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The Smoothness of Solutions
to Nonlinear Weakly Singular Integral Equations

A. Pedas and G. Vainikko

Abstract. The differential properties of a solution of a nonlinear multidimensional weakly
singular integral equation of the Uryson type on an open bounded set G C IR" are examined.
Showing that the solution belongs to special weighted space of smooth functions, the growth
of the derivatives near the boundary is described.
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1. Introduction

The construction of effective numerical methods for solving weakly singular integral
equations in a region G C IR™ is impossible without taking into account the singularities
of the derivatives of the solution near the boundary dG. The presence of singularities
is an elementary fact, but significant difficulties are encountered in describing them
precisely and proving the corresponding assertions. ‘The case of one-dimensional integral
equations was analyzed by Richter [9] , Pedas [6], Schneider [10], Vainikko and Pedas
[14], Graham (1], Vainikko, Pedas and Uba {15], Kaneko, Noren and Xu [2], and Kangro
[3]. The case of multidimensional integral equation was analyzed by Pitkéaranta (7, 8],
Vainikko [11 - 13|, and Kangro (4, 5).

In [11 - 13] estimates for derivatives of a solution to the linear multidimensional
weakly singular integral equation are derived. In many cases these estimates are sharp.
In [12, 13] the main results were extended to nonlinear equations, too, but the proofs
were outlined only on the idea level. In this paper we present a full proof (Sections 4
- 5); the formulation of the main result is given in Section 3. Note that we treat the
Uryson equation which is more general than the Hammerstein equation considered in
(2]. Compared to {2], our result is more complete.

For a linear equation u = Tu+ f, there are at least three different ideas how to show
that the solution belongs to special weighted spaces of smooth functions. Pitkaranta (8]
examined step by step the improving properties of the weakly singular operator T and
obtained that a power of T maps L°(G) (or even L}(G)) into a special weighted space;
this idea may be implemented in the case of nonlinear equations, too. The authors of this
paper (see [6, 11, 14, 15]) used another idea proving that T is compact in appropriate
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weighted spaces; this idea does not work in the case of nonlinear equations. The third
idea elaborated in [13] is based on the "smallness” of (Tou)(z) = Jo K(z,y)u(y)dy,
z € Q, where  C G is a small subregion; the integral over G \  is treated as a part
of the inhomogeneity. This idea can be extended to the case of nonlinear equation, and
we pursue it in the present paper.

2. Integral equation

Consider the nonlinear integral equation

u(z) = /G K(z,y,u@))dy + fz) (z € G) )

where G C IR" is an open bounded set. The kernel K = K(z,y,u) is assumed to
be m times (m > 1) continuously differentiable with respect to z, yand u for z € G,
y € G (z # y) and u € IR whereby there exists a real number v € (=00, n) such that, for
any k € Z; and & = (ay,...,an) € Z}, 8= (P1,...,Bn) € ZT with k+|al+ |8 < m,
the inequalities

o 1 ifv+]al<0
D:Df,, 5 K(z,y,u)| < bi(lul){ 1+ [loglz - yl| if v +a| =0 (2)
¢ |z — y|=¥~lel ifv+|a>0
and | |
anB o anB o*
1Dz Deyy 5Kz, y,m) - D3 Dy g k(z,y,u2)
, , 1. © ifv+laj<o (3
< by(max{luyl, lual})lur —ua2| § 1+ |loglz —y|| ifv+]a|=0
lz — y|~v-lel ifr+|a|>0

hold. The functions b, : Ry — Ry and b, : IRy — IR, are assumed to be monotonically
increasing. Here the following standard conventions are adopted: '

R‘(" = [0, 00), Zy ={0,1,2,...}
|a|=a1+.....+a,, for a=(a,...,a,) € Z}

Clel=y/22+ ... 422 for z=(z1,...,zn) € R"”

3\ 3\
N a pad —— ...
D = (a) (a>
P 9 B p;) 9 Bn
DA, (. 2 e = 4 2 .
=ty (31:1 * 3y1) (az,, * ay,,)
Note that asymmetry of (2) and (3) with respect to z and. y is only seeming: using

the equality 8/30y; = (8/8z; + 8/8y;) — 8/dz; we can deduce from (2) and (3) similar
estimates for D;”Df+y6"IC(:r,y, u)/Ou*.
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Putting k = |a| = |B] = 0, inequality. (2) yields

1 fv<0
IK(z,y,u)l < bi(Jul){ 1+ [loglz —y|| ifv=0 .
|z —y|™¥ ifvr>0

Thus the kernel K may have a weak singularity (v < n). In the case v < 0, the
kernel K is bounded but its derivatives may be singular. In the case of a linear integral
equation K(z,y,u) = K;(z,y)u, and conditions (2) and (3) reduce to a condition for
K, = Ki(z,y) from (11, 13].

3. Main result

Introduce the weight functions

1 fA<0
wi(z) = { (1 + |logp(z)])~* ifA=0 (z € G, e R) (4)
p(z)* ifA>0

where G C IR" is an open bounded set with the boundary 8G and
N ¢} - _
plz)=p"(z) = inf |z -yl (z€C) (5)

is the distance from z to 9G. Define the space C™*(G) as the collection of all m times
continuously differentiable functions u : G — IR (or u : G — C) such that

lullm,y := > sup (wja|—(n-u)(z)|D%u(2)]) < co. (6)
laf<m *€C

In other words, an m times continuously differentiable function u on G belongs tothe
space C™*¥(G) if the growth of its derivatives near the boundary can be estimated as

1 if laj<n-v
|D%u(z)] < const{ 1+ |logp(z)| if la|=n—-v (z € G,|a| <m).
p(z)*~¥~lel ifla]l>n—v '

The space C™*¥(G), equipped with norm (6), is complete (is a Banach space)
Our main result is contained in the following theorem.

Theorem 1. Let G C R" be an open bounded set, f € C™¥(G), and let the kernel
K = K(z,y,u) satisfy conditions (2) and ($). If the integral equation (1) has a solution
u € L*(G), then u € C™*(G).

This theorem was formulated and partly (for m = 2) proved in [13]. A full proof

of Theorem 1 is given in Section 5. Section 4 contains necessary preliminaries for the
proof.

Remark. In Theorem 1 we have not assumed a global or local uniqueness of the
solution to equation (1).
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4. Differentiation of the weakly singular integral
We use the notations
B(z,r) = {y €ER":|z—y|< r} and  S(z,r) = {y €ER":|z -y =r}

for an open ball and a sphere, respectively, in IR". First we present some inequalities
that follow from (2). For k+ |a| + |B| < m,z,Z € G, |T—z| <7, |u| <d,r >0 we
have the inequalities

D"D’g o K(z,y,u)

z+ya 3 dy
GNnB(z,r)
™ ifv+|al<0 (7)
<ebi(d)S ™1+ |logr|) fv+]al=0
rr-v=lal f0<v+|al<n
and
o* 1 ifv+lal<n
}D"Di’ﬂ S K (23,0 dy S coby(d) { 1+ [logr| ifv+lal=n  (8)
G\B(z,r) rimvlel i vt ol > n

where the constants ¢, and c; depend only on n, v and on n, v, diamG, respectively
(by diam G we denote the diameter of G; we assume that r < diam G).

Let @ C G be a domain with a piecewise smooth boundary 89, u € C() N CY(Q),
Ju/dz; € L}(R), and let the kernel K = K(z,y,u) satisfy condltlons (2) and (3) with
m=1. Then (see [11, 13]), for z € Q, »

~ / K(z,y,u(y)) dy
Q

~ [ (52 + 5 ) K@wu@dn + [ Koy utuatw)ds,
Q anN
where w(y) = (w1(y),...,wn(y)) is the unit inner normal to 9 at y € Of.
Now we fix an arbltra.ry point T € G and take a sufficiently small § > 0 such that
B(z,8) C G. Let the kernel K = K(z,y,u) satisfy conditions (2) and (3). Using (9)
with Q@ = B(Z,6) we have for any u € C™*(G)

o [ Kavuw)a

B(z,5) .
d 15]
= / ((ax’ +3 ‘)’C(r,y,u)) dy
B(z,9) u=u(y)
Ou
v [ Zkew ) 5 ey
B(zT,5)

+ / K(z,y,u(y))wi(y)dS
S(%,6)
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and
az, az' /’C(z,y,u(y))dy
B(z,8)
- / K2, (z,y, u(y)) dy
B(z,6)
d
v [ Ziewun P
B(z,6) vi
0
+ [ 2xievunZy ‘y’
B(Z,5)
& du(y) Bu(y)
+ / E‘—zﬁ(.xayau(y)) ayi ayj d
B(T,8)
i} (y)
e
B(z,6)
+ / KX (z, v, u(y)) wj(y) dS,
S(z,5) !
1s]
+ [ eKnu) Bl v s,
5(z,8) v
. 3 :
+ [ gk u) e ds,
S(z.5)
where
a 0 0 0
P —_ — — .
K:,'h.“’,'y(l',y,u)— (axil +3yi,) (azlp + y")lC(z,y,U) (10)

We continue the differentation using (9). By induction we obtain the formula for higher
order derivatives:

i K d
Bz;, Oz, j( (z,y,u(y)) dy
B(%.6)
= [ 2Ky d
B(%,6)
P 6p_k

BRI A— T b N .
+> / Foe By Dt Kz, y, u(y)) wis (v) dSy

(11)

(1 < p < m). Here w(y) = (wi1(y),---,waly)) = (':i" — y)/é is the unit inner normal to
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0B(7,6) = S(Z,6) at y € S(,6), u € C™*(G), and we have used the notation
24 i,,K:(za Y, u(y))

=K} (zy,u(y)

Ou a
+Z ay(,y) {“ ,‘,)\{‘-,,}(:z:,y,u(y))

62“(!! p—2
o (P2 o)

1<,ék<,

Ou(y) du(y) 9°
6yi,‘ ay,f, ﬁ {3,y ip}\(‘j:ik}(_x’y’u(y))

aSu(y) a p-3
> '(ay,»,ay,-,ay;,.a—u’c{i. ,,,,, MNORANCA L))

ik
1<i<k<i<p

+ O%u(y) Bu(y)  u(y) du(y)
ayilayih ayi,' 6yilayi,' ayik

Fu(y) Fu(y) -3
Byi Oy, Oyi, ) Ou? Tt ots N g i} (895 0(9))

au( ) Bu(y) du(y)
3yf 33/3 3yf ou? A A URT :.}( y,u(y)))
(12)
Puly) 8 .
* (m_’c(z y,u(y))

+< O uly) Ou(y)  _ 9" lu(y) Oulv) ...

Oyi, - - Oyi, Oyi, Oy, - 0yi, Oyi, Oyi,
P lu(y) Ou(y) , 9P u(y). 8%u(y)
OYi,, - Oyi, Oy,  Oyi, - Oy, ayuayu
P 2u(y)  8Pu(y)
Byi, -+ - 8yi, Oy, Byi, 0y,
9P u(y) u(y)
Byi,_, -~ Oyi, Oy, - Oyi, ..,
4 (0u) | Ou(y) Su(y)
Oy, Oyi,_, Oyi,0yi,_,
4 9uv) | Guly) Buly) Fu(y) oy
ay. Oyi,_, Oyi,_, ay.,
au(y) Au(y) d%u(y)
e B Gytur ) 5 k)

6”( ) Ou(y) or
6yf 33/3 pur (@ y’“(y))>

+

+

+

)fgx(x,y, )+

IPQ
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p/2 if is even l
where ¢ = {(z{— /2 if D isodd 24 DK(z,yu) = K§(z,y,u) = K(z,y,u).

5. Proof of Theorem 1

Let conditions (2) and (3) be fulfilled, f € C™*(G), and let ug € L*°(G) be a solution
to equation (1). We have to prove that uo € C™*(G).

Fix an arbitrary point z° € G C IR™ and introduce the set = B(z%,r) NG, where
the ball B(z%,r) C R" has a small radius r, 0 < r < p(z0)/2. Thus Q = B(z° r) CcG.
We consider an integral equation on Q:

u(z) = / K(z,v,u(@))dy + falz)  (z € Q) (13)
where !
foe) = f@)+ [ K@wuw)dy (e, (1)
G\

Clearly, ug solves this equation. But we will show also that equation (13) is uniquely
solvable and the solution is as smooth in Q as asserted in Theorem 1. Since z° € G is
arbitrary, it finally proves that ug € C™*(G).

Let us define (cf. (4))

1 for A<0
wl(z) = { (1+log@))™" for A=0  (z€9)

(o (z))* for A>0
where p®(z) is the distance from z € Q to 89 (cf. (5)). Introduce the space C™*(Q2)
with the norm || - ||m,.,0 in a similar way as in Section 3: u € C™*(Q) if
lellmva = 3 sup(wfy-(aon@IDu()) < oo
laj<m ®

An important observation is that fo € C™*¥(2). Indeed, for z € Q and y € G\ Q we
have |z — y| > p?(z) > 0, and we may differentiate the function fG\n K(z,y,uo(y))dy
under the integral sign. The result of differentation

D2 / K(z,y, uo(y)) dy = / D2K(z,y,u0(¥))dy (o] < m)
G\ G\n

is a continuous function on . Further, using (8) we estimate

D2 / K(z, v, u0(y)) dy
G\

< / ID2K (2, y, uo(y))] dy

G\B(z,p%(z))

A 1 iflal <n—v
< consty, ¢ 1+ |logp®(z)| iflaj=n-v (z € Q,]a| <m).
P(z)rv-lel iflal >n—v
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We see that the second term on the right-hand side of (14) belongs to C™*(Q), and
thus fo € C™¥(Q).
Further, define the operators T and Sq, for z € Q, by

(Tow)(@) = [K@yu@)dy  and  (Sau)(e) = (Taw)(&) + fa(e).
e
Denote ||ullo,o = sup,eq |u(z)|. Using (2) and (3) with k = |a| = |8] =0 and (7) it is
easy to check that, for any u,v € L®(Q) with |[u]lo,no < d and ||v||o,n < d, we have
[Taullo,n £ bi(d)e, and |1 Tau — Tavllo.n < b2(d)e,|lu — vllo,0 (15)

where e, — 0 as r — 0. A consequence is that, for sufficiently small r > 0, the operator
Sq maps the ball

Bosa={ueL®®):luloa <d}  (d>llfallon)

into itself and is contractive on it:
lSau — Savllon < gllu —vlloe  forallu,v € Boaa  (¢9<1).

Due to the Banach fixed point theorem, Sg has a unique fixed point in By g 4; we know
this fixed point - it is ug, the solution of equation (1) under consideration. A more
serious consequence of (2) and (3) is that, for sufficiently small r > 0, the operator Sq
maps a closed subset B , 0,44 of the space C™*(Q) into itself and is contractive on
it with respect to a norm ||u||m v,o Which is equxva.lent to the usual norm ||u|m .0 of

Cm U(Q)
Seu — Savllim,u0 < gllu —vllmue forallu,v € Bmygae (9 <1) (16)

We soon present the definitions of the subset By, 0,4,a' as well of the norm ||u||’myﬂ In
order to prove these properties of Sq we have to study various derivatives of the weakly
singular integral. As a first step we note that for any u € C™¥(Q2) the singularities of

the terms
Ou ) du
Ay, Oyi,
du Su 0%u
i, Oyi,_, Oyi, Oyi,_,
Ju orly

Oyi, Oyi, - - Oyi,

in (12) are weaker than the singularity allowed for 8Pu/8y;, - - - Oy, by the definition of
the space C™*():

1 if v<n-1
< const { (1+|logp®(y)|)? if v=n-1
(P )PP if v>n -1

Ouly) . 9uly)

Oy, 9yi,
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and, for p > 2,

Ou(y) Ou(y) &%u(y)
Oyi,  Oyi,., Oyi,0yi,_,

1 if v<n-2
1+|1°gp“(y)| if v=n-2

< const { (p*(y))*~v~ fn-2<v<n-—1
(PH ()" (1 + |log p? (y)|)P~2 if v=n -1
(p(y))p=D)n=r)=p if v>n-1

and, for p > 3,

du(y) O 'u(y)
Oyi, Oy, - Oy,

1 : if v<n—-p+1
1+ |log p®(y)| if v=n—-p+1
< const { (p®(y))r~v—Pt! fn—p+l<v<n—-1
(PPN P14+ logp®(y)l)  if v=n—1
(P (y))2n=)~P if v>n-1

1 if v<n-p

P

‘%'Sconst 1+ |logp®(y)l if v=n-—p .
Yo 11+ i (PP@)"? i v>n—p

Therefore it is sufficient to analyze only the terms with 0Pu/0y;, - - Oy;, in (12) and
(13). Consider any point T € 2 = B(z°,r) and take the ball B(Z, 5) C Q with

_ @
5=2 (17)

Then, for y € B(Z,6) U S(T,6), p?(T) < 2p%(y) < 3p%(Z), and w}(ZF) and w(y) are of
the same order, i.e.

(%)Aw?(f) <u(y) < (g)kw&’(f) (A>0) (18)

Let us estimate the terms on the right-hand side of (11) foru € C™*(G) c C™*(RQ),
lullo.e < d, z € B(Z,6) C Q. First, it follows from (7) and (10) that

Wy_(n-1)(Z) /’Cf.. i (@ yu(y) dy

@8) (19)
& if v<0

< const b (d) { 6"(1 + |logé|) if v=0 .
§n-v if v>0
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Using (7) and (18), for1<j<p<mand{i,...,0;} C{i1,...,%,} we have
E u(y)
p (n— u)(z) / a S AR T ,n }( ,y,u(y)) ” "'6yi,1 dy
(,6)
& if v<oO (20)
< const by (d) { "(1+|logé|) if v=0
sV if v>0
& u(y)

X sup ‘U)) —(n— u)(y)
y€B(7,6)

ayil,» Tt 6yi1l

Here we roughly estimated w;)_("_u)(f) and w;}_(n__y)(f)/w?_(n_y)(5),’ respectively, by
a constant. The area of S(%,6) is equal to 0,6™"!, where o, is the area of the unit
sphere in IR". Using (2) for z =T € B(%,§) we find

/ 63: . ’C(z ¥, u(y))wi, (y)dSy
(%,6) '

1 if v+p—-1<0
Scbl(d)é"_l{l+|10g6| f v+p—1=0
§7v=(-1) if y4p—-1>0

< c'b;(d)(wg_(n_y)(fj)_]

and, after the multiplication by w?_("_y)‘(f), we obtain

Wy (n1)(%) / %—’C(%y,u(y))wn(y)dsy < comstby(d).  (21)
s(z.6) o

Further, using (2) and (18), we estimate, for z = 7 € B(F,6), 2 < k < p < m
1<j<k-1and {il,,---,il,-} C {i],...,ik..l},

/ ot 9
dz,, - 0zsy,, Ou

S(%Z,6)

\

—1-j & u(y)
k
e A L OO eyl
1 if v+p—k<0
Scbl(d)6"'l{1+|log6| if v+p—k=0"
67k i v4p—k>0

& u(y)
Byi,; -+ Byiy,

X sup
y€S(%,6)
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and
ar—k 7]
Wy (n-1)(Z) / dz;, - - 0zi,,, Ou
5(z,8)
k—1—j ‘ aj“(y)
Kl M\ i i} (B 00 8 Wi ) 55" g, 450
j 1
21
§n? if v+p—k<0 (21)
Sc'by(d)§ 6" Y1+ |logé|) if v4p—k=0 "
gn-1-v-ptk if v+p—k>0
Q = .
Wp—(n=)(T) 3’u(y)‘
S sup wil o (y) e wal K
w?—(n—v)(z) y€S(7,5) 3=( ”)( ’ 'ayi‘l

Some trouble causes only the case v + p — k > 0 (the third row in estimation (21)).
If thereby n — 1 — v — p+ k > 0, then we have again no difficulty in estimation (21)
(estimating wg‘_(n_u)(f)/w?_(n_u)(f) coarsely by a constant). Consider the case n —
1-—v—p+k <0. Together with the inequality k¥ > 2 we have then n — v +1 < p.
Therefore wg_(n_y)(f) = (p*(Z))P~(*~*) and, due to (17),

& 1—v—(p—k) P (n— V)(E)

W) (n-1) (%)
(P (z))p~ (") fj<n—v
s { (2@~ (1 + |10 A(@)) if 5 =n v
p=j if -
. (¢"(2)) ifj>n—v (22)
é fj<n-v
{6* (14 |logé]) ifj=n—v
gn-vtk—1- ifj>n-v
1) fj<n-v
'"{5(1+|10g6|) fj=n—-v.
énv fj>n—-v

It follows from (11), (12) and (19) - (22) that, for z = T € B(%,§) C Q,

2 = or
W, (ney)(%) F o K(z,y,u(y))dy

B(%,6)

smin{tin=v} |y, , o if v is a fraction
< P, .
< const by (d) (l + { 6(1+ |log 6|)||u||p,v,n if v is an integer

Since T € = B(z%r) is arbitrary and § = pn(z)/Z we finally find that for any
u € C™*(G) with ]|u||0 a <d,

Wik (neuy (@)D (Tau)(z)] < bi(d)(c' + ebllulljalva) (23)
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where z € Q = B(z°,%),1 < |a] < m,e,, = 0 as r — 0 and the constant ¢! > 0 is
independent of z, u and d.

Using (2) and (3) we find in a similar way that, for any u,v € C™¥(G) with
llullo,o < d and |lvfloa < d,

Wia|~(n-2)(2)1DZ (Tau — Tav)(z)|

" " (24)
< c"bp(d)llu = vllon + bi(d)er [lu = vlljay,v0

where z € = B(2°,5), 1 < |a| < m, € — 0 as r — 0 and the constant ¢’ > 0 is
independent of z, u, v and d.

Inequalities (23) and (24) may be extended to any u,v € C™*(Q) with |ju|lo.n < d
and ||v||o,a < d. Introduce the norm || - ||}, , o in C™¥(Q):

[
el = Mllllo,q + lullmuz |
= (M + Dllwloa+ > sup (68— @ID2u(2)])

1<]a|<m
where M > 1 is a sufficiently large constant. We fix
M > max{c'by(d),c"by(d)} Y _
1<}a|<m

It is clear that the norms || - ||m,,q and || - ||7, , o are equivalent:

ltllmg < llullmua < (M +1)tllmu0-

Introduce the set
Bmuada = {u€C™ () ullnyo <4 and [ulloa <d}

where d > | fallo,@ and d' > |fall}, .o + M. It is clear that Bm,,0,4,¢ C Boq,d
and Bp,v0,4,4' is closed in C™*(2). A consequence of (15), (23) and (24) is that, for
sufficiently small r > 0, the operator Sq maps B, 0,4,4 into itself and satisfies (16)
with ¢ = 1/2. Indeed, using the first inequality in (15) and (23), for u € Bm,v0,4,4» We
have

|Saullo.e < bi(d)er + | fallo.o

and

ISoullmua = (M + DiSauloa+ 3 sup (vfyj-(non(@IDI(Saw)@)])
l<|a|<m

<(M+1)bl(d)5r+||fn||mun+ > (@) (¢ +erllulliatua) -
1<|a|<m

For sufficiently small r = r; > 0 it follows that Squ € Bm v 0,4,4':

Saullo,e < d and ISaullm,0 < d"
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Similarly, using the second inequality in (15) and (24) we find that, for u,v € Bm 04,4

ISau — Sav|lym 0
= (M + l)”SQu - Snv"o Q

+ > sup (v ﬂ<an°(snu-snvxzn)

1<]aj<m
- < (M + 1)ba(d)er]lu — vlloa
+ 3 ("bad)|u — vlloq + bi(d)er v ~ vlljajv.0)

1<|al<m
"by(d) + bi(d)ey al<m 1
< (bZ(d)Er + (¢ éz( ) 1;4): 1)1215| I< ) (M + 1)flu— vllo.,n
+ bi(d)ey ( > 1) > sup (wflg_(,._u)(r)|0;"(u —v)(z_)l)-
\1<lal<m / 1<[al<m . o

We see that for sufficently small r = r; > 0 (such that the inequalities by(d)er, <1 /4
and b, (d)e}, (Zl<|o|<m 1) < 1/2 are fulfilled) and for sufficiently large M (such that
the inequality (c"b2(d) + by (d)e!. )Zl(lal(m 1/(M +1) < 1/4 is fulfilled) the operator
Sq satisfies (16) with ¢ = 1/2. ‘

" Thus, for @ = B(z%r0/2), ro = min{ry,rz,p(z%)} > 0, (16) is valid. Using
again the Banach fixed point theorem we see that equation (13) is uniquely solvable
in.Bmyad4- The solution coincides with the unique solution ug of equation (13)
(equation (1)) in Bg,g,4. In other words, the restriction to & of ug, the solution to
equation (1) under consideration, belongs to Bm,.0,4,4+ C C™*(Q). Especially, for the
point z° € @ = G N B(z°,1r0/2) we have

1 . iflaj<n—v
|D%ug(z°)| < const { 1+ |log p?(z°)] ifla|=n—v
(W) if Ja] > n v

with a‘constant which is independent of z° .€ G. Since z° € G is arbitrary and, for
Q = B(2%r0/2), p*(2°) = min{p(z°)/2,70/2},

To 0 Q0 0
2—-—damcp(x ) <P (27) < p(27)

we obtain that ug € C™*(G). Theorem 1 is proved.
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