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L,-Spaces
and some Related Sequence Spaces

J. Boos, K.-G. Crosse—Erdmann and T. Leiger

Abstract. In view of closed graph theorems in case of maps defined by operator-valued matrices
L, -spaces were recently introduced by two of the present authors as-a generalization of separable
FK(X)-spaces. In this paper we study the class of L,-spaces and a few closely related classes
of sequence spaces. It is shown that an analogue of Kalton’s closed graph theorem holds for
matrix mappings if we consider L,-spaces as range spaces, and paralleling a result of Qiu we
prove that the class of L, -spaces is the best-possible choice here. As a consequence we show
that for any L,-space E every matrix domain E4 is again an L,-space.
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1. Introduction

Let £ and F be locally convex spaces and suppose that E’is a-Mackey space, the
space (E',o(E’, E)) is sequentially complete and F is separable and B;-complete. Then
Kalton’s closed graph theorem [10] states that every closed linear map T : E — Fis
continuous. Subsequently, Qiu [11] has identified the maximal class of range spaces F in
this result, calling its elements L, -spaces.

Kalton’s theorem was successfully applied in classical summability theory to obtam
inclusion theorems for K -spaces that are important in connection with Mazur-Orlicz-
type theorems (cf. {2 - 4]). In these applications F is a convergence domain c4 of some
matrix A, which is always a separable Fréchet space. However, if one tries to extend
these results to operator-valued matrices one encounters the problem that convergence
domains are no longer separable in general. In fact, they need not even be L, -spaces [8:
Example 3.13/(b)]. ’
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Thus a new idea was needed. Now, in summability theory one usually deals with matrix
mappings between sequence spaces, which ordinarily are particular closed mappings. In a
recent paper two of the present authors were able to show that if we only consider matrix
mappings, then a Kalton-type result obtains for all spaces F from a new class of spaces,
which they call L, -spaces (see [8: Theorem 4.2]). As desired, this class is large enough to
contain all cdnvergence domains of operator-valued matrices, so that one can now deduce
inclusion theorems for such matrices (8: Theorem 4.4]. '

In this paper we study the class of "L,-spaces and a few closely related classes of
sequence spaces. We show that, indeed, Kalton’s theorem and Qiu’s characterization
hold for L, -spaces if closed mappings are replaced by matrix mappings. It is also shown
that for every L,-space E any matrix domain E4 is again an L,-space, answering
a question in [8]. Similar results are proved for the other classes of sequence spaces
considered here. For further investigations into L, -spaces see [6].

2. Notations and preliminaries

Throughout this paper we assume that (X,7x) and (Y,7y) are (locally convex) Fréchet
spaces. A sequence space (over X ) is a subspace of the space w(X) of all sequences
z = (zx) in X . In particular, ¢(X) and ¢(X) denote the spaces of convergent and finite
sequences in X , respectively. The f-dual EF of a sequence space E over X is defined
as v

= { (Ax) € w(X')‘ Y(zx) € E - zk:Ak(:tk)' convérges}.

Now suppose that the sequence space E over X is endowed with a locally convex topology
7. Then E is called a K(X)-space if the inclusion map : : E — w(X) is continuous, -
where w(X) carries the product topology. If, in addition, (E,7) is a Fréchet (Banach)
space, then E is called an FK(X)-space (BK(X)-space). A K(X)-space E is called
at AK -space (SAK -space) if (z,,...,2n,0,...) — z (weakly) in E as n — oo for all
z = (zx) € E. If E is a K(X)-space, then every element (A;) € E? defines a linear
functional on E via (zx) — ¥ Ax(zi). Hence, as usual, we can consider Ef as a
subspace of E*, the algebraic dual of E. In particular we have p(X’) C E*.

Let A = (Aat) be a matrix with entries A, € B(X,Y), i.e., continuous linear
operators Anx : X — Y. A is called row-finite if each sequence (Ank)x (n € IN) is
finite. For a sequence space E over Y the matriz domain E, is defined as

 Ba= {z_'e‘.w(X)

YnelN: ZA"k(zkj converges and (Z Ank(zk)> € E} .
k- o ’ k n

Here, the convergence of 3", Ani(zx) is taken in the topology 7y . If, instead, we only
require convergence with respect to o(Y,Y’), then the corresponding sequence space
is called a weak matriz domain, denoted by E,4,. For any z € E,, we put Az :=
(T Ank(zk))n - If F is a sequence space over X with FcC E4 (F C E4,), then the
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mapping A: F — E,z — Az, is called a (weak) matriz mapping. The space w(Y )4 is
an FK(X)-space by [5: Theorem 2.14], and the matrix domain E,4 becomes an FK(X)-
space when it is endowed with the strongest topology that makes the matrix mappings
A:E4 — E, 2~ Az and i: E4 — w(Y)s, £ — z continuous [1: Proposition
2.4]. : : '

The terminology from the theory of locally convex spaces is standard. We follow -
Wilansky {12]. For the theory of FK(X)-spaces and operator-valued matrix domains
we refer to {1] and [5)].

3. LW—K'—spaées and some related K-spaces

Let (E,7) be a locally convex space with topological dual E’ and algebraic dual E*.
For any subspace § of E*, § < E*, we use the notations

S' {gEE' 3(ga)in S : gn—»g(a E*, E))}
S=n{v<r | scv=V}
. i 1
., 3 - . rv+l rv v
S :=SNnE and S =8 S NE (j€IN).

Following J. Qiu [11] we define E to be an L,-space if E'C T for any o(E', E)—dense
subspace .S' of E'.

In case of K(X)—spaces E we note that w(X') is o(E', E)—dense in E' [8 Theorem
3.4] and introduce the following notations (see also [8]).

Definition and Remarks 3.1 . Let E bea k(X)—space and j € IN. E is called
an - . : v A
Ly-space if E' C o(X')

v
L (j)-space if E' C p(X")
Lp(j)-spaceif E'C E? .
In [8] L,(1)-spaces and Lg(1)-spaces-are called spaces having @-sequentially dense dual
and B-sequentially dense dual, respectively.
R :

E is an L,-space if and only if E' C E” since E° C ¢(X’) . In fact, we even have
EP C o(X').

The above definitions depend only.on the dual pair (E, £’) and not on the particular
topology compatible with this dual pair. Obviously, for each j € IN we have

<

L,(j)-space = Lg(j)-space = L,(j+1)-space = Lfspzice . L,—épace.
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Remarks 3.2. Let E be any sequence space over X and let H with e(X')< H <
LET’J be given. _ ' ‘.

(a) Then (E, T(E H)) is an L,-space. (The proof of the Inclusion Theorem in [7]
shows us that we may be interested in L,-spaces (E,7(E,H)) where H is a very small
subspace of Eﬁ containing ¢(X’).) v

(b) The statement in (a) remains true for any topology r (instead of T(E,H)) that
is compatible with the dual pair (E, H).

(c) Obviously, 7(E, Eﬁ) is the strongest locally convex topology T such that (E, 'r)
is an L,-space.
(d) If j € IN and 7 is any topology that is compatible with the dual pair (E H) such

that (E,7) is an L,(j)-space (Lg(])—space), then (E,7(E, H)) is an L,(j+1)-space
(Lg(j +1)-space).

Examples 3.3 . (a) Each separable F K(X)-space, more generally each subWCG-
FK(X)-space, is an L,-space (see [8: Theorem 3.3]). Here, a subWCG-space is a
(topological) subspace of a weakly compactly generated locally convex space.

(b) Every SAK-K(X)-space, in particular every AK-K (X )-space, is an L,(1)-
space. ‘

(c) The BK(m)-space ¢(m) is an L,(1)-space, however, in general it is not separable
and no L,-space. (See [8: Example 3.13/(b)].)

(d) Based on an example of P. Erdés and G. Piranian [9] in [8: Example 3.12] a
regular (real-valued) matrix A is given such that the domain c,4 is an Ls(1)-space but
no L,(1)-space. In Remark 4.2 below we will give an example of an L,(2)-space that is
no Lg(1)-space. We do not know if the Lg(?) -spaces and the L,(2)-spaces coincide.

The following result will be needed in the next section. For sake of brevity we put

—p
S =S (not to be confused with the polar of S )

Proposition 3.4. Let E and F be locally convez spaces, U < E*, S < F* and
1,j €EINg. Let T: E — F be a continuous linear mapping such that

: v —po

foTeU whenever fes.

Then L .
T+ . v

goTeU whenever ge S

Proof. We can assume j > 0. Let g € S - Then there are elements f,,, . wip; € SOF'
for viy1,...,viy; € IN such that:

(a) For i+1<p<i+j and all vp41,...,vi4; € IN the mappings

y— liuf;n~ . ~£i‘_1311fw+1~--w+j(y) (ye F)
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exist and belong to F'.
(b) For all y € F we have

g(y) =lim...lim fo,,, u,,(y)-
. . Vigs Vil L

— .
From our assumption we know that f,,,, .., 0T € U for éach viy,...,viy; € IN. This
implies that there are elements g, .iuiy,..0ip;, €U NE' for 1y, ,vi4; €IN such that:

(c) For 1 <o < i and all vgyy,..., 0, Vit1,---,Visj € IN the mappings

g — lim... limgy, s .0i4;(2) - (z € E) : N
ir S

Vo

exist and belong to E'.
(d) For all z € E and 'viy1,...,vi4j € IN we have

(er+1~~~!«+, ° T) (z) = llul‘n .- .livr]ng.,‘,..u_.,_.“_.,.,_-”(.'L').
We thus have found elements g,,..,,; € UNE' for vy,...,viy; € IN with thé foliowing

properties: .

(") For 1 < p<i+j and all vy4.,...,%4; € IN the mappings
z — lim...limg,, .., (z) ' (z € E)
Yo v . -

exist and belong to E’ (this is just (c) in case p < ¢; for p =i it follows from (d) and
for p > ¢ from-(a) if we note that T is continuous).

(b’) For all z € E we have

(goT) (z) = lim.. li”mg.,l__.,,i,,j(z)

Vit

(this follows from (b) and (d)).
it
But (2’) and (b ) together 1mply that goT € U ’ |

Remark 3.5 . Using the adjoint T" : F' — E' of the mapping T, the assertion of
the proposition can be put more concisely as

—\ ‘ —\
T'(S ) cvu implies T'(S ) cU .

4. Domains of operator—valued matrices

From [8: Theorems 3.9 and 3.10] it is known that the domain ¢(Y)4 of an operator-valued
matrix A is an Lg(1)-space, and that E4 is an L,-space whenever E is an Lg(1)-space.
Here we are going to improve these results.
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Theorem 4.1. Let E be a K(Y)-space, A = (An) a matriz with A, € B(X,Y)
and let 7 €IN . :

(a) If E is an Ly(j)-space, then E, is an Lg(j)-space.

(b) If E is an Lp(j)-space, then E4 is an Lg(j + 1)-space.
Suppose that in addition A is row-finite. Then: ‘

(a’) If E is an L,(5)-space, then E4 is an L,(j)-space.

(b’) If E is an Lg(j)-space, then E4 is an L,(j + 1)-space.

Special case (see [8: Theorem 3.9]): ¢(Y)4 is an' Lg(1)=-space, and even an L,(1)-
space if A is row-finite.

Remark 4.2. Example 3.3/(d) tells us that, in general, we cannot replace ‘ Lg(j)-
space’ by ‘ L,(j)-space’ in statement (a). Assertion (a’) is obviously best-possible, while
in statement (b’) we cannot replace ¢ L,(j+1)-space’ by ‘ Lg(j)-space’ in general: In [8:
Example 3.14] there is an example of a (real-valued) row—finite matrix A and an Lg(1)-
space E such that the domain E4 is no Lg(1)-space. (From statement (b’) above we
see that it is an L,(2)-space.) We do not know if one can replace ‘ Lg(j +1)-space’ in
statement (b) by ‘ L,(7 + 1)-space’.

Proof of Theorem 4.1. Let E be a K(Y)-space, and let f € E, be given. Then
we may choose elements g € E' and h € w(Y)f = w(Y), with f=goA+h (see [L:
Proposition 2. 10] and [5: Theorem 2.14/(b)]). Since E4 C w(Y)a, we have h € E5 C

v

e(X') C E'A for all ;7 € IN. Hence in order to prove the various statements of the
s—u r—u+l —v y+1

theorem we need only show that go A belongs to EA , EA , ¢(X') and (p(X)

respectively. To this end we apply Proposition 3.4 to the mapping A: E4 — E.

)

 —
(a) Let E be an L,(j)-space. Then g € E' C ¢(Y') . Here we choose U = Eﬁ,
S=¢(Y')and i=0.1f &= (9,.)N_, € p(Y'), then we have for z € E,
N o 0o N
q) o A Z q) (Z Ank(mk)) = Z (Z (Dn [ Ank) (Ik)
- =1 k=1 k=1 \n=1
r—v'
so that do A € EA Hence the hypothe51s of Proposxtlon 3.4 holds, so that go A € EA ,
as desired. .

(b) Let E be an Lg(j)—space. Then g € E' C Eﬂ . Here we choose U= E?,
S=FEf and i=1.1If ® =(®,) € E?, then we have for z € E,

(® 0 A)(z) = "llrrgoz:d) (f_oj A’"k(zk))‘_ lim Z(Z‘P oAnk) K)

1
'—'1 ' —y+l
S0 that do A G EA Proposmon 3.4 1mplles that go A € E‘3

Now suppose that A is row-finite.



L ~spaces and some related sequence spaces 383

—
(a’) Let E be an L,(j)-space. Then g € E' C ¢(Y’) . Here we choose U = ¢(X'),
S=¢(Y') and i =0. If & =(®,), € p(Y’), then we have for z € E,4

(P ;) A)(z) = g:l (i:l .0 A,,k) (zx)

 ——"]
and hence ® 0 A € p(X’). Now Proposition 3.4 implies that go A € (X') .
(b’) This follows from statement (a’) since every Lg(j)-space is also an Ly(j + 1)-
space 1 '

5. Matrix maps into L,~K-spaces

The aim of this section is to show that the class of L,-spaces is the complete analogue
of Qiu’s L, -spaces if closed linear mappings are replaced by matrix mappings. We also
prove that the matrix domain E4 of an operator-valued matrix is an’ L,~space whenever-
E is an L,-space. This result may be considered as a generalization of the classical fact
that the matrix domain E,4 of a scalar-valued matrix is separable if E .is a separable
F K-space.

Our first result is the analogue for matrix mappings of Qiu’s extension of Kalton’s
closed graph theorem. It generalizes the results in Theorem 4.2 and Theorem 4.4./(a) =
(b) of [8]. '

Theorem 5.1. Let E be a K(X)-space and F a K(Y)-space. If E is a Mackey
space, (E',a(E' E)) is sequentially complete and F is an L, -space, then every (weak)
matriz mapping A: E — F is continuous.

Proof. We put

Dy= (AN (E)={/eF | foAecE}

and D, := D3 N F'. If we can show that Dy = F’, then A is weakly continuous hence
continuous as E is a Mackey space.

To that end let f € F* and (f,) in" F* with f,o A € E' and f, — f in
(F*,0(F*,F)) be given. Then we have fooA,— fo A in (E',U(ET,E)). Since
(E’,cr(E’, E)) is sequentially complete, this shows that foA € E’, sothat f € Dy . Thus
D3 is o(F*, F)-sequentially closed, which implies that ‘LTA" C D3, hence T:OF' =Dy4.

We next show that o(Y’) C Dy . For this it suffices to prove that for each g € Y’ and
n € IN the mapping z — g(X2, Ank(zx)) belongs to E’. But since we have

o (55 Amt2n) = tin 3=t 0 Aue)e)
k=1 ) k=1

for all z € E, this follows from the weak sequential completen&sé of E'.
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L
In conclusion, Dy N F' = D, , ©(Y') C Da and the fact that F is an .L,-space
imply that : . '
R \
F'=oY)NF CDyaNF =Dy,
which had to be shown =& : .

Remark 5.2 . The proof shows that the theorem remains true for any linear mapping
A = (As) : E — F with the property that ¢(Y’) C D4, which is equivalent to the
continuity of each mapping A, : £ — Y (n € IN).

The next result is the analogue to Qiu’s characterization of L, -spaces [11]. It shows
that the class of L,-spaces is the maximal class of range spaces in Theorem 5.1.

Theorem 5.3. Let F be a K(X)-space. Then the following statements are equiva-
lent: ' '

(a) F is an Ly-space.
(b) For each K(X)-space E that is a Mackey space such that (E'yo(E',E)) is se-
quentially complete every ma;_tr»iz mapping A: E — F is continuous.

Proof. The implication (a) = (b) is contained in Theorem 5.1. The converse impli-
cation follows immediately from the following remark ®

Remark 5.4. Let F be a K(X)-space. If the inclusion map

(F(FLF’)) o F

[

is continuous, then F is an L,-space. (Namely, in this situation we have F’ C¢ F? =
—
e(X') ) - -

Using the last remark we can now obtain a permanence result for L, -spaces under
the formation of matrix domains, answering a question in [8].

Theorem 5.5. Let A = (Ant) be a matriz with Aw € B(X,Y). If E is an L,-
K(Y)-space, then E,5 is an L,~K(X)-space.

Proof. By Remark 5.4 we have to prove the continuity of

i (E,,,r (EA, Ef )) — Ey,

which is equivalent to the continuity of the inclusion map

i : (E,,,r (E,,, Ef )) — w(Y)a
A: (EA,T (EA,EAB ’) — F, r— Az.

However, since in both cases the range space is an L,-space (note that w(Y), is an
AK-space by [5: Theorem 2.14]), this is an immediate corollary of Theorem 5.1 &

and of the ~map'
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