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whose Fourier Transforms 
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Abstract. Our main result is, by elementary means only, an embedding theorem for functions 
f whose Fourier transforms I are weight square summable, i.e. f,, 1f( A )1 2w ( A ) d\ < oo, where 
the weight function w : 1k" - (0,00) satisfies the Kolmogorov condition fe,, w.)'dA < co. 
The necessary and sufficient condition on a non-negative Borelian measure on 1k" is given, for 
the inequality f,. f(t)I 2 (dt) < A f If(A )1 2w ( A )d,\ to be hold for every such function 1, 
with a constant A < oo not depending on f. 
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1. The space W 
Let us denote JR'2 the n-dimensional real space, C'2 the n-dimensional complex space, . 
the set of all integers and m the standard Lebesgue measure on 1k". If t = ( t 1 ,. . . , t,) E 
1W', then Itl = max i << It j I. If t = ( t 1 ,. . . , t),A = (.X,. . . ,.X,,) E 1W', then t . A 
t 1 A 1 + ... + 

In our paper there appears a Borelian function w : 1W' - (0, ). This function 
is said to be a weight function. In what follows, we usually assume that the following 
condition (K)

Kw:=Jm<c  

is satisfied which is called Kolmogorov condition because a similar condition was intro-
duced by A. N. Kolmogorov in the theory of stationary random processes with discrete 
time (see [10: §101 and [11: §5]). In this theory the density of the spectral function of a 
random process plays the role of such a function w. The constant K defined by (1.1) 
is said to be the Kolmogorov constant of the weight function w. 

Now we introduce the space W. Let I : .1W' -, C be a (generalized, in general) 
function and f : 1W' - C its Fourier transform, i.e. 

f(t) = Jf(A)& t ' A m(dA)	(t E iRn ).	 (1.2) 
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Definition 1.1: A function f belongs to the space W,, if its Fourier transform J is 
a function belonging to the weighted space L' , i.e. 

f IJ( A )I w ( A < oo.	 (1.3) 

The space W is the set of all such functions f. 
It is clear that the set W is a complex vector space. By definition, the integral on 

the left-hand side of (1.3) is the square of the norm of f, i.e. 

If II w : { J i!	2w	m(d)}. .	 (1.4) 

This norm is generated by the scalar product 

(f, g )	:= f f(A)w(A)in(dA).	 (1.5) 

The scalar product (1.5) and the norm (1.4) are translation invariant: if f E W,, and 
T E 1' and if 1 is the "translated" function, i.e. f7 (t) = f(t + T), then (f,g)1412 = 
(fr, gr)w 2 for all T E 1W'. In particular, 111711 = 11111 for all T E lii". 

The space W.2 was defined as a space of (generalized) functions which is isometrically 
isomorphic to the weighted space L,,. Since the latter is complete, the space W is 
complete as well. Thus, the space W.2 endowed with the scalar product (1.5) is a 
Hilbert space. The Schwarz inequality yields 

	

If( A )l m( dA )	K'2 fa	.	 (1.6) 

where Kw is the Kolmogorov constant of the weight function w. 
The following lemma is a direct consequence of the inequality (1.6) and of standard 

results from the theory of Fourier integrals. 

Lemma 1.1: Let to be a weight function satisfying the Kolmogorov condition (K) 
(with the Kolmogorov constant Ku). Then each element f E W is a function which is 
continuous, and which is bounded on li?", i.e. 

'gIf(t )I	K,',' 2 IIfIIw2.	 (1.7) 

Moreover, lim 1t1 .... 0 f(t) = 0.	.	0	 0 

Spaces W, (under various assumptions for a weight function w) were considered by 
L. Volevich and B. Paneyakh 1201. In the special case 

	

w(A) (1 ± IAI 2
) 1
	(A E 1W')	 (1.8) 

the space W, is nothing but the well-known Sobolev-Slobodetskii space. For the weight 
function (1.8) the condition (K) is fulfilled if and only if I > 11.
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2. The main embedding theorem 

Let w be a weight function which satisfies the Kolmogorov condition (K). Then each 
function f G W, is continuous and bounded on 1R" (Lemma 1.1). Let p(dt) ^! 0 be a 
non-negative Borelian measure on 1', and let the total variation var lRnp be finite. In 
accordance with the estimate (1.7), 

If(t) 2 p(dt)	Kw(var Rnp)IIfIIvz .	 (2.1) 
J IR. 

However, the estimate (2.1) is too rough. The condition var )Rnp < oo is not necessary 
for the integral f,. If( t )1 2p (dt ) to be finite. 

Let Q be the standard unit cube, i.e.

(i<i<n)} 

and for a = (ai,. . . ,a,) E .1W' let Q0 = Q + a be the "translated" cube, i.e. 

Qo={t=(ti,...,tn)E <ti—ai<+(1jn)}.	(2.2) 

Definition 2.1: A non-negative Borelian measure p on ff?n satisfies the Carleson 
condition (C) if

C,. := sup p(Q0) < 00.	 (2.3) 
aEJR"	 S 

The constant C, defined by (2.3) is said to be the Carleson constant of the measure p. 

Lemma 2.1: Let w be a weight function which satisfies the Kolmogorov condition 
(K), and let p > 0 be a Borelian measure on liV 1 . If fm,. If( t )1 2

1L(dt ) is finite for each 
function f E W, then p satisfies the Carleson condition (C). 

Proof: Let us consider the Hilbert space L2 (p) of square summable functions with 
respect to p and the embedding operator from W into L2 (p). Using Lemma 1.1, we 
obtain that the embedding operator is closed. Hence, the inequality fR n If(t)12p(dt) 
A IIfII,2 holds where A < oo is a constant not depending on I E W. Let 0 ía E W. 
Without loss of generality, we can assume that fo(0) = 1 (we can "translate" an original 
function 10 and multiply it by the appropriate constant). Since the function fc, is 
continuous, there exists a "ball" (or a cube) B = It E JR" : Itl p} (p is a positive 
number) such that fo()I ^: 1/2 for all t E B. The function f... ,,, f_,,(t) = f(t - a) 
satisfies the condition 

S	 If0(t)I>	(t E Ba)	 (2.4) 

where Ba = B + a is the "translated" ball B, i.e. 

Ba = I t = (t 1 ,...,t) E JR"htj —ail <p (1 <j
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Since the W,,-norm is translation invariant, Ifc,11W 2 = IIfoIlw . By (2.4), the inequality 

I If)I 2 1(dt ) < A[f 11
2W.2 

Jffln 

holds, where the right-hand side does not depend on a E 1'. Using (2.4), we obtain 
the inequality

ii(Ba) < 2A IIfoII , 2	for all a E 1R'.	 (2.5) 

This inequality is almost the same as the Carleson condition (C) (or (2.3)). The only 
difference is that in (2.3) there appears the translated "unit" cube Qo, and in (2.5) there 
appears the translated cube B which radius is equal p. Standard "covering" reasoning 
leads to the inequality ji(Q,)	C for all ci € IR", where C	([] + l)'2AIIfoII 2 (by 
[] we denote the integer part of the number ) U 

Lemma 2.1 claims that the Carleson condition (C) for the measure p 2 0 is necessary 
for the integral fjR. If( t ) 1 2 14dt ) to be finite for every f € W,. It turns out that under 
some regularity conditions for a weight function w the condition (C) is sufficient as well. 

Definition 2.2: A weight function w 1W' - (0, oo) satisfies the regularity condi-
tion (L), if its logarithm In  satisfies the Lipschitz condition Lin ,,, < oo, where 

Llnw 	sup 
A' A" E I"

Ilnw(A') - lnw(A")[
A t - All 

The constant L1 ,, ,,, is called the Lipschitz constant of the function In w. 

Now we formulate our main result. 

The Main Embeding Theorem: Let w be a weight function which satisfies the 
Kolmogorov condition (K) (with a Kolmogorov constant Km). Moreover, suppose that 
the function in w satisfies the Lipschitz condition (with a Lipschitz constant L 1 and 
let y be a non-negative Borelian measure on JR" which satisfies the Carleson condition 
(C) (with a Carleson constant Cs). Then for every function f € W,, the inequality 

If(t)12 	<EIIfIl,2	 (2.6) 

holds where E = AC,Ke 2 '"" and A < oo is an absolute constant. 

In principle, our Main Embedding Theorem can be derived from known results, for 
example from results stated in one of the monographs [14), [15) and [19]. However, these 
monographs are aimed at a presentation of very general theories and, from their char-
acter, can be classified into so-called 'hard analysis methods'. Moreover, the mentioned 
monographs are not self-contained. More precisely, some facts on maximal functions or 
from potential theory which are essential for these extremely general theories are not 
proved there. Our Main Embedding Theorem will be obtained by using rather elemen-
tary means. We want to give a very simple and self-contained proof. This is the main 
goal of this paper.
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3. Auxiliary results 

Our proof of the Main Embedding Theorem is based on two results which may be 
interesting themselves. 

Let x : IR - C be a function which admits an estimate 

	

Ix()I	
1 

Cx	 (' E R)	 (3.1) 1 + 2 

where C < oo is a constant, and let 

	

x( t ) = X(t i)X(t2)	x(t)	(t = (t 1 , ..., t) E IR").	(3.2) 

We define the operator Xa,a =	e IR",in the following way. 1ff: 1R' - C 
is a function from L2 (m), i.e. fjR If(t ) 1 2m(dt ) < oo, then 

C-, 

	

(X0f)(t) = f &a(t_T) Xn (t - r)f(r)m(dr)	(t E	).	(3.3) 

Lemma 3.1: Let p.(dt) > 0 be a Borelian measure on JR" for which the Carleson 
condition (C) is satisfied with a Carie3on constant C, (see (2.3)). Then the operator 
X acts continuously from the space L 2 (m) into the space L2 (u), and its norm does not 
exceed (A"C"C) 1/2 where A2 is an absolute constant: 

J,R 
I( X f)( t )I 2 I1 (dt ) <(A2C)"C 

J1R

	

If( t ) 1 2m (dt )	(f E L2 (IR")).	(3.4) 

In particular, the right-hand side of (3.4) does not depend on a. 

We derive Lemma 1 from the Schur inequality. Its proof will be given later, after 
this inequality. 

Lemma 3.2: Let ji(dt) > 0 be a Borelian measure on JR" for which the Caries on 
condition (C) is satisfied with a Carleson constant C, (see (2.3)). Then 

sup [ xn(t - ) I p(dt) A' CnC'.	 (3.5) 
rEIR" J)R" 

where A 1 is an absolute constant: 

	

A1=2suP>(k)2l.	 (3.6) 
MR kEZ 

Proof: As before, the cube Qa is defined by (2.2). Because cubes Q,,, where 
P = (p ',... ,p,,) runs over ", form a tiling of the space 1R", we can split the integral 
into a sum:

J Ix(t - r)I j.z(dt) =	f Ix(t - r )I, i(dt).	 (3.7) 
pEe" Q
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Further,

f 	- r)p(dt) !^ C sup Ix(t - r ) I .	 (3.8)
tEQ, 

From (3.1), (3.2) it follows the estimate

1
(3.9) 

tEQ 
sup Ixn( t - r)I (2C)'3 [1 1 + (p3 - 73)2 I<j<n 

where p=(pi,...,p)E Xn and r=(r1 ,..., In ) IR". From (3.7) - (3.9) we obtain 

.Ix(t - T ) I p (dt ) < (2C	( 	
1

pEZ 	1 +(pj - T)2) 

Thus, the estimate (3.4) holds with A 1 from (3.6) I 

We derive Lemma 3.1 from the so-called 

Schur Inequality: Let (dt) ^! 0 and zi(dt) > 0 be Borelian measures on 1W2 , and 
JR let K(t,r) ((t, 7) E	" x lW') be a kernel, i.e. a Borelian function. Assume that

M1 < oo and M < oo where 

M1	sup J IK(t, )I j(dt)	and	M	sup
 JffV? IK(t, 7-)1 v(dr).tE jRn

Then the expression

(Kf)(t) 
= J K(t,r)f(T)v(dT)	 (3.10) 

determines a bounded operator K from the space L 2 (v) into the space L 2 (z), and 

II K IIL 2 (v).L 2 (,) < /MIMOO	 (3.11) 

Proof: Rather than estimate the norm of the operator K, we estimate the bilinear 
form

(Kf,g) = //	K(t,r)f(T)g(t)/2(dt)zi(dr). 
JJIR" xR" 

Obviously,

KKf, g)I	JjBZn	
IK(t, r)I If( T )I g(t)I (dt)v(dr). 

 x IR" 

Applying the Schwarz inequality, we obtain 

KKf, g) 2	(IL . 
xR" 

IK(t, T)I If(r)I2i(dt)v(dr)) 

(11u xR" IK(t, r)I g(t) 2 P(dt)v(dT)).
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Clearly, 

Jf IK(t, r)I If( T )1 2 p(dt)v(dr) < (sup f IK(t, r)I p(dt) J

	

JR"xR"	 \TE1R"	 J IR .	 JR 

and

IL K(t, T)I Ig(t)1 2 p(dt)v(dr)

	

	(sup f K(t, r)[ v(dr)j g(t)Ip(dt).

	

'xR	 iE1R	 I 
\	JR	 IJR' 

Combining these inequalities, we obtain I( Kf, g )1 2	 which is
equivalent to (3.11) U 

Remark 3.1: The above-given proof of the inequality (3.4), (3.10) follows the 
reasoning due to I. Schur [16: §2 /Statement 1]). I. Schur considered an operator A in 
the space 1R' (or C'1 ), whose matrix representation in the natural basis of this space is 
A = lIakII1<),k<fl. I. Schur proved the inequality 

A111 2 _.1 2 <M1M 

where
M1 = sup >: IajkI	and	M,,. 	sup	IajkI. 

1<k<n1<.< 

Here II A IIip_.i, is the norm of the operator A acting in the space JR'1 (or C'1 ) equipped 
with the standard 1 P-norm. It is clear that M 1 = II A IIi_:t and M = II A Il:o_.,00. Thus 

12	1 above inequality has the form I! A Ill 2_. l 2 :5II A II/. 1 1II A IIL2_1 . The last inequality is 
a special case of the so-called convexity inequality of M. Riesz and G. 0. Thorin (see 
[9: Theorem 295 and Theorem 408]). Inequalities of such types are considered in the 
theory of interpolation of linear operators. 

Proof of Lemma 3.1: We derive Lemma 3.1 from the Schur inequality. Now 
K(t,r) = e '° ( ' ) X(t - r),v(dr) = rn(dr),K = X. The inequality (3.5) means 
that M1	(AiC)'1C. In view of (3i) and (3.2), fJR fl Ix(t - 7-)Irn(dT) < ( C7r)'1, 

i.e., M	(C7r)'1. Thus, Lemma 3.1 is a special case of the Schur inequality which 
corresponds to this choice of k,p and v, and we can take A2 = 7rA 1 I 

Remark 3.2: Let us explain why we use the term "Carleson measure" for a measure 
p satisfying the condition (2.3). We have restricted ourself to the case n = 1. Let j.t be 
a Borelian measure on the real axis JR satisfying the Carleson condition (C) (i.e. (2.3)). 
We consider the real axis as a subset of the half-plane H = {z = x + iy y > —11 and 
the measure p as a Borelian measure on the half-plane H. Thus, the Borelian measure 
p is supported in the subset JR of the half-plane H. The condition (C) implies that 
the measure p is a Carle3on measure in the half-plane H (concerning the definition 
of a Carleson measure and the Carleson Theorem we refer, for example, to the books 
of P. Koosis [12: Chapter VIII/Section E] and of J. Garnett [8: Chapter I/Section 
5]). Traditionally one considers Carleson measures either on the unit disc or on the
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upper half-plane. However, we have to consider Carleson measures in the half-plane 
{ z: Imz > —1). An estimate of the form (3.4) can be derived from Carleson's theorem. 
However, in fact we need not the Carleson theorem in its general form. The measure 
which we have to consider is very special: it is supported on a straight line parallel to 
the boundary of the half-plane. For such measures we have done the proof of Carleson's 
theorem in a very simple way. 

The Main Lemma: Let p(dt) be a Borelian measure on Rn satisfying the Car-
leson condition (C) with the Carleson constant C. Let Q0 (c E .1W') be a unit cube 
of the space JR." and let be a square summable (with respect to Lebesgue measure) 
function supported on the cube Q0, i.e. 

= 0	Q).	 (3.12)

Let W be the Fourier transform of the function , i.e. 

	

W(t) = f 3(eRtAm(d)	(t E JR.").	 (3.13)
Q. 

Then the inequality

f 1 ^0 (t)1 2 p(dt) <(A3)"C f I( A ) I 2m (dA )	 (3.14)
Q. 

holds where A 3 < oo is an absolute constant. 

Proof: Let us consider some function : JR - C such that 

= 1	
(-	

. (3.15)

and its Fourier transform 

x(e) = - J	)e''di7	(e e .1R)	 (3.16)

where admits an estimate of the form (3.1). For concretness, we choose 

101

	if —<i< 
=	2 - 2 Ii7I if	< 1	.	 (3.17) 

if IiiI>1 

The Fourier transform x of j can be calculated explicitely: 

2 cos - cos 2	 (€1R). 
7r	

C.2 

From here we derive the estimate (3.1) with

8 
CX =	 (3.18)
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Let us introduce the function Xn by (3.2). In accordance with (3.16) 

xn(i) (27r)-
 L n(A)em(dA)	(t E 1R) 

where
,(A)= (A 1 )(A2 ) ... .(.X)	A =(A1,...,A)E iR')

and j is the same that in (3.17). From (3.15) it follows that 

= 1	(A E Q) .	 (3.19) 

If a = (a i ,. . . , a,) E IR", then 

	

eboiXn(t)	1 
(27r)" /	,I (A - a)e hlA m(dA)	(t R-)	(3.20) 

J JR" 

	

where, in view of (3.19),	(A — a) = 1 for all A E Q,, - Since the function is supported 
in Q,. (see (3.12)),

ç(A)=ç(A)(A—a)	(AEJR").	 (3.21) 

In accordance with the convolution theorem for Fourier integrals from (3.21), (3.20) and 
(3.13) it follows

(t) = I e_ T) X n (t - r)ç(t)m(dr)	(t E JR'1) 
J IR' 

This representation provides us the possibility to estimate the integral f. I(t)I2i.t(dt) 
by the integral fm,. p(t)1 2 m(dt) from above. This representation has the form W = X,, 
where X0 was introduced in (3.3). By Lemma 3.1, the estimate 

	

f I(t)I 2 i (d) < (A2Cj"C,. J I( t ) I 2m(dt)	 (3.22) 

holds with Cx from (3.18). Combining (3.22) with the Parseval identity 

f (i) 2 m(dt) = ( 27r)" 

we obtain (3.14) with A3 = 27rA 2 C U 

This Main Lemma is not new. In more general setting it can be found in [18] or 
in [19: Sections 1.3.3 and 1.3.41. However, in [18, 19] there is considered the case of 
LP spaces with p E (0, oo). To cover uniformly this general case (especially, the case 
0 < p < 1), some estimates of the so-called Hardy- Littlewood maximal function are 
used in [18, 191, which are not proved there. Our proof is obtained by using rather 
elementary methods.
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4. Proof of the main embedding theorem 

Let p E " and let Q,, be a cube Qt (see (2.2)) with a = p. The system {Q}ez 
forms a tiling of the space Jfln Let w be a weight function satisfying the Kolmogorov 
condition (K) and let I € W. Then the Fourier transform f is summable (see (1.6)). 
The integral (1.2) can be splitted into the sum 

1(t) = E f(i)	where f(t) =J j()e1tArn(d)	(t € R-). 

From the triangle inequality for the space L2 (p) and from standard theorems of Lebesgue 
integration theory we obtain 

in If(t)12p(dt)	
(	

(L IfPt)I2(dt)) 1/2)2.
	

(4.1)  n  
Applying the Main Lemma from Section 3, we obtain 

fin"	 fQP 

	

f(t)2(dt) <AC I!() I 2m (dA ) .	 (4.2) 

Inserting (4.2) into (4.1), we derive the inequality 

J,Rn
f(t)j 2 (dt) <AC 

(PEZ j
I!(A)12m(dA)) 

1/22	

(4.3)
 Q  P 

Let now { Wp)pEZn be an arbitrary family of positive numbers. Applying the Schwarz 
inequality to the sum in the right-hand side of (4.3): 

1/2 

(I IJ(A)12m(dA))	
=;; 

(j IJ()I2m(dA)) 
PEI QP	 PEI

	P \	Qp 

we obtain

1/2	 1/

2j')<(PEZ 1P) 

1/2 

PEI	
. (4.4

PEIpEZ
QP 

Now we specify the sequence { WP) PEZ: 

WI, = J w(A)m(d).	(4.5) 
QP
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Let us suppose that the weight function w satisfies the regularity condition (L), and let 
LIn w be the Lipschitz constant of the function In w. Then the inequalities 

±	J m(dA) wp 
and

Wpf J(A) 2 m(dA) e	J If()I2w(A)m(d) 

are fulfilled. Inserting these inequalities into the sums in the right-hand side of (4.5), 
we obtain the inequality 

(f IJ()Im(d)) 
pElZ Q9 (4.6) 

<e LIn
m(dA)\ 1/2 /	 1/2 

-	(L	())	J(A)I2w()m(d)) 

Combining (4.4) with (4.6), we derive the inequality 

f ACKWe2LIfl j If(A)12w(A)m(dA) 

where A3 is the constant from (3.14) U 

5. A regularity condition for a weight function is essential 

In this section we present an example which shows that only the Kolmogorov condition 
(K) for the weight function w (without any regularity condition like the Lipschitz con-
dition) does not imply an inequality of the form (2.6). Moreover, we give an example 
of a weight function w JR - (0, ) satisfying the Kolmogorov condition (K) and a 
function f belonging to the space W,, but not belonging to the space L2(m): 

fin If( t ) I 2rn ( dt ) = oo	 (5.1) 

J J(t) 2 w(A) m(d)t) <co.	 (5.2) 

Of course; the Lebesgue measure m on IR satisfies the Carleson condition (C) with the 
Carleson constant Cm = 1. In view of the.Parseval identity, (5.1) is equivalent to 

JR1(t) 2 m(dA) = oo.	 (5.3)
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Thus, we have to construct such functions w : JR - (0, ) and 7: JR —p C, for which 
the conditions (5.2), (5.3) and

f

m(dA)	
(5.4) j, w(A) 

hold. Let {8k}kEIN0 and {wk}kEjlvo be sequences consisting of strictly positive numbers. 
We choose these sequences later. We require a technical condition 6k < (k E No) 
which ensures that the intervals [k - 6k, k + Ski do not overlap. Pick 

k2	for AE (k - ., 
fWjkj

k+ )\[k- 'IkI, k + A 1k1] w(A) =
	for A E [k— Ak,k+Ak] 

Put

7(A)	{ aIkI for A E [k - A IkI; k + A1k1] 
= 0	for A E JR\ (uk E z[k - A1 k1 ,k + A1k1]) 

for some sequence {ak}k E iN0 of positive numbers which will be concretized later. The 
condition (5.4) is equivalent to the condition 

6k 
>	<00.	 (5.5) 

Wk 

The conditions (5.2) and (5.3) are equivalent to the conditions 

<00	 (5.6) 
0 k < 

and
I'kI2k = 00,	 (5.7)

0<k<oo 

respectively. Thus it remains to be seen whether the conditions (5.5) - (5.7) are com-
patible. We present such sequences {a k }, {Sk} and {wk} explicitly. Choose 5 > 1, then 
choose : 2 - S <c < 1. Choose now 7 satisfying the conditions 1 - c < < S - 1. 
Pick now

6k = (1 + k) 6 ,	Wk = (1 + k),	a = (1 + 

For such ak, 8, wk the conditions (5.5) - (5.7) are fulfilled. 
Remark that in the above-constructed example the weight function w behaves ex-

tremely non-regularly. On the set S = UkE(k - 81k1, k + 61k1) the function w = w(A) 
tends to zero as JAI - oc. The condition	< oc is satisfied because the set S is 
the union of intervals whose lengths tend to zero rapidly. The condition 
is fulfilled because of the growth of the function w on the set JR \ S.
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6. The compactness of the embedding operator 
Let to be a weight function satisfying the Kolmogorov condition (K) and the regularity 
condition (L). Let p > 0 be a Borelian measure on 1R'. We considered an embedding 
operator from the space W, into the space P(M). We have established that the Carleson 
condition (C) for the measure p is necessary and sufficient for this embedding operator 
to be continuous. Now we are interested in the compactness of this embedding operator. 

To investigate the compactness of the embedding operator we need some refinement 
of the inequality (1.6) and of Lemma 1.1. Let E be an arbitrary Borelian subset of 1W'. 
The Schwarz inequality yields 

I l!()lm(d)	m(dA) 1/2 
JE	 (L w(A) ) (.JEj12wm(d 

Roughing the last inequality, we obtain the inequality 

I
I!( A )I m(dA ) < (j m(dA

)
 )\"2 

E	 \. E w(A)	
IlflIw,•	 (6.1)

Let B(r) = {A E 1W' : JAI r}. If for a weight function w the Kolmogorov condition 

	

(K) is fulfilled, then, of course, limr_., fIFB(r) !-	= 0. From this and from the
estimate (6.1) we derive 

Lemma 6.1: Let w be a weight function satisfying the Kolmogorov condition. (K). 
Then the limit relation

lim
lRn\B(r)

J(r)l m(dA) =0 
r-  

is uniform with respect to f taken from the unit ball of the space W,: 

From (1.5), Lemma 6.1 and standard results concerning Fourier integrals we obtain 
Lemma 6.2: Assume that the weight function w satisfies the Kolmogorov condition 

(K). Then the family of functions {f E W : Ilf lIw, 1} is uniformly continuous on 
lii", i.e. for each e > 0 there exists 8 = 8(e) such that, for all t', t" E JR." with 

It' - t"l < 8, If( t ') - f(t")I < e follows for all f belonging to this family. 

Definition 6.1: A Borelian measure p > 0 on JR" satisfies the condition (Co) if 
= 0. 

Of course, if a measure p satisfies the condition (Co), then all the more the measure 
p satisfies the Carleson condition P. 

Theorem (On the compactness of the embedding operator): Let w by a weight 
function on JR'1 satisfying the Kolmogorov condition (K) and the regularity condition 
(L), and let p(dt) > 0 be a Borelzan measure on lie. The embedding operator from W 
into L2 (p) is compact if and only if the measure p satisfies the condition (Co). 

Proof: Necessity. Let fo 0 be an element of the space W,,. If the condition (Co) 
is not fulfilled for the measure p, then there exists a sequence {r} of elements r e 1W' 
such that

urn lrl = co	and	iimsupJ lfo(t + r )l 2p (dt ) > 0.	(6.2)
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However, the sequence {fo(t + r)} tends to zero weakly in the space W,. This follows 
from the identity

(f(• + T),9())2	j 
and from the Riemann-Lebesgue theorem (the function fo(w(.\) is summable). 
The weak convergence of the sequence {f( + r,,) to zero in the space W.2 and the 
compactness of the embedding operator imply the strong convergence of this sequence 
to zero in L2 (p). This strong convergence to zero contradicts (6.2). 

Sufficiency. Let e > 0 be a prescribed- number. Let the condition (Co) be fulfilled 
for the measure z. Then this measure can be decomposed into the sum 

/1 = U1+,U2	 (6.3) 

of two measures pi and /12, where the measure m has a compact support and the 
measure 42 satisfies the condition Carleson (C) with Carleson constant C, 2 e. More-
over, such a decomposition (6.3) can be done by means of a decomposition of the space 
IR'1 : there exists a compact subset S of 1!?" such that the measure /11 is supported on 
5, /1 i (JW \ S) = 0, and the measure /12 is supported outside S, /12( 5) = 0. Thus, 
L2 ( /1 ) = L2 ( /1l ) L 2 ( /12 ). Hence, the embedding operator E. from W.2 into L 2 is equal 
to the orthogonal sum E, = E,, E, 2 where E 1 (j = 1,2) are embedding operators 
from W.2 into L2 ( /1 ). In view of Lemma 1.4, the operator E, is compact. By the 
Main Embedding Theorem, II E 2II Ae where A is an absolute constant I 

In a special case (w has the form (1.8) with an integral 1 > 2 and p is absolutely 
continuous) the theorem was proved in [4: Theorem 2 1 . By more restrictive assumptions 
it was proved earlier in [2: Theorem 2.2]. 

7. Some related results 

The following theorem is closely related to our Main Embedding Theorem. 
Theorem: Let f(.X) E L2 [—a,a], where a < no, and let 

f(t) = f	j()eRiAdA	(t E 1!?). 
[—ooj 

Let {tk} be a sequence of real points which is separating: uk - t: ? 5 > 0 (tk	t,). 
Then

f(t2. A f If(t)I2dt 

where A < no is an absolute constant. 

This theorem has been proved firstly by M. Plancherel and C. Polya (see [13], 
especially Sections 27 - 31 of this paper). Their proof is based on some considerations 
dealing with subharmonic functions. Thi proof is reproduced, for example, in [1: pp.
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97 - 103], and in [21: Chapter 2, Pt. 2, Section 3) (especially Theorem 17 there). Of 
course, the theorem is an immediate consequence of our Main Embedding Theorem. 
The last inequality is related with the notion of a frame in a Hubert space (see [21)). 
Some inequalities of the form 

C1 fin f(t)Pp(dt) <f lf( t ) I m(dt ) < C2 
11R 

If(t)IPP(dt) 

where 0 < p < co, and the Fourier transform J has a compact support, have been 
considered by H. Triebel (see [19) and [20: Section 1.3.4]). 

A special case was considered by L. S. Frank [7]. There is contained the inequality 

kE7Z 
If( kh ) 1 2	A(1,n) f I!() I 2 (1 + A 2 )'m(dA)	 (7.1) 

where h > 0 is an arbitrary fixed number and 21 > n. The inequality (7.1) has the 
form (2.6). The weight function w has the form (1.8). Condition 1 > 2 implies the 
Kolmogorov condition (K) for the weight function. A measure p has the form p = 
>IkE 6(t - kh) where 6 is the 6-measure concentrated at the zero point. However, the 
proof given in [7] uses a special structure of the measure p (it is concentrated in the 
lattice which is a subgroup of IRTt). This proof can not be extended for more general 
measures. 

The inequality
IUIIL() < C 11 u 11w 2	for all u E W12 

with a constant C not depending on u has been considered by V. G. Maz'ya(see books 
[14: §2.3 and 8.3] and [15: §1.1]; the norm II . ]w, 2 corresponds to the form (1.8) of w). 
V. G. Maz'ya did not assume that the condition I > is satisfied. If this condition is 
not satisfied, a function u from the space W12 must not be continuous on JRT1 . However, 
even in the case 1	the integral j,. u(t)1 2 p(dt) is finite for some measures It. The 
assumption which ensures the finiteness of this integral has the form 

p(e) 
SIPcap(e,W,2) <	 (7.2) 

where e (e E 1R) runs over all compacts of positive capacity cap(e, W?). V.G. Maz'ya 
has considered a more general case: spaces Wf with p E [1, ] and even Orlicz spaces. 
In the case 1 > 2 the condition (7.2) is reduced to the Carleson condition (C) on the 
measure p. V.G. Maz'ya considered capacities corresponding to w of the form (1.8). 
It is possible to develope'the capacity theory for the spaces W, with a more or less 
arbitrary weight function w. We will not do this here. 

Let us suppose now that the measure p is absolutely continuous. We represent 
the measure p in the form p(dt) = Ib(t)I 2 rn(dt) and the weight function w in the form 
w(t) = a(t)1 2 where a and b are Borelian functions on JR T1 . The Carlesôn condition 
(C) and Kolmogorov condition (K) can be written in the forms 

sup	Ib(t + 7 ) 1 2m(dt ) <no	 (7.3) 
rElW' JCQ0



402	V. E. Katsnelson 

and
Ia(t)12m(dt) < oo,	 (7.4) 

respectively. The inequality (2.6) can be rewritten in the following way: 

f I b ( t )f(t )1 2m( dt ) <Ef IJ(A)a'()I2m(dA). 

Let us introduce the function (.\) = f(A)a'(A) E 1R1 ). We assume that W E 
L2 (rn). Then f(\) = a(.X)(.\) and f(t) = J ehiAa(A)(.\) m(dA). Let us define the 
operator b(X)a(D). By definition, 

(b(X)a(D))(t) = b(t) f etAa((A) m(dA)	(i 

Our Main Embedding Theorem claims that under the conditions (7.3) and (7.4) (and 
under the Lipschitz condition on the function ln Ia()I) the operator b(X)a(D) acts 
continuously in L2 (rn). Under another assumptions on the functions a and b the operator 
b(X)a(D) was considered in [17: Section 4], [3], [6: §3] and in 15: Proposition 4.2 and 
Formula (2.7)]. 
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