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Abstract. Let 1. = f(x,y) denote the monotone decreasing rearrangement of a function 
f = f(x ) y) with respect to y. If —u = f, —v = f in the domain Il = (0,1) x (0,1) and 
Ou = = 0 on the boundary 81 of 1, then oscu < oscv, where the quantity oscw for aOn 
function w is defined as the difference supw - infw. Similar results are proved for periodic 
solutions of some boundary value problems in cylindrical domains. 
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The motivation for this paper is the following problem stated by Kawohi (see [1: p.61]): 

Let Q = (0,1) x (0,1) and f = f(x i ,x2 ) a sufficiently smooth function with 
fjo f(x i , x2 ) dx 1 dx 2 0. Further, let f' denote the monotone decreasing rearrange-
ment off with respect to x 2 (for definition see [1: p.11]) and let u,v E C 2 (1) fl C'('i) 
be two solutions of the boundary value problem	 - 

—AU = f, —Liv 
3u	Ov	 (1) -
Ov av 

= - = 0	(v - the outer normal. 

Is it then true that
osc u oscç v	 (2) 

where osc w for a function w is defined as the difference sup 11 w - info w ? We shall 
give a positive answer to this question and derive similar results for some boundary 
value problems in cylindrical domains with periodic solutions. The proofs are based on 
symmetry properties of the Greens function and a Hardy- Littlewood- type inequality for 
a certain integral representation of the solution. 

First we introduce some notations. Let be n > 2 some integer. We use the following 
partition of points x, E lii": 

x = (X" Y)	and	6 = (' , ij) 
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with
= (x 1 ,. ..	 y = x,	e = (fi, = n. 

By Lc we denote the k-dimensional L-measure, 1 k <n. If F is any L-measurable 
function on a measurable set M c IR", which is bounded below by a constant C and 
for which the level sets {F > t} (t > C) have a finite L-measure, then let F* denote the 
Steiner symmetrization of F with respect to the variable y. The function F5 is defined 
on the Steiner symmetrization M5 of M with respect to y (for a definition of F* and 
M5 see [1: p.11]). We mention here that for almost any x' and t > C the level sets 
{F5 (x',.) > t} are open intervals lying symmetrically to the hyperplane {y = O} and 
have the same L-measure as {F(x',.) > t}. The function F5 (x',y) is symmetric in y 
(i.e., F5 (x', y) = F5 (x', —y)) and monotone decreasing in y for y > 0. Further we shall 
also use the notation F5 = 

The following inequality for an integral of a product of two functions and their 
symmetrizations is due to Hardy and Littlewood (see, e.g., [1: p.23]) and will play the 
central role in our proof. 

Lemma 1: Let F, G be two L-measurable functions on a measurable set M C .11?'. 
Then

J F
5 ()Gt ()d <JF()G(C)de <f F'()G5 ()d	 (3) 

if the integrals converge. 

Assumptions: Let ci' be a bounded domain in JR" 1 with Lipschitz boundary, 
and assume that E' is some relatively open portion of ôci'. Choosing some number 
p < 0, we set

ci = ci' x JR,	cio = ci' x (0, P),	ci I , = ci' x (—p, +p) 
E= E' x 11?,	E1 = E'.x(—p,+p) 

S_ = ci' x {—p}, S+ ci' x {+p} 
F=ôci\E,	r1 =(0ci'\E')x(—p,+p). 

Let a 13 , b' E L°°(i1) (i,j = 1,.. .,n), CE L(ci'), a E L OO (V) and f E L2 (ci 1 ). We 
assume that

a"(x'),	A 2	(x' E ci',o < ) < A < +oo)	(4) 

c> 0, a ?0	 (5) 
a" = a"- = 0, b—" = 0	(i,j = 1,...,n —1).	 (6) 

where as in the following we take into account Einstein's rule and for simplicity let all 
summations go from 1 to n. If we have at the same time 

= 0,	c = 0	and	a = 0,	 (7) 

then we demand in addition
ff(x)dx = 0.	 (8)
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We denote with f the Steiner symmetrization of f with respect to y in the domain cii. 
Note that, if f is symmetric in the variable y, then the function f is at the same time 
the monotone decreasing rearrangement of f with respect to y in the domain cio. 

We continue f and f onto the domain ci by 

f(x',y + 2pm) = 1(x)	and	f(x',y + 2pm) f*( x )	(9) 

for all x E ci and m E E. 
Now with the linear homogeneous operators 

L —D1 (a t'D3 ) + b' D, + c	in ci 
BD,+a	 on 

(where u = (v1 ,... , v,) is the outer normal and D = via'jDj denotes the conormal 
derivative), we look for functions u, v which are 2p-periodic in y and satisfy 

Lu=f	and	Lv=f' in ci	 (10)

and the mixed Robin-Dirichlet boundary conditions 

	

Bu=Bv=0 on E	and	u=v=0 on r	 (11) 

in a weak sense. Note here that the condition (11) also covers the case of the pure 
Neumann boundary conditions Du = Dv = 0 on ôci, namely if (7) and (8) are 
satisfied. 

The facts that the operators L and B contain derivatives in y only of even order 
(condition (6)) and that the coefficients of L and B are independent of y, we need to 
apply comparison arguments in connection with periodicity and symmetry properties 
of the solutions. 

We give now a precise formulation of the above problems (10), (11). If G is any 
bounded subdomain of ci, we set 

V(G)={veC'(G)nC(ci i Ur i ) :v=O near ru(aGflci)} 

H(G) = closure of V(G) in W1,2 (G). 

By fl we denote the set of all measurable functions on ci, which are 2p-periodic in the 
variable y. We consider the following boundary value problems: 
(P) Find u E II such that for any bounded subdomain G of ci we have u E H(G) and

J (at7DjuDih + bhDu + cuh) dx	cruh ds = f fh dx 

for any h e V(G). 

(P*) Find v E H such that for any bounded subdomain C of ci we have v e H(G) and

I
(a'i DvDh + bt hDv + cvh) dx +f avhds = ff*hdx 

for any h E V(G). 
Existence, uniqueness and symmetry properties of the solutions of the problems 

(P)and (P) are given in the following
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Lemma 2: Let Q, f and f be as in the Assumptions. Then there exist solutions of 
the problems (F) and (P). The functions u,v are unique up to a constant, if conditions 
(7) and (8) are satisfied, and are unique otherwise. Further, if f is symmetric in y, so 
is also u and Du(x) = 0 on S_ US. If f is antisymmetric (odd) in y, so is also u°and 
u = 0 on S_ U S.., if we demand fo, u(x) dx = 0 in case that (7) and (8) are satisfied. 
Finally we have v = v in Sli. 

Proof: The idea is to transform the problems (P) and (P*) into known boundary 
value problems in the domain Q 1 by means of a suitable decomposition of their solutions. 
To this we introduce the spaces 

vi ={vEc'(c i )nc(i i ur i ):v=o near ri} 

V2 = { v E V1 : v = 0 near s_ u s+} 
H1 = closure of V1 in W"2(c11) 
H2 = closure of V2 in W'2(c11) 

the bilinear form 

£(u, h) =f(a 1) Dj uDi h + b'hDu + cuh) dx +f atzhds (u, h E W"2(f1)) 

and decompose the function f into its symmetric and antisymmetric part: 

fi (x) = (f(x',y) + f(x',Ty))
(x e il') 

12(x) = (f(x',y) - f(x')_y)) 

We consider the following boundary value problems: 

(P k ) Find Uk € Hk such that 

£(uk,h) _— Jfkhdx for any h  11k	(k = 1, 2). 

Note that the functions U k (k = 1,2) satisfy in a weak sense the equations 

Lu k = fk in Q 1 , Buk=0 on E l , Uk=O onr 1	(k=1,2)	(13) 
Ou 
31' = 0, u2 = 0	on S_u S+.	 (14) 

From (2: p.215 if.] and (4) - (8) we can conclude that the solutions of the problems 
(P1 ) and (P2 ) exist. The function u2 is unique. Further, the function u 1 is unique 
up to a constant, if (7) and (8) are satisfied, and is unique otherwise. Finally in view 
of (6), the symmetry of Ii and the antisymmetry of 12 it follows through comparison 
considerations that u i is symmetric (even) and u2 is antisymmetric (odd) in y.

(12)
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We continue the functions fk and Uk onto the infinite cylinder Q analogously as I 
by (9) and conclude from the boundary conditions on S_ U S that the functions Uk are 
in W1,2 (G) and satisfy Lu k = 1k weakly in any bounded subdomain C of Q, i.e. they 
are solutions of the problem (P) with the function I replaced by 1k (k = 1, 2). Now it 
is easy to see that the function u u 1 + U2 is a solution of problem (P). 

Reversely we can decompose any solution of problem (P) into its symmetric and 
antisymmetric part analogously as f in S2 1 by formula (12), and then identify these 
parts as solutions of the above problems (P 1 ) and (P 2 ). This yields the uniqueness 
properties of u. 

If f is symmetric in y, then 12 and u2 vanish. If f is antisymmetric in y, then 
fi vanishes, which means that u 1 vanishes in the case that (7) is not satisfied and is 
constant if (7) and (8) are valid. This yields the symmetry properties from the assertion. 

Obviously we can replace the function I by f* in the above considerations. Since 
also v = v 1 , it follows from comparison considerations that v = v in Q 1 I 

Remark 1: The non-uniqueness of the solutions u and v in the case of pure Neu-
mann boundary conditions on t311 (i.e. (7) and (8) are satisfied) can be easily removed, 
if we demand

fu(x)dx=fv(x)dx=O.	 (15) 

Now let g(x; ) denote the Greens function associated with the the boundary value 
problem ( P2 ), i.e. with the operator L in Qi and the mixed Robin-Dirichiet boundary 
conditions on r 1 u E i and Neumann boundary conditions on S_ U 5+ (see (13),(14)). 
More precisely we demand that for any x E li and h E V1 

£(h, g(x; . )) = h(x) - { (L'3 (c1 1 )Y f 1 h() dC if (7) is satisfied	(16) 
0	 otherwise. 

Note that g is unique up to a constant, if (7) is satisfied, and is unique otherwise. 
We normalize in the first case: fill g(x; ) d = 0, x E 

Now exploiting the periodicity of the solutions, we derive a special representation 
formula for u and v. 

Lemma 3: Let u,v be the solutions of the problems (P) and (P*), respectively, 
which are normalized by (15) in the case that (7) and (8) are satisfied. Then 

U(X) =Jg(x',0;)f(e',y + q)d	 (17) 

V(X) =Jg(xl,0;)f*(e1,y+17)de	 (18) 

for all x E Qi. 

Proof: We fix some Yo E (—p, +p) and introduce the functions 

i(x',y)=u(x',y+yo)	and	J(x',y)=f(x',y+yo)	(x€Qi.
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Clearly, Ii is a solution of the problem (F) with the function f replaced by f. Again 
we decompose i into its symmetric and antisymmetric parts ij and respectively, 
analogously as the function f in (12). Then we conclude that 

I1T(x',y) = fg(x',;e)J(e)de	(x € ç ' ).	 (19) 

Note, that if (7) and (8) are satisfied, formula (19) yields a solution which is normal-
ized by fnl 111(x) dx = 0. Further, from comparison considerations we conclude that 
g(x', 0; . ) is symmetric (even) in the variable i, i.e. 

= 9(x',0;',—)	( E Q1, x' E 

Since j (e',i) is odd in the variable ij, we get from this 

	

= 0.	 (20) 

Now adding (19) with y = 0 and (20), and taking into account that 1l(x',0) = 0, we 
conclude that

1i(x',O) =fg(x',0;)J()d	(x' E a') .	 (21) 

If we set Yo = y in (21), then (17) follows in view of the definition of ii and f . Analogously 
we can derive formula (18) U 

Now we are in a position to prove the main result of the paper. 

Theorem: Let cz,f,f* be as in the Assumptions, and let u,v be solutions of the 
problems (P) and (P), respectively. Then if (7) is not satisfied we have 

v(x',p)	u(x)	v(x',O)	(x E l ' )	 (22) 
inf{v(x) : x E }	inf{u(x) : x E 1?} 

	

sup{u(x) x E } <sup{v(x) : x E }	 (23) 
I U IIL OO (fl) < IIvIIL(c) 0	 (24) 

osc u < oscci V.	 (25) 

If (7) and (8) are satisfied, then (25) follows, and the relations (22) - (24) remain valid 
for solutions u, v which are normalized by (15). 

Remark 2: If we choose n = 2,L = —L,p = 1,l' = (0,1),f symmetric in y and 
assume that (7) and (8) are satisfied, then it follows from Lemma 2 that u, v satisfy (1), 
and we get the assertion (2) from (25). 

Proof of the Theorem: Let u,v be normalized by (15) in the case that (7) and 
(8) are satisfied. We fix some x E Q, and set 

f(C, y + q) = F()	and	g(x',0;',i) = G().
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From (16) we see that G can be approximated by solutions of the adjoint boundary 
value problems of (Pi): 

(i) £(hwvn)Jfmhdx	(hEVi) 
al 

with smooth functions fm = f (m = 1,2,...) such that 

Wm -i G	a.e. in 9 1 as m -, 00.	 (26) 

As in the proof of Lemma 2 we can conclude by comparison considerations that Wm = 
w,, (m = 1,2 .... ). By (26) it follows then that also G = G. Further we have 

F(e)=f*(e)	and	F.(e)=f*(e,±p+r1). 

Then applying (3) with M = M* = Qo we obtain (22) by Lemma 3. The relations (23) 
- (25) are immediate consequences. I 

Remark 3: If we assume that &',b' e Co " (Q'), then we can conclude (compare 
with [2: Theorem 8.8]) that u,v E W 2 ' 2 (M) for any bounded subdomain M CC Q, and 
the equations (10) are valid throughout Q I 

Remark 4: Let be 0 < c < 1 and 911 of class C, at',b' E C"°() (i,j = 
1,... ,n),c,f E C0(), a E C 1 '(). Then we can conclude that also f E 
and that the solution u,v of the problems (P) and (p*), respectively, are in C2 '°() fl 
C'(cl U E) fl C0() (see [2: Theorem 6.31]). 
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