W" <-rnf(YN)	or	W. -ml (yN) 
for all n E Z. 

Proof: Since
+ qn+i = 

	

f(yn+i)	f(yn+1)' 
we have

n-i 
_____	WN1	_______  ____	_____	r, " 

+	
1)
W2 g(y,,y8 

f(y ) = f(y,) 
+	(qa+i - f(

y +)) 	aaf(y.)f(ya+i)
a=N, 
for all n E Z 1 . Thus from (7) we see that

wg(y3,y3+i)	
(8) 

f(y,,)	Z a3f(y,)f(y3+i) 

for all n E Z. Since the sum in (8) is non-negative, we have GnfYn !^ 0 for all n E Z,. 
If {yn) is positive, let u, = — anyn. Then (8) becomes 

n-i
f(yn)g(ya, Y.+: )(ya) 

u, mf(y) +	 U3. 
KN	f(ya)f(ya+i) 

Define

K(n,s,x) 
= f(yn)g(ya,ya+i)(-Lya)	

E Zr;x € 

Notice that, for each fixed n and s, the function K(n, s,.) is non-decreasing. Hence 
Lemma 1 applies with Pn = mf(yn), to obtain 

- V. = n2f(y,,) + >K(n,s,va) 

provided v. E lR for each s E Z' - Multiplying the last equation by l/f(y,) and then 
applying the operator A we obtain	= 0 so that v = UN = mf(yN) for all n € Z. 
Thus by Lemma 1, aLy ( -mf(yN) for all n E Z. 

The proof for the case when { yn } is negative follows from a similar argument by 
taking u, = anLyn and p = -mf(y) U
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3. Oscillatory and asymptotic behaviour 

The first result is concerned with situations when the solutions of equation (1) are 
bounded away from zero and it generalizes Theorem 2 in [44]. 

Theorem 1: Suppose that conditions (2) - (5) hold and that 

q.+1 converges	 (9)

a=n0 

and
g(u,v)^!j>O for all u,v0.	 (10) 

Let {y,, } be a solution of the difference equation (1) such that urn inf,,.00 Ivn I > 0. Then 

00 wg(y8 , y-i) converges	 (11) 

for all sufficiently large n,

wn
as fl-400	 (12) 

f(yn) 

and
00 2	00 

-	Wag(yi,yj+i)  

	

f(y,,)	
,' 

- L a8f(y,)f(y31) + L	- f(y1)	
13


for sufficiently large n. 

Proof. There exist M I, M2 > 0 and an integer n 1 > no such that J Yn	m 1 and

If(yn)l m2 for n E Z,,,. This, together with (5) implies that 

n	 n 

'IY- Y
a=n -

:5 Tfl	 (14)

,,, jYa+1j	jYa+1j 

for some m3 > 0 and all n E Z,, 1 . Now, suppose that (11) does not hold. Then, in view 
of (9) there exist m > 0 and an integer n2 ni such that (7) hold for all n E Z,,. 

If {y,j is positive for all n € Zn,, it follows from Lemma 2 and its proof that 

	

Ly <0	and	anLyn ( —mf(y 3 ) for fl € Zn2. 

After summing we have

yn:5yn3_mf(yn2)> 
a=n2 

which in view of (2) contradicts the fact that y,, > 0 for n € Zn 1 -
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A similar argument handles the case when {y,, } is negative for all n E Z,,,. Since 

,, '\

	

	wg(yn ,ynj )	______ 
+ anf(yn)f(yni) = f(yn+i) - 

we have

2k—i 
Wk	'ç. 

wa g(y1 ,y.+ i )	w	'- 
G

r8
f(yt)	a5f(y,)f(y,+i) 	 (ya+i) _a+i)

.	(15) 

	

From (9), (11), (14) and (15) we see that /3=	wk/f(yk) exists so that from

(15) we have

wg(y,,y..1)	
(16) 

wn 
= fl+	(q*+1 - 

f(yn)	a=n	f(y+i)) •f.)f(v+i) 

for n € Zn,. To show that (12) and (13) hold, we have to show that /3 = 0. Suppose 
first that Yn > 0 for all n € Z,,,. If /3 < 0, then because of (10), (11) and (15) there 
exists an integer N1 > n 1 such that 

n—i
and 

I	 In—i 

I>: 
a=Nj	I	 Ia=N, f(y,+) - 6 

and
2 w3giyj,y81	

for 	'7 LoraunEL,N1. 

	

a=N1 a3f(y3)f(y +j)	6 

From (16) we see that (7) holds on ZN, with N = Ni . But then, as argued above, 
Lemma 2 and (2) contradict the assumption that y,, > 0 for all n E Z,, 1 . If 0 > 0, it 
follows from (9), (11), (14) and (16) that wn/f(yn) - /9 as n - oo, so there exists an 
integer N2 > n 1 such that Wn/f(yn) 2 /3/2 for all n E ZN2 . We use (4) and (10) to 
obtain

	

wng(yn,yn+i) >	P!3 
af(y+ 1 ) - 2a+p/3 

Thus 00	2 n	2 w1g(y,,y,1) > l
im	 /3 

an1 a.f(y)fQ 1) ,,. .00L1 2(2a + 4fl) - 

by condition (2), which contradicts (11). This completes the proof that 6 = 0 for the 
case y,, >0 for all n € Z,, 1 . The proof of /3 = 0 for the case that y,, <0 for all n E Zn, 
is similar and will be omitted I 

Consider the difference equation 

L 2 y + 
(- 1)	- _______

(n € IV).	 (E4)
(n + l)5hI+1 - (n + 1)2
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It is easy to verify that all conditions of Theorem 1 are satisfyed for this equation. Hence 
every non-oscillatory solution of this equation satisfies (11) - (13). One such solution is 
{y,} = {n} satisfying the condition liminf. 00 l yni > 0. 

Before stating our next theorem, we observe that if conditions (5) and (9) hold, 
then

ho(n) = j(qa+i - ojr,I)	(n € Z0) 

is well defined for every positive constant c (i.e. the above series converges) and ho(n) > 
0 for all sufficiently large n. As long as the above series converges we can define 

(ho(s) + Lhm(s))2 
h i (n) = "

	(ho (s))'
a, + Lho(s)	

and	hm+i(n) =	a + L(ho(s) + Lhm(5)) 

for in € N, where L is a positive constant. Now in the next two theorems we need the 
condition 

(H) For every constant L > 0, there exists a positive integer M such that hm exists for 
m = 1,2,. .. , M - 1 and hM does not exist. 

Theorem 2: Suppose that conditions (2) - (5), (9) and (H) hold and, for any 
o > 0, there exists 0`2 > 0 such that 

9(u,v)^!c2 for all (17) 

Then any solution {y,,) of the difference equation (1) is either oscillatory or satisfies 
the condition liminf_00 I y I = 0. 

Proof: Assume that the conclusion of the theorem is false. Then there is a non-
oscillatory solution {yn} of equation (1) such that liminf_ 00 lYn I > 0. It then follows 
from (4) that If()t '::^ d for some d> 0 and all n € Z,, 1 . From (13) and (14) we have 

Wn > h0(n) +	
wg(y,,y,1) 

	

f(y ) -	1—'a,f(y,)f(y,)	
(18) 

for all n € Z, 1 and from (12) we have 

. 

	

00	2  w9(y,,y,..1) 
Li a,f(y,)f(y,j) 

for all n € Z,, 1 . Thus from (17) we have w/f(y) ^! ho(n) ^ 0 and using (17) we then 
have

• Wg(y,yn1) 
> 

L(ho(n))2 
a Yn Yn+1	an	 012 

for n € Z 1 and some L > 0. If M = 1, then (19) and (20) imply that the series 

h i (n) = LS 
(ho(s))2 

 a, + Lho(s)
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converges which contradicts the non-existence of hM(fl ) = hi (n). If M = 2, then from 
(18) and (20) we have

	

00	(ho( 

	

wn 
>ho(fl)+LI2	

s))2 = ho(n) + Lhi(n) a f(yn) - a= n
, +Lho (s)

 
from which it follows that 

W	 L(ho(s) + Lh i (n))2 ,g(yn,yn+i) 
>  

anf(yn)f(yn+i) - an + L(ho(n) + Lhi(n)) 

Thus in view of (19), a summation of the last inequality would give a contradiction to 
the non-existence of hM(n) = h2 (n). A similar argument provides a contradiction for 
any integer M > 2 I 

As an example of an equation satisfying the hypotheses of Theorem 2, consider 

2	((1 + 1/n) 1 /2 - 1\	-	2	(1 + 1/n)1/2 - 1 
" +	(n + 1)1/2 )	- n(n+ 1)(n + 2) +	(n + 1)7/2	(E5) 

(n € .W) which has the non-oscillatory solution (y} = {1/n}. Here	-q,+i 
= 

Now

irnj	
2	+ (1 + 1/n)312 - 1 

	

- n(n + 1)(n + 2)	(n + 1/2)3/2 

° ETh Iral S 2/n3t2 and hence ho(n) ^! 0 for sufficiently large n. Since 

	

00 1/sh/2 - 2p/s3/2 )2	Co s1/2(1/sh/2 - 2p/s3/2 )2 (ho(s))2 
> v'  

a, + Lho(s) -	1 + L/s'/2	=	 i/2 + L	
= 00 

a=n 

we have M = 1. 

Our next two theorems are oscillation results for the case r = 0 (n E IN). Observe 
that in this case the difference equation (1) becomes 

anyn) + q --f(y +i) = 0	 (21)


and ho(n) = 
Theorem 3: Suppose that conditions (2) - (4), (9), (10) and (H) hold. Then all 

solutions of the difference equation (21) are oscillatory. 

Proof: Let {y.) be a non-oscillatory solution of equation (21). Then there exists 
an integer n1 no such that IL'nl > 0 for all n € Z,, 1 . 

'
Since (10) implies that f(u) is 

strictly increasing for u 0 0, we have If(v)l > 0 for all n € Z 1 . It is easy to see that 
Lemma 2 is valid for equation (21) with condition (7) replaced by 

WN1

	

n—i	N—i W2 g(y.,Y.+I) >m.


	

f(vN1) 
+ > V.+i +	a,f(y,)f(y,i) 

Proceeding as in the proof of Theorem 1, we again obtain (11) since (13) obviously 
holds. Using (15) with r,, = 0 for all n and continuing as in the proof of Theorem 1, we 
again obtain (12) and (13) with r = 0 for all sufficiently large n. The remaining part 
of the proof is similar to that of Theorem 2 and hence will be omitted 0
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• Remark: Notice that obtaining (11) - (13) in the proof of Theorem 3 extends 
Theorem 2 of [43]. 

Theorem 3 implies that all solutions of the difference equation 

/(1 + 1/n)' !2 - 1 ) (y.+, + y' (n+1)'/2	 (n€N)	(E6) 

are oscillatory. 

	

In the following theorem ho(n) = A(n) =	q4.1 need not be non-negative. 

Theorem 4: Suppose that conditions (2) - (4), (9) and (11) hold. Further assume 

	

(a + iA(n)) > 0	(n € Z00 ).	 (22) 

If the series
00	2' 

an + A(n)	
where A(n) = max{A(n),O} 

=flo 

diverges, then all solutions of the difference equation (21) are oscillatory. 

Proof: Suppose that the difference equation (21) has a non-oscillatory s ;ion 
{y,}. Then there exists an integer n 1 no such that l ynI > 0 for all n E Z,, 1 . Since 
(10) implies that f(u) is strictly increasing for u i4 0, we have If(y )I > 0 for all n € Z,,1. 
And hence, by Theorem 3, we have 

Wn > A(n)	(n € Z01 )	 (24)

f(yn) - 

and condition (11) is fulfilled. Use (4), (10) and (24) to get 

Wng(yn,yn+i) >	
A(n) 

a0 f(y01 ) - an + AA(n)	
(n E Z01 ).	 (25) 

Now from (24) and (25), we obtain 

00	2 w,g(y,,y,.1) 
> s

+ 1,A(s)
(n € Z01) - 

which contradicts (19) U 

Remark: When an .= 1 for all n € IV, Theorem 4 reduces to Theorem 3 of [43]. 
Also Theorem 4 is a discrete analogue of Theorem 3 given in [16] butthe conditions 
and the proof are Aifferent from the continuous case. 

The following theorem is a discrete analogue of a result of Waltman [49] but the


	

proof is different from the continuous case...	 •
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Theorem 5: In addition to conditions (2) - (4), assume that the sequence {qn} in 
the difference equation (1) satisfies the condition 

qn = oo.	 (26) 
a no 

Then every solution of the difference equation (21) is oscillatory. 

Proof: Let to the contrary { y,, } be a non-oscillatory solution of equation (21) which 
we may (and we do) assume to be positive on Z, 0 . In view of (26), condition (7) is 
satisfied on Z,, 1 for some sufficiently large n 1 . Thus from Lemms 2 w < —mf(y 1 ) for 
all n E Z, 1 which after summing yields y,, <1 — mf(y1)>.,,'1 1.. Thus in view 

,, — of condition (2), y' —co as n --+ 00 which contradicts the fact that y, > 0 for all 
n € Z,, 1 . The proof for the case when the solution {yn } is negative is similar and hence 
will be omitted U 

The difference equation 

L(nLyn) + 22"'(qn + 3)y	= 0	(n E 11Y)	 (E6) 

satisfies all conditions of Theorem 5 and hence every solution of equation (E6 ) is oscil-
latory. One such solution is {y,,} = 

Acknowledgement. The authors thank the reviewers for their many remarks, 
suggestions and corrections that improved the content of this paper. 
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