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On Fundamental. Solutions
‘ of the
Heat Conduction Difference Operator

K. Giirlebeck and A. Hommel

Abstract. It is the aim of the paper to investigate fundamental solutions for the difference
operator of heat conduction in the explicit and also in the implicit case. The existence of
fundamental solutions will be shown in a constructive way. In both cases the convergence of
the discrete fundamental solutions to the continuous fundamental solution will be investigated
in the discrete [;-space. ‘ i
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1. Introduction

The method to solve problems of mathematical physics using potential theory is well
known. For constructive analytical considerations and also in the case of numerical
applications it is necessary to have an explicit expression of the fundamental solution
or of the Green function. In the most cases there will be a projection of the obtained
operator equation into a finite-dimensional space to get an equation which can be solved
explicitly. After the discretization one has to accept a loss of information concerning for
instance algebraic properties of the operators which are very useful in potential theory.

Another method consists in the direct discretization of the partial differential equa-
tion for instance by a finite difference approximation. There are many connections
between the differential equation and the finite difference equation. For a long time
there was also the question if it is possible to develop a potential theory for difference
operators. Of course even in the discrete case a potential theoretic approach makes
sense only if it is possible to obtain explicit expressions for fundamental solutions of the
partial difference operators. First answers were given already in [2], some special elliptic
operators were discussed in [3] and {4]. In the fundamental paper [9] the case of more
general elliptic difference operators is treated and a lot of tools for further investigations
and for the rcpresentation of fundamental solutions in standard situations were given.
A detailed discussion of a discrete potential theory basing on the concept of a discrete

Green function is given in [7]. Further results in this direction are contained in the
papers [1] and [10]. '
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Parabolic operators has not yet received so much attention. In the paper [6] we
can find a discussion of fundamental solutions of difference operators in the distribution
space D’. This space is not adapted to the discussion of a finite difference scheme where
the operators and functions are connected with a fixed lattice. Other approaches to the
topic use algebraic tools [12] or the authors work on networks and graphs [5]. In these
cases there are some difficulties to prove convergence results.

In our paper we will prove the existence and the uniqueness of a fundamental solution
for the explicit and for the implicit difference operator of heat conduction. We show that
these fundamental solutions belong to the space 1{°°(IR? x Rj,). At the end we shall
prove the convergence of the discrete fundamental solutions to the known fundamental
solution of the differential operator with respect to the /;-norm if time step and mesh
width tend to zero.

2. Explicit difference equation

2.1 Fundamental solution. Let R} = {z = (z1,z;) : 2y = kh and z, = jh
(k,j € Z)} and Ry, = {t = lhy : l € IN)}. In the following we consider functions defined
on the lattices R}, Ry, and IR} x IRy, respectively. We define discrete I;-spaces in
the usual way:

feW(R) <= lflluwmn= Y, If@)Ih < oo
zER:

feh(Ry) = Iflum,)= Y If)h < oo.
tER,,

Further, we use the notations

[k ifz=(0,0) [ =0
s ={§ H RV = w0={F LIk

for the discrete Delta function. The Heaviside function will be denoted by © = O().
We study the explicit difference equation
((=a®An + DY) Er) (2,1) = ba,p,(2,t) = 6a(2)8n, (1)
_ { i if (z,t) = (0,0,0) (1)
0 if (z,t) # (0,0,0)
where

(AhEh)(xxt)_ = ﬁ __4Eh(zlyx2)t) + Eh(xl + hy .’Ez,t)

+ Ex(z1 — h,z2,t) + Ep(z1,22 + A, t) +.'Eh($1,iz — h,t)

and : ) )
(D} En)(az, 1) = 711: Ba(z,t +hi) = Ba(z,1)].
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If equation (1) has a solution Ej it is called fundamental solution of the explicit heat
conduction difference operator. We will omit here a general discussion in discrete spaces
of distributions (see, e.g., [12]) because on the one hand we want to underline the analogy
to the continuous case where the fundamental solution is a L{°*-function. On the other
hand we are interested in convergence results in norms as strong as possible. Therefore
we investigate if Ej, belongs to the space I{°(IR? x Ry, ). If we assume for the moment
that Ex(-,t) € [;(IR2) for all t € IRs, we can apply the discrete Fourier transform (see,
e.g., (9] for [,(IR})) with respect to z:

% S En(z,t)e*¢ in Q4
(FAEn)(E,t) =8 7 2l
’ 0 “in R?\ Q4
where

Q={t=@)eR: -T<t,6<+7}.

Introducing the abbreviation
4 (. 2hE | . 2 RG
2 _ 2 2
d" = 0 (sm 2 + sin )

we get the equation
1
(a®d®*FaEn + D}t FhEn) (£,t) = 2200 (X, (€)
which has the solution ‘ '
1 t/he~1
(FRBn)(E,1) = 5-0(1) (1 - a*d®h) "™ ™ x,(6). 2

The above used notation x, stands for the characteristic function of Q. In all what
follows we denote by R, f the restriction of a function f defined on IR? to the lattice
IR2. We write Sh,g to designate the restriction of g defined on IR' to IRs,. Then, using
the inverse Fourier transform (see [9])

F' = RyF where (Fu)(z) = 51— / u(f)e"*¢d¢
L sz
we obtain

En(z,t) = O(t) ((1 + a*"h.Ah)'/"*-la,.) (z)- 7 (3)

Obviously the support of E(z,t) is contained only in a cone and therefore the obtained
solution belongs to the above mentioned space.

2.2 Convergence. We shall study now the behaviour of the fundamental solution (3)
if h and h, tend to zero. For this purpose we rewrite equation (1) for ¢t > 0 in the form

4a%h :
En(zy,z2,t + he) = (l - ahz t) Eyx(z1,z2,t)
2h . .
+ % [E;.(zl + h,zz,t) + E;,(:cl - h,xz,t) (4)

' + Eh(zl’zz + h"t) + Eh(ll,zz - h)t)
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and we assume that h;/h? < 1/4a%. Because Ej(z, t) is supported in a cone we can use

the maximum principle (see [8]) to show that Ex(z,t) > 0 for each z and ¢. Then from
(3) and (4) it follows

IEACt + Re)lli, (m2y = IEAC: Olleyrzy = IERC, he)lliy(mzy = 1.

Let G C IR? be a bounded domain. Then G4 = (G N R2) C IR} will be called bounded
discrete domain. Further, let Ty = lyhy, with Iy € IN. By addltlon with respect to t we
get the estimation

lo

Bl (Gaxio 7)) < 1Bl (2 x(o,70]) = Z he = Tp. ()
=1

Now we consider the continuous fundamental solution
(t) -
E(z.t) = |z]?/4a? t
(e.0) = o,
We get

(k2 2/4a
IRRE(-, t)|l1,(Gay < O() z __t (K*+5%)h%/4a’tp2

. '} Z .
2
_ 1 _k*h?/4a%

keZ

. 2
h >, 1 2,2 2
= Ot __+2§ __—kh/4ath
.( ) (2a\/7rt = _Za\/wte

' h 1 24,2 :
< o(t 2 ALY
< 6(t) (20\/# + 2av/w ¢ y)

0

‘g o(t) (ﬁﬁ + 1)2

and furthermore, under the assumption h?/h, < C},

o~
o~

h\/_ h? h? 1
|Sh, RaEllt Gy xjo.1o)) € To + —= / + == / < dt
: 4a2 4a?w | ¢t
aves a\/_ \/_ 4
T R T, - : (6)
< —_— —_—
To + + 40,2 ln ht .
<Tp + —\/ Ty +
From (5) and (6) we conclude
2h C
Ey — < To + ——To. 7
” h s"'R"E”:,(Gb x[0,To]) — 2ho + = ay/m iy 4a’w ()



On Fundamental Solutions 429
The inequality (7) describes the approximation error of the fundamental solution (3)

for small values of the time variable.
In the following we study

”E,.(.,z) - s,,‘R,.E(.,t)\

L(G»)
for t > Tp. Let

A(Gh)= ) K.

z2€G,
Then we have
||E,,(-, t) — Sh, R,,E(-,t)”ll(ch)
< A(Gh) ma.xlEh(x,t) — Sh, R,.E(z,t)\
T€G)

(8)
= A(Gh) max ‘(R,,FF,.E,,)(x,t) - (S,.,R;.FF"E)(z,t)I
A ) . )
1
< —A HFE 4 t) —(Sx, F'E t” .
S 5 A(GH)||[(FaEn)(t) — (S, QL)
In R? \ Q4 it follows from inequality (8)
|EBC = S ET B, o = ISR ETEXG D v
_ O() || -a2e?e
C 2n He Ly (R*\Q) ®)
< e(t) e—a’wzt/h’
~ 2a?t '
In Q, we use the estimation
(FREn)(-,t) = (Sn FT'E)(-,1)
L (Qn)
S0y s
2m Ly(Qn) (10)
< o) (H(l — a?d?h)Me - e—a’d’t
- 27 L1(Qn)
’ + He—a’dzl _ e—a’]f[’t )
L1(Qn)
First we consider the expression
He—aadzt _ e—a’|€|’t .
L1(Qn)

From

4 [ ., h& . o h&, h? h?
2 _ 22 _ 2 2 2 RT 4 4 "
6 = & = 161 - 5 (sin* "ot +sin? 22 ) < Tocel + €D < 5l



430 K. Gurlebeck and A. Hommel

and d? > (4/7?)|€|* we obtain -

|e-a’d’t _ e—a’|£|’t| < at (|§|2 _ dg) e-—a’d’t < a’th?

21124 /02
_|§|4e—4a 1€}°t/m
12

and
V2r/h w/2

aztAh,2 2.2 2 h2
< rie~te T dodr < Cy—. 11
L@y~ 3 / / =" 1y

o292 _a?(f]2
Head:_eamt

r=0 =0

Now we deal with the expression

H(l —a2d2h¢)t/h'_l _ e—azdzt

L1(Qn)

in inequality (10). From the inequality (1 + 1)* < e < (1 + 1)**! for real numbers
z > 0 we come to

t/h,—a’d?t

(1- azdzh‘)t/h, < -t (1- agdghl) <(1- a2d2h,)'/"‘_“’|5'" (12)

provided that h, < h?/8a’. We mention that

h? K% 4 hé h¢
2 42 2 2 — in2 61 in? 252 ) <
adh,<ad8a2 3 7 (sm 5 + sin 5 >_1.

First we restrict our consideration to the case || < 1/a?t. Then the inequality
(1 — a?d?h,) ™7 < (1 = g2d2h,) M
is valid. From (12) it follows

‘(1 - azdzf‘lc)“/h;_l —ematd (1- a2dzht)t/h‘_1 — ealdt

= c(t/h.—l)ln(l—a’d’h,) _ e—a’d’z < e-(z/h,-])a’d’h, _ e—a’d’:

— e—a’d’t i (azdzhg)-" < azd'lh, —'n’d’t.

n! ~ 1—a%d?h,
n=1

For
£€Qin={(,6) € Qn:lE]* <1/a%t}

we use the estimations

<P and  d® > (4/7)|¢)%
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If we suppose h¢ < h%/3a?n? < h?/8a?, then we can show

h? h? 4 h¢ hé 8 3
242 22 0 % 7 (o2 281 4 gn2 252 L 2
a‘d“hy < a*d 30Tt = 32 B2 (sm 5 + sin > ) < <

and

l—azdzh(<7r2—3<2 (13)

such that
/ l(l —atdhy) M 6_"242"4{ < 2a%h, / e~4oIE1 /7 g2 g

Qi
1/avt n/2

< 8a2h¢ / / —4a?r?t/n? 3d§0df‘ (14)

r=0 =0

he
< Cst—2
Now we pass on to the case |£|? > 1/a?t. Then the inequality
(1 _a2d2h )t/h‘ ( 2d2h )‘/h"'l ( _a2d2hl)‘/hi"¢2|5|2‘

is valid. From (12) we obtain

t/he—1 —a24d?
/he _ecdl

|(1- a?dhy)
<(1- a’dzh‘)‘/h'_“zm:' - (1= ad2h)'™
=(1- azdzh‘)'/hx—a’lél?t (1 _ (1'_ a2d2h,)“’|€|z')
< = (1—a2d?hy) /Mo ((1 adhy)* ")

= e (1 - aPathy) S (R

n

n=1

242h c=a?lel?
< lefty T (1 - atd?h) T

Using the inequalities d? < |£|? and d? > (4/2)|¢|? in Q4 and (13) for hy < h?/37%a?
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we get

/ (1= a?dh) /T - emot g

Qn\Qua 4
< 2(14”1( / e(t/k,—a’|€|7l)ln(l—u’dzh,)léri d{

Qa\Qu,n
< 2a4th, / e—(t/ln—a’l{l’t)a’d’h, |£|4 df
Qh\Ql,h‘ (15)
< 2a*th, / e~ (/m)a el (3/xa 6D | 4 g
' Qu\Qi,n
V2r/h =[2
< 8a'th, / /e'“z'zt/"zrsdgodr
r=1/aVt¥=0
W
< C4—t
The inequalities (14) and (15) prove
_ h
1—a2d?h)"™ 7 - e—ﬂ"*"” < Cst 16
”( 0 Li@w = e (16)
and from (10), (11) and (16) we get the result
e - 9
FyEy) (- t) — (FTIE)(t — .
[z - om0, < S (czt + 0oyt

Finally, by the help of (8) and (9) we conclude

@t h? h T _a2n2/n?
1(r2)A(Gh) (Czt—2 +C5t—;‘ + ——e t/h ) .

|8, ) = (RaEY 1) -

l(G)

A summing-up with respect to the time variable leads to the estimation

HE;, — Sp.RAE

Ill(Gh x(To,00))

A(Gh) - . L o —a?nih /h?
<——47r2 <(C5+C2 ) ,Z: (1_11> aglolz e

=lo+1

A(Gr) (( )1 T et T h N [ atth ) -
< Cs+Co— ) —+ e 277 e~ ™ hd

4 2 V Io 0,210 nz=:l( ) (17)

A(Gh) h? TR e
< an? (Cs +CzT oZlo a—zwzhtc

A(G
< (“%@m+cw%

2

=C7ﬁ+CBFo
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Using the inequalities (7) and (17) we obtain the general estimation
||E,, - s,,,R,,E“ <OTy + ——\/To +CiTo+ c7 + c8 (18)

L(GrxRy,)

For the purpose of our convergence theorem we require h < ho , where ho is an arbltra.ry
constant. Now we can formulate the following convergence theorem.

Theorem 1: Let 1/C, < h/h* < 1/3n%a%: Then there is valid the convergence
”E,,—S;,‘R,,EH —+0  forh—0, he — 0.
1, (G x[0,00)) .
Proof: We prove that for arbitrary € > 0 there exists a constant h* > 0 such that
for all A < min{h*,ho} and for all h, < h?/3n%a? it follows :

o~ s
: 1,(Ghx x[0,00))
We choose .
(V& +5 @+ %) - 2)
T = ez
2+ 33)
and

‘h* = min £ - To ,\/;n' a? — T
4 5y +Co 2

To is not necessary a point of the lattice IR,,. We define

TS =Ty + ah: and o =To— (1 —a)h with o € [0,1)
such that Ty" € Ry, and Ty~ € R, . Obv1ously, we have
|21 su. ] < [[2s - i ],

1, (G x[0,00)) l(Gp.x[O'I‘ )]

s, gy
1(Gh X (Ty )

Now a simple estimation using (7) and (17) shows that the right-hand side of the last
inequality is bounded by ¢ 1

Remark 1: Let hy < h2/37r2a2. In addition to the above considerations we get

“E,, - 5,,,12,,13” : < oo
1 (R2 x[0,T1])

for each fixed T\ € Ry, .

Proof: Using (5) we have A||Eh||,l(m:x[0,r~rl]) = T,. Repeating the considerations
which lead to (6) we receive

IRREC, )]l cmz) = O(8) > me—(k’+)’)h7/4a%h2 <o) (
kjEZ

h 2

+1
2a\/7r—t )
hence

. : : 2h S O
”5"tR"E”I,(IR,’.x(O,T|]) <T) + m\/fﬂ +C, mT].

Combining these results we can finish the proof B
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3. Implicit difference equation

In this section we consider the implicit difference equation
(=a*AnEx)(z,t + he) + (DY En)(z,t) = 6n(<)én, (t).

Using the discrete Fourier transform again we find the solution
1 2 323 \~t/h
(FaBw)E,) = 5-0(1) (1+ a*dhe) ™™ x, (6)

in analogy to (2). Finally, we get the following system of equations to calculate Ei(z,t):

Eu(z,0)=0 for ze€ R?
((1 - a®heAn) Eb) (z,he) = 64(z) for ze€ R2 - (19)
((1 - azh,Ah) E;,) (z,t + he) = Ep(z,t) for z € Ri,t € Ry, ,t > hy.
We note that it is also possible to describe the fundamental solution by application of
RLF:
En(z,t) = Ry F (%@(t) (1+ azdzh.)_‘/h‘ X (5)) (z,1).

Of course, this is only a formal description of Ej and we shall now investigate existence
and regularity more precisely.

3.1 Existence of the fundamental solution. First we have the following three
lemmas. '

Lemma 1: Let fy be an arbitrary bounded function. Then the equation
(1 - azh,Ah) va(z) = fa(z) for allz € R} (20)

has a unique solution vy.

Proof: By the help of discrete Fourier transform we get the fundamental solution
e of the operator (1 — azhtA;.) in the form

1 1 ;
— —t:Ed
() = 5oy / Tradh %
[~ x /b /h)?

Because 1 + a?d*h, # 0 for all £ € IR? we can deduce from the corresponding result in
(1] that

len(z)| < Ke~el (21)

where the constants K > 0 and ¢ > 0 may depend on k,. Furthermore, for bounded fr
we get the unique bounded solution of equation (20) in the form va(z) = ex(z)* fa(z) =

> er(fu(z —y)R® u

yER?
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Lemma 2: If fy € ,(IR}), then vy € [,(R2).

Proof: Let ||fh||1.(1n:) < K,. Then we can estimate

Y loa(z)Ik?

YLD enw)falz — y)h?|p?

zEIR: zem’?‘ yem:
< Z (|e;.(y)|h2 Z |fh(x—y)|h2)
yER} zeR?
= > {les@In® Y |fh(2)|h2)
yER] z€R?
S Ky ) lea(y)ln”.
yER]
From (21) it follows
Ki 3 lea@)h? < KKy 3 e elIn?
vER] yeR:
= K2 (4 Z z e-C|y|h2 +4 Z C—Cy]hz + hg)
n=1y2=1 yi=1
o0 o0 o
K, (4 / / G_Cl!’ldygdyl + 4h / C_Cy'dy1+h2)
$1=0y2=0 y1=0
< K3

and the statement is proved #

We remark that (1—a2h:A;) is a Toeplitz operator and that we proved the inclusion
(1 —ahAn)! € L(L(RE), L(RY)).

Lemma 3: If |fa(z)| < Kie 1%l and |ep(z)| < ng""" with 0 < ¢; < ¢z, then
lva(z)| £ Kse~(a1=9lzl for gll e > 0.

Proof: We start with

> en(v)fa(z — y)b?

et 7lfua()| = el
’ yeER}

< el ( Sl =R+ S lea@)l Ifa(z —y)lhz) :

y:ly|<|z| yilyl>1z|
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In case |y| < |z| it follows from the assumption that:

e 3" Jen()l Ifalz — y)Ih?

v:lyI<|z|
< K, Z |Ch(y)|6“(|x|_|z_yl)h2SK] Z leh(y)lec"ylhz

v:lyI<lz| v:lyl<iz|
S KKy ) eMletednz < gk, ST a2
RALASE] _ . y:lyl<lz|
2r z|
< KK, / /rdrd<p=K3|1:|2.

@=0r=0

In case |y| > |z| we have

et S Jen(w)l falz - )lh?

vily|>|z]
<Ky Y enblemablify(z — y)pn?

vlvl>lsl

< K, Z ecz(lzl—lyl)|fh(z _ y)|h2
vily|>|z}

SK: ) Ifa(e — )W < Kol fully,(ms) = Ka
yv:lyl>|z|

such that , .
loa(z)| < Ks|z|?e1#l 4 K e—crlzl,

Finally, we are looking for constants a; and as such that |:t|26""“|"l < aye~@2lzl Let us
take az = ¢ — ¢ with ¢ > 0. Then we have only to fulfil the inequality |z|2e¢l*] < a
with a suitably chosen a;. This is easy to prove and we get the desired estimation

loa(z)] < Kse~(a=olz| g

Theorem 2: The system (19) has a unique solution E) and for arbitrary T < oo

it holds E}, € I;(IR% x [0, T)).

Proof: The assertion follows from Lemmas 1 - 3. We remark that the considera-
tions in Lemma 3 can be repeated as long as necessary. An estimation of the {;-norm

with respect to t is possible because the number of time steps is bounded ®

3.2 Convergence. For t = 0 we can write the difference equation in the form

4a%h 2p ’
(1 + (;12 ‘) Eh(-’lfl,lz,hg) = 6h(1') + %(Eh(itl + h,.‘Cz,hg) + Eh(.‘cl — h,.’l:g,hg)

+ Ea(e1,22 + h, hi) + En(21,22 — b, he)).
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Using Lemma 2 we get -

he
(1 + 3 ) Y 1Bz, ho)lh? < 1+ 4“ 2 S Bz, ho)lh?

zER} z€R?

which implies
ER(, ho)lliy(m2y < 1.

In the same way we prove the inequality
NEr(z,t + Rl (r2y < IEA(z, )i, (r2)
for each t > h, starting with the corresponding equations in (19). We obtain

lo

IEall(Gnxo, 7o S N Emll (R oo S D he =To
=1

From (6), under the assumption hz/h; < C, there follows

“E" ~ShBE H 1.(Gh x[0, To]) 2To + —\/ITO+ Citra

Now we study

ORS00

for t > Tp. In order to estimate the right-hand side of (8) we consider

HFhEh(':t) - F_IE("t)”L;(Qn)'

We get
([N O Gas 2/ M

e(t) -t/ht —a?d?
R

+ “e—azdzl _ e—a’|{|2t

Li(Qn)

Ln(Qn))
in analogy to (10). We now estimate

"(1 +a%d? )M - e-_",d?“ .
Li(Qn)

From
(1 +a2d2h.)—'/"‘ _ e-(t/h,)ln(1+a’_d’h.) > e-a’d'z

437

(22)

(23)
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it follows
|(1 + a?d?h,) "M et

= (1+a?d?h) "M — emat
® (- In(1 4 a®d?h,) + a?d?t)"

- e—azdzt § he
n!

n=1

IN

t

= (—hL In (1 + azdzh,) + azdzt) (1 + a2d2ht)_1/’h
t
< L azdzht
- hl 1 + azdzh(
= a4d4hgt (1 + a2d2h1)—t/h‘-l .
Using the inequalities d* < |€|2 and d? > (4/72)|€|? in Qx we get for t > 2h,

/ |(1 4+ a2dh) ™M — et ag
Qa

4 —t/he—1
<aha [l (1 ; a’—2|e|2ht) de
™
Qn

V2r/h n/2

—t/hi—1
< 4a'ht / / (1 +a? —r ) rSdpdr

r=0 =0
he _

(t = he)(t - 2h,)

and by the help of (8), (9), (11) and (23) we find

|E4C.0) — (Sn RaEY )|

@(i) hg l _az,rz'/hz)
S gz AGh) ( 7 T 0 (t = he)(t — 2he) e '

Furthermore, we can estimate in the same way as in (17)

+ azdzt) (1+ a*d?h,) "™

< Cy

ll(Gh)

||E,. N

Ih(Gh x[To,00))

A(Gh) (c6 )
< == +Co Z
an? | v11+1(l—1)(l—2)
A(Gh) [ Ceh? 1
< 47!'2 ( To + CQ 10 - 1)
h? he
- CIOTO

(24)
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From (22) and (24) we obtain

Ey — E
H h = Sh, R ”ll(G;.x[O.oo)) (25)
2h Cl hy
T T
a/r o+ o+Clo +C“To—h,

If we require h < hy and h?/h; < C}, then we can prove

<2T) + —

Theorem 3: For h — 0, hy — 0 we have the convergence

oo,

Proof: We have to show that for arbitrary ¢ > 0 there exist A* > 0 and h} > 0
such that for all A < min(h*, ho) and h; < h it follows

HE,, - s,.,R,.E" <
L(Gx x[0,00))

We take Tp as in the proof of Theorem 1, and

. € To To e Ty
hy = A LE—— d R =,/ =2,
t mln{4 C”+€/2’ 2} an

Using (22) for Tyt = Ty + ah and (24) for T, = Tp — (1 — a)h, with a € [0,1) such
that To+, T, € IRy, we obtain the desired result &

4. Final remarks

The difference between the convergence results in Theorem 1 and Theorem 3 is based
on the condition

hy < h?/3n%a®

This condition is stronger than the known stability condition (see, e.g., [8]) for the
explicit difference scheme. In our case one has to take into consideration that we solved
an initial value problem in an unbounded domain. The condition h, < h?/372a? can be
improved. Therefore we have to use the restriction |£|? < 1/4a%t in the proof of (13).
For the sake of brevity we omitted this consideration.

The technical condition h%/k, < C; does not restrict numerical calculations.

Using the above norms it is difficult to describe the order of convergence near the
point t = 0. Nevertheless, the global result can be improved. We choose Ty = jovR:
with a sufficiently large jo € IN and take into consideration h?/h; < C;. Then we follow
the same way as in the proofs of Theorem 1 and Theorem 3 and we obtain

= 0(h+ V).

|- s
LW(GyxRy,)
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If we return to the idea of a fixed T, then from (17) and (24) it follows for an arbitrary
T>0

HE,, — S, R,.E” = o(h2 + h,).

L(Ghx(T,00))

Fufthermore, using uniform norms we can prove by the help of (8), (9), (11) and (16)
that

h2
E t -F tl R? he + —
(o€ Rioonmay M0 B < ’T’ (C2 T Cshet g )

= O(h2 + h,).

First numerical tests underline the theoretical results.

If we apply discrete potential theory to the solution of a boundary value or an
initial value problem the result will be a discrete potential with known density defined
on the lattice. At the end we have to compare the approximate solution with the exact
solution in continuous spaces. In the language of projection methods an extension (by
interpolation) of lattice functions to functions defined in G x [0, 00) is necessary. The
main problem in our case is to find an appropriate extension of the discrete fundamental
solution. Therefore we use the interpolation operator I, = FF}, investigated in [9] and
the above mentioned property Ry F = (Fi)~'. We obtain that FFyE} is an (entire
analytic) extension of Ex. Then, using A(G) = [ dz we get similar as in (8)

G

HF‘F;,E,,(~,t) - E(-,t)HLl(G) < A(G)Tgé‘FFhEh(x‘,t) — FFE(z, t)l

< - AG|| (BB - F B,

Starting from (8) we can repeat the considerations which prove (16) and we arrive at
the inequality

EON

”FF"E"("t) h E("t)“L (G) ~ 471'2

AG) (Cz— oL . /h) .

A simple integration with respect to t leads to the estimate

 h?

HFF,,E;,—E” +Cig

p et
Li(Gx(To,oo) — ' To

Hence, the rate of convergence in the continuous L,-norm coincides with the rate of
convergence in the discrete [)-norm.

It is also possible to consider the convergence in I, and Ly, respectively. In this case
we can replace the domain G by R% but one has to accept a loss of convergence rate.
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