The Smoothness of Solutions to Nonlinear Weakly Singular Integral Equations

A. **Pedas and G. Vainikko**

Abstract. The differential properties of a solution of a nonlinear multidimensional weakly singular integral equation of the Uryson type on an open bounded set $G \subset \mathbb{R}^n$ are examined. Showing that the solution belongs to special weighted space of smooth functions, the growth of the derivatives near the boundary is described.

Keywords: *Smoothness of solutions, weakly singular integral equations*

AMS subject classification: 45M05, 45G1

1. Introduction

The construction of effective numerical methods for solving weakly singular integral equations in a region $G \subset \mathbb{R}^n$ is impossible without taking into account the singularities of the derivatives of the solution near the boundary ∂G . The presence of singularities is an elementary fact, but significant difficulties are encountered in describing them precisely and proving the corresponding assertions. The case of one-dimensional integral equations was analyzed by Richter [9] , Pedas [61, Schneider [10], Vainikko and Pedas [14], Graham [1], Vainikko, Pedas and Uba [15], Kaneko, Noren and Xu [2], and Kangro [3]. The case of multidimensional integral equation was analyzed by Pitkäranta [7, 81, Vainikko [11 - 13], and Kangro [4, 5].

In $[11 - 13]$ estimates for derivatives of a solution to the linear multidimensional weakly singular integral equation are derived. In many cases these estimates are sharp. In [12, 131 the main results were extended to nonlinear equations, too, but the proofs were outlined only on the idea level. In this paper we present a full proof (Sections 4 - 5); the formulation of the main result is given in Section 3. Note that we treat the Uryson equation which is more general than the Hammerstein equation considered in [2]. Compared to [2], our result is more complete.

For a linear equation $u = Tu + f$, there are at least three different ideas how to show that the solution belongs to special weighted spaces of smooth functions. Pitkäranta [8] examined step by step the improving properties of the weakly singular operator *T* and obtained that a power of T maps $L^{\infty}(G)$ (or even $L^1(G)$) into a special weighted space; this idea may be implemented in the case of nonlinear equations, too. The authors of this paper (see [6, 11, 14, 15]) used another idea proving that *T* is compact in appropriate

ISSN 0232-2064 / \$ 2.50 © Heldermann Verlag Berlin

A. Pedas: Univ. Tartu, Dep. Math., Liivi **2, 202400** Tartu, Estonia

G. Vainikko: Univ. Tartu, Dep. Math., Liivi **2, 202400** Tartu, Estonia

weighted spaces; this idea does not work in the case of nonlinear equations. The third idea elaborated in [13] is based on the "smallness" of $(T_{\Omega}u)(x) = \int_{\Omega} \mathcal{K}(x, y)u(y)dy$, $x \in \Omega$, where $\Omega \subset G$ is a small subregion; the integral over $G \setminus \Omega$ is treated as a part of the inhomogeneity. This idea can be extended to the case of nonlinear equation, and we pursue it in the present paper. equations.
= $\int_{\Omega} K(x) dx$
 Ω is treated
nlinear equations,
 x, y, u is a

2. Integral equation

Consider the nonlinear integral equation

lation
ear integral equation

$$
u(x) = \int_G \mathcal{K}(x, y, u(y)) dy + f(x) \qquad (x \in G)
$$
 (1)

where $G \subset \mathbb{R}^n$ is an open bounded set. The kernel $\mathcal{K} = \mathcal{K}(x,y,u)$ is assumed to be *m* times $(m \geq 1)$ continuously differentiable with respect to x, y and u for $x \in G$, $y \in G$ $(x \neq y)$ and $u \in \mathbb{R}$ whereby there exists a real number $v \in (-\infty, n)$ such that, for Consider the nonlinear integral equation
 $u(x) = \int_G \mathcal{K}(x, y, u(y)) dy + f(x)$ $(x \in G)$

where $G \subset \mathbb{R}^n$ is an open bounded set. The kernel $\mathcal{K} = \mathcal{K}(x, y, u)$ is assum

be *m* times $(m \ge 1)$ continuously differentiable with $\begin{aligned} &\text{near integral equation}\ &u(x)=\int_G \mathcal{K}(x,y,u(y))dy+f(x)\ &\text{an open bounded set. The kernel }\lambda\ &\text{continuously differentiable with res}\ \alpha\in R\ \text{whereby there exists a real num}\ =&\ (\alpha_1,\ldots,\alpha_n)\in\mathbb{Z}_+^n,\ \beta=(\beta_1,\ldots,\beta_n)\ &\text{and}\ &$ $u(x) = \int_G \mathcal{K}(x, y, u(y))dy + f(x)$ $(x \in G)$ (1)
 $\subset \mathbb{R}^n$ is an open bounded set. The kernel $\mathcal{K} = \mathcal{K}(x, y, u)$ is assumed to
 ∞ $(\infty \geq 1)$ continuously differentiable with respect to x, y and u for $x \in G$,
 $\neq y$

$$
\neq y
$$
 and $u \in \mathbb{R}$ whereby there exists a real number $\nu \in (-\infty, n)$ such that, for Z_+ and $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{Z}_+^n$, $\beta = (\beta_1, ..., \beta_n) \in \mathbb{Z}_+^n$ with $k + |\alpha| + |\beta| \leq m$,
alities

$$
D_x^{\alpha} D_{x+y}^{\beta} \frac{\partial^k}{\partial u^k} \mathcal{K}(x, y, u) \leq b_1(|u|) \begin{cases} 1 & \text{if } \nu + |\alpha| < 0 \\ 1 + |\log|x - y| & \text{if } \nu + |\alpha| = 0 \\ |x - y|^{-\nu - |\alpha|} & \text{if } \nu + |\alpha| > 0 \end{cases}
$$
(2)

and

$$
C_n \subset R^n
$$
 is an open bounded set. The Kernel $K = K(x, y, u)$ is assumed to
\n
$$
S_n := f(y)
$$
 and $u \in \mathbb{R}$ whereby there exists a real number $\nu \in (-\infty, n)$ such that, for
\n Z_+ and $\alpha = (\alpha_1, ..., \alpha_n) \in Z_+^n$, $\beta = (\beta_1, ..., \beta_n) \in Z_+^n$ with $k + |\alpha| + |\beta| \le m$,
\nvalues
\n
$$
D_x^{\alpha} D_{x+y}^{\beta} \frac{\partial^k}{\partial u^k} K(x, y, u) \leq b_1(|u|) \begin{cases} 1 & \text{if } \nu + |\alpha| < 0 \\ 1 + |\log|x - y| & \text{if } \nu + |\alpha| = 0 \\ |x - y|^{-\nu - |\alpha|} & \text{if } \nu + |\alpha| > 0 \end{cases}
$$
\n
$$
D_x^{\alpha} D_{x+y}^{\beta} \frac{\partial^k}{\partial u^k} K(x, y, u_1) - D_x^{\alpha} D_{x+y}^{\beta} \frac{\partial^k}{\partial u^k} K(x, y, u_2) \Big|
$$
\n
$$
\leq b_2(\max\{|u_1|, |u_2|\}) |u_1 - u_2| \begin{cases} 1 & \text{if } \nu + |\alpha| < 0 \\ 1 + |\log|x - y| & \text{if } \nu + |\alpha| = 0 \\ |x - y|^{-\nu - |\alpha|} & \text{if } \nu + |\alpha| > 0 \end{cases}
$$
\n
$$
B_n
$$
 Here the following standard conventions are adopted:
\n
$$
B_n = [0, \infty), \quad Z_+ = \{0, 1, 2, \ldots\}
$$
\n
$$
|\alpha| = \alpha_1 + \ldots + \alpha_n \quad \text{for } \alpha = (\alpha_1, ..., \alpha_n) \in Z_+^n
$$

hold. The functions $b_1 : I\!\!R_+ \to I\!\!R_+$ and $b_2 : I\!\!R_+ \to I\!\!R_+$ are assumed to be monotonically increasing. Here the following standard conventions are adopted:

$$
(x - y)^{-\nu - |\alpha|} \text{ if } \nu +
$$

\n
$$
\text{if } \nu +
$$

\n
$$
R_+ = [0, \infty), \quad Z_+ = \{0, 1, 2, \ldots\}
$$

\n
$$
| \alpha | = \alpha_1 + \ldots + \alpha_n \quad \text{for } \alpha = (\alpha_1, \ldots, \alpha_n) \in Z_+^n
$$

\n
$$
| \alpha | = \sqrt{x_1^2 + \ldots + x_n^2} \quad \text{for } \alpha = (x_1, \ldots, x_n) \in Z_+^n
$$

\n
$$
D_x^{\alpha} = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n}
$$

\n
$$
D_{x+y}^{\beta} = \left(\frac{\partial}{\partial x_1} + \frac{\partial}{\partial y_1}\right)^{\beta_1} \cdots \left(\frac{\partial}{\partial x_n} + \frac{\partial}{\partial y_n}\right)^{\beta_n}
$$

\n
$$
\text{if } \nu +
$$

\n
$$
D_{x+y}^{\beta} = \left(\frac{\partial}{\partial x_1} + \frac{\partial}{\partial y_1}\right)^{\beta_1} \cdots \left(\frac{\partial}{\partial x_n} + \frac{\partial}{\partial y_n}\right)^{\beta_n}
$$

\n
$$
\text{if } \nu +
$$
<

Note that asymmetry of (2) and (3) with respect to x and y is only seeming: using the equality $\partial/\partial y_i = (\partial/\partial x_i + \partial/\partial y_i) - \partial/\partial x_i$ we can deduce from (2) and (3) similar estimates for $D_y^{\alpha}D_{x+y}^{\beta}\partial^k\mathcal{K}(x,y,u)/\partial u^k$.

Putting $k = |\alpha| = |\beta| = 0$, inequality. (2) yields

The Smoothness of
\n
$$
|x| = |\beta| = 0
$$
, inequality (2) yields
\n
$$
|\mathcal{K}(x, y, u)| \le b_1(|u|) \begin{cases} 1 & \text{if } \nu < 0 \\ 1 + |\log |x - y| | & \text{if } \nu = 0 \\ |x - y|^{-\nu} & \text{if } \nu > 0 \end{cases}
$$

Thus the kernel K may have a weak singularity $(\nu < n)$. In the case $\nu < 0$, the kernel K is bounded but its derivatives may be singular. In the case of a linear integral equation $\mathcal{K}(x,y,u) = \mathcal{K}_1(x,y)u$, and conditions (2) and (3) reduce to a condition for $K_1 = \mathcal{K}_1 (x,y)$ from [11, 13]. y have a w.

t its derivation
 $\begin{aligned} \n\mathcal{L}_1(x, y)u, \text{ and } \\
13] \n\end{aligned}$

notions
 $\begin{cases} 1 \\
(1 + |\log \rho(x)|)^{\lambda} \n\end{cases}$ *W'\ (^x)* = (1 + I log *p(x)I)'* if A= 0 (x E *C, A* E *JR) (4)*

3. Main result

Introduce the weight functions

bounded of its derivatives may be singular. If the case of a linear integral,
$$
y, u) = K_1(x, y)u
$$
, and conditions (2) and (3) reduce to a condition for from [11, 13].

\n**esult**

\nweight functions

\n
$$
w_{\lambda}(x) = \begin{cases} 1 & \text{if } \lambda < 0 \\ (1 + |\log \rho(x)|)^{-1} & \text{if } \lambda = 0 \\ \rho(x)^{\lambda} & \text{if } \lambda > 0 \end{cases} \quad (x \in G, \lambda \in \mathbb{R}) \tag{4}
$$
\nn is an open bounded set with the boundary ∂G and

\n
$$
\rho(x) = \rho^G(x) = \inf_{y \in \partial G} |x - y| \quad (x \in G) \tag{5}
$$
\ne from x to ∂G . Define the space $C^{m,\nu}(G)$ as the collection of all m times differentiable functions $u : G \to \mathbb{R}$ (or $u : G \to \mathbb{C}$) such that

where $G \subset I\!\!R^n$ is an open bounded set with the boundary ∂G and

$$
\rho(x) = \rho^G(x) = \inf_{y \in \partial G} |x - y| \qquad (x \in G)
$$
\n(5)

is the distance from x to ∂G . Define the space $C^{m,\nu}(G)$ as the collection of all m times continuously differentiable functions $u : G \to \mathbb{R}$ (or $u : G \to \mathbb{C}$) such that

$$
\begin{aligned}\n\left(\int_{-\infty}^{\infty} \int_{-\infty}
$$

In other words, an *m* times continuously differentiable function u on G belongs tothe space $C^{m,\nu}(G)$ if the growth of its derivatives near the boundary can be estimated as

$$
G \subset \mathbb{R}^n
$$
 is an open bounded set with the boundary ∂G and
\n
$$
\rho(x) = \rho^G(x) = \inf_{y \in \partial G} |x - y| \qquad (x \in G)
$$
\n
$$
\text{distance from } x \text{ to } \partial G. \text{ Define the space } C^{m,\nu}(G) \text{ as the collection of all } n \text{ only differentiable functions } u : G \to \mathbb{R} \text{ (or } u : G \to \mathbb{C}) \text{ such that}
$$
\n
$$
||u||_{m,\nu} := \sum_{|\alpha| \le m} \sup_{x \in G} \left(w_{|\alpha| - (n - \nu)}(x) |D^{\alpha} u(x) | \right) < \infty.
$$
\n
$$
\text{or words, an } m \text{ times continuously differentiable function } u \text{ on } G \text{ belong to } \mathbb{R}^m, \nu(G) \text{ if the growth of its derivatives near the boundary can be estimate}
$$
\n
$$
|D^{\alpha} u(x)| \le \text{const} \begin{cases} 1 & \text{if } |\alpha| < n - \nu \\ 1 + |\log \rho(x)| & \text{if } |\alpha| = n - \nu \\ \rho(x)^{n - \nu - |\alpha|} & \text{if } |\alpha| > n - \nu \end{cases} \quad (x \in G, |\alpha| \le m).
$$

The space $C^{m,\nu}(G)$, equipped with norm (6), is complete (is a Banach space).

Our main result is contained in the following theorem.

Theorem 1. Let $G \subset \mathbb{R}^n$ be an open bounded set, $f \in C^{m,\nu}(G)$, and let the kernel $\mathcal{K} = \mathcal{K}(x, y, u)$ satisfy conditions (2) and (3). If the integral equation (1) has a solution $u \in L^{\infty}(G)$, then $u \in C^{m,\nu}(G)$.

This theorem was formulated and partly (for $m = 2$) proved in [13]. A full proof of Theorem 1 is given in Section 5. Section 4 contains necessary preliminaries for the proof.

Remark. In Theorem 1 we have not assumed a global or local uniqueness of the solution to equation (1).

4. Differentiation of the weakly singular integral

We use the notations

A. Pedas and G. Vainikko
Differentiation of the weakly singular integral
use the notations

$$
B(x,r) = \left\{ y \in \mathbb{R}^n : |x - y| < r \right\} \quad \text{and} \quad S(x,r) = \left\{ y \in \mathbb{R}^n : |x - y| = r \right\}
$$
an open ball and a sphere, respectively, in \mathbb{R}^n . First we present some inequal
follow from (2). For $k + |\alpha| + |\beta| \le m$, $x, \overline{x} \in G$, $|\overline{x} - x| \le r$, $|u| \le d$, $r > 0$

for an open ball and a sphere, respectively, in \mathbb{R}^n . First we present some inequalities have the inequalities

A. Pedas and G. Vainikko
\nDifferentiation of the weakly singular integral
\nwe the notations
\n
$$
(x,r) = \left\{y \in \mathbb{R}^n : |x-y| < r\right\}
$$
 and $S(x,r) = \left\{y \in \mathbb{R}^n : |x-y| = r\right\}$
\nopen ball and a sphere, respectively, in \mathbb{R}^n . First we present some inequalities
\nallow from (2). For $k + |\alpha| + |\beta| \le m$, $x, \overline{x} \in G$, $|\overline{x} - x| \le r$, $|u| \le d$, $r > 0$ we
\nthe inequalities
\n
$$
\int_{G \cap B(\overline{x},r)} \left| D_x^{\alpha} D_{x+y}^{\beta} \frac{\partial^k}{\partial u^k} \mathcal{K}(x, y, u) \right| dy
$$
\n
$$
G \cap B(\overline{x},r)
$$
\n
$$
\le c_1 b_1(d) \left\{ \begin{aligned} r^n & \text{if } \nu + |\alpha| < 0 \\ r^n(1 + |\log r|) & \text{if } \nu + |\alpha| = 0 \\ r^{n-\nu-|\alpha|} & \text{if } 0 < \nu + |\alpha| < n \end{aligned} \right.
$$
\n(7)
\n
$$
\int_{G \setminus B(x,r)} \left| D_x^{\alpha} D_{x+y}^{\beta} \frac{\partial^k}{\partial u^k} \mathcal{K}(x, y, u) \right| dy \le c_2 b_1(d) \left\{ \begin{aligned} 1 & \text{if } \nu + |\alpha| < n \\ 1 + |\log r| & \text{if } \nu + |\alpha| = n \\ r^{n-\nu-|\alpha|} & \text{if } \nu + |\alpha| > n \end{aligned} \right.
$$
\n(8)
\nthe constants c_1 and c_2 depend only on *n*, *\nu* and on *n*, *\nu*, diamG, respectively
\namG we denote the diameter of *G*; we assume that $r \le \text{diam } G$).

and

$$
\leq c_1 b_1(d) \left\{ \begin{array}{l} r^n(1+|\log r|) & \text{if } \nu + |\alpha| = 0 \\ r^{n-\nu-|\alpha|} & \text{if } 0 < \nu + |\alpha| < n \end{array} \right.
$$
\nand

\n
$$
\int_{G \setminus B(x,r)} \left| D_x^{\alpha} D_{x+y}^{\beta} \frac{\partial^k}{\partial u^k} \mathcal{K}(x, y, u) \right| dy \leq c_2 b_1(d) \left\{ \begin{array}{l} 1 & \text{if } \nu + |\alpha| < n \\ 1 + |\log r| & \text{if } \nu + |\alpha| = n \\ r^{n-\nu-|\alpha|} & \text{if } \nu + |\alpha| > n \end{array} \right.
$$
\n(8)

\nwhere the constants c_1 and c_2 depend only on n, ν and on n, ν , diamG, respectively

\n(by diam G we denote the diameter of G; we assume that $r \leq \text{diam } G$).

\nLet $\Omega \subseteq G$ be a domain with a piecewise smooth boundary $\partial\Omega, u \in C(\overline{\Omega}) \cap C^1(\Omega)$.

where the constants c_1 and c_2 depend only on n, ν and on n, ν , diamG, respectively (by diam *G* we denote the diameter of *G*; we assume that $r \leq \text{diam } G$).
Let $\Omega \subseteq G$ be a domain with a piecewise smooth boundary $\partial \Omega$, $u \in C(\overline{\Omega}) \cap C^1(\Omega)$,

 $\partial u/\partial x_i \in L^1(\Omega)$, and let the kernel $\mathcal{K} = \mathcal{K}(x,y,u)$ satisfy conditions (2) and (3) with $m = 1$. Then (see [11, 13]), for $x \in \Omega$,

$$
B(x,r)
$$
\n
$$
F^{n-\nu-|\alpha|} \quad \text{if } \nu + |\alpha| > n
$$
\nThe constants c_1 and c_2 depend only on n, ν and on n, ν , diamG, respectively

\n
$$
G \text{ we denote the diameter of } G; \text{ we assume that } r \leq \text{diam } G.
$$
\n
$$
\Omega \subseteq G \text{ be a domain with a piecewise smooth boundary } \partial\Omega, u \in C(\overline{\Omega}) \cap C^1(\Omega),
$$
\n
$$
\in L^1(\Omega), \text{ and let the kernel } \mathcal{K} = \mathcal{K}(x, y, u) \text{ satisfy conditions (2) and (3) with}
$$
\n
$$
\text{Then (see [11, 13]), for } x \in \Omega,
$$
\n
$$
\frac{\partial}{\partial x_i} \int_{\Omega} \mathcal{K}(x, y, u(y)) dy
$$
\n
$$
= \int_{\Omega} \left(\frac{\partial}{\partial x_i} + \frac{\partial}{\partial y_i} \right) \mathcal{K}(x, y, u(y)) dy + \int_{\partial\Omega} \mathcal{K}(x, y, u(y) \omega_i(y)) dS_y
$$
\n
$$
v(y) = (\omega_1(y), \dots, \omega_n(y)) \text{ is the unit inner normal to } \partial\Omega \text{ at } y \in \partial\Omega.
$$
\n(9)

where $\omega(y) = (\omega_1(y), \ldots, \omega_n(y))$ is the unit inner normal to $\partial \Omega$ at $y \in \partial \Omega$.

Now we fix an arbitrary point $\overline{x} \in G$ and take a sufficiently small $\delta > 0$ such that $B(\overline{x},\delta) \subset G$. Let the kernel $\mathcal{K} = \mathcal{K}(x,y,u)$ satisfy conditions (2) and (3). Using (9) with $\Omega = B(\bar{x}, \delta)$ we have for any $u \in C^{m,\nu}(G)$

$$
= \int_{\Omega} \left(\frac{\partial}{\partial x_i} + \frac{\partial}{\partial y_i} \right) \mathcal{K}(x, y, u(y)) dy + \int_{\partial \Omega} \mathcal{K}(x, y, u(y) \omega_i(y)) dy
$$

\n $\nu_1(y), \ldots, \omega_n(y)$ is the unit inner normal to $\partial \Omega$ at $y \in \partial \Omega$
\nan arbitrary point $\overline{x} \in G$ and take a sufficiently small δ :
\net the kernel $\mathcal{K} = \mathcal{K}(x, y, u)$ satisfy conditions (2) and (3)
\n) we have for any $u \in C^{m,\nu}(G)$
\n
$$
\frac{\partial}{\partial x_i} \int_{B(\overline{x}, \delta)} \mathcal{K}(x, y, u(y)) dy
$$

\n
$$
= \int_{B(\overline{x}, \delta)} \left(\left(\frac{\partial}{\partial x_i} + \frac{\partial}{\partial y_i} \right) \mathcal{K}(x, y, u) \right) \Big|_{u = u(y)}
$$

\n
$$
+ \int_{B(\overline{x}, \delta)} \frac{\partial}{\partial u} \mathcal{K}(x, y, u(y)) \frac{\partial u(y)}{\partial y_i} dy
$$

\n
$$
+ \int_{S(\overline{x}, \delta)} \mathcal{K}(x, y, u(y)) \omega_i(y) dS_y
$$

and

$$
\frac{\partial}{\partial x_i} \int_{\mathcal{B}(\overline{z}, \delta)} \mathcal{K}(x, y, u(y)) dy
$$
\n
$$
= \int_{\mathcal{B}(\overline{z}, \delta)} \mathcal{K}_i^2(x, y, u(y)) dy
$$
\n
$$
+ \int_{\mathcal{B}(\overline{z}, \delta)} \frac{\partial}{\partial u} \mathcal{K}_i^1(x, y, u(y)) \frac{\partial u(y)}{\partial y_j} dy
$$
\n
$$
+ \int_{\mathcal{B}(\overline{z}, \delta)} \frac{\partial}{\partial u} \mathcal{K}_j^1(x, y, u(y)) \frac{\partial u(y)}{\partial y_i} dy
$$
\n
$$
+ \int_{\mathcal{B}(\overline{z}, \delta)} \frac{\partial^2}{\partial u^2} \mathcal{K}(x, y, u(y)) \frac{\partial u(y)}{\partial y_i} \frac{\partial u(y)}{\partial y_j} dy
$$
\n
$$
+ \int_{\mathcal{B}(\overline{z}, \delta)} \frac{\partial}{\partial u} \mathcal{K}(x, y, u(y)) \frac{\partial^2 u(y)}{\partial y_j \partial y_i} dy
$$
\n
$$
+ \int_{\mathcal{S}(\overline{z}, \delta)} \mathcal{K}_i^1(x, y, u(y)) \omega_j(y) dS_y
$$
\n
$$
+ \int_{\mathcal{S}(\overline{z}, \delta)} \frac{\partial}{\partial u} \mathcal{K}(x, y, u(y)) \frac{\partial u(y)}{\partial y_i} \omega_j(y) dS_y
$$
\n
$$
+ \int_{\mathcal{S}(\overline{z}, \delta)} \frac{\partial}{\partial x_i} \mathcal{K}(x, y, u(y)) \omega_i(y) dS_y
$$
\n
$$
(x, y, u) = \left(\frac{\partial}{\partial x_{i_1}} + \frac{\partial}{\partial y_{i_1}} \right) \cdots \left(\frac{\partial}{\partial x_{i_p}} + \frac{\partial}{\partial y_{i_p}} \right) \mathcal{K}(x, y, u).
$$
\n(10)
\nFrenation using (9). By induction we obtain the formula for higher

where

 \mathcal{L}

$$
\mathcal{K}_{i_1,\cdots,i_p}^p(x,y,u) = \left(\frac{\partial}{\partial x_{i_1}} + \frac{\partial}{\partial y_{i_1}}\right)\cdots\left(\frac{\partial}{\partial x_{i_p}} + \frac{\partial}{\partial y_{i_p}}\right)\mathcal{K}(x,y,u). \tag{10}
$$

We continue the differentation using (9). By induction we obtain the formula for higher order derivatives:

$$
\mathcal{K}_{i_1,\dots,i_p}^p(x,y,u) = \left(\frac{\partial}{\partial x_{i_1}} + \frac{\partial}{\partial y_{i_1}}\right) \cdots \left(\frac{\partial}{\partial x_{i_p}} + \frac{\partial}{\partial y_{i_p}}\right) \mathcal{K}(x,y,u). \tag{10}
$$
\n\nontin the differentiation using (9). By induction we obtain the formula for higher derivatives:\n\n
$$
\frac{\partial^p}{\partial x_{i_p} \cdots \partial x_{i_1}} \int_{B(\overline{x}, \delta)} \mathcal{K}(x, y, u(y)) dy
$$
\n
$$
= \int_{B(\overline{x}, \delta)} \mathcal{D}_{i_1,\dots,i_p}^p \mathcal{K}(x, y, u(y)) dy
$$
\n
$$
+ \sum_{k=1}^p \int_{S(\overline{x}, \delta)} \frac{\partial^{p-k}}{\partial x_{i_p} \cdots \partial x_{i_{k+1}}} \mathcal{D}_{i_1,\dots,i_{k-1}}^{k-1} \mathcal{K}(x, y, u(y)) \omega_{i_k}(y) dS_y
$$
\n
$$
p \leq m. \text{ Here } \omega(y) = (\omega_1(y), \dots, \omega_n(y)) = (\overline{x} - y)/\delta \text{ is the unit inner normal to}
$$

 $(1 \leq p \leq m)$. Here $\omega(y) = (\omega_1(y), \ldots, \omega_n(y)) = (\bar{x} - y)/\delta$ is the unit inner normal to

468 A. Pedas and G. Vainikko
\n
$$
\partial B(\bar{x}, \delta) = S(\bar{x}, \delta) \text{ at } y \in S(\bar{x}, \delta), u \in C^{m, v}(G), \text{ and we have used the notation}
$$
\n
$$
D_{i_1, \ldots, i_p}^p K(x, y, u(y)) = E_{i_1, \ldots, i_p}^p (x, y, u(y))
$$
\n
$$
+ \sum_{j=1}^p \frac{\partial u(y)}{\partial y_{i_j}} \frac{\partial}{\partial u} L_{\{i_1, \ldots, i_p\}}^p V_{\{i_j\}}(x, y, u(y))
$$
\n
$$
+ \sum_{i \leq j \leq k \leq s} \left(\frac{\partial^2 u(y)}{\partial y_{i_j}} \frac{\partial}{\partial u} L_{\{i_1, \ldots, i_p\}}^p V_{\{i_1, \ldots,
$$

where $q = \begin{cases} p/2 & \text{if } p \text{ is even} \\ (p-1)/2 & \text{if } p \text{ is odd} \end{cases}$ and \mathcal{D}_n d $\mathcal{D}_{\mathfrak{g}}^0 \mathcal{K}(x,y,u) = \mathcal{K}_{\mathfrak{g}}^0(x,y,u) = \mathcal{K}(x,y,u).$

5. Proof of Theorem 1

Let conditions (2) and (3) be fulfilled, $f \in C^{m,\nu}(G)$, and let $u_0 \in L^{\infty}(G)$ be a solution to equation (1). We have to prove that $u_0 \in C^{m,\nu}(G)$.

Fix an arbitrary point $x^0 \in G \subset \mathbb{R}^n$ and introduce the set $\Omega = B(x^0, r) \cap G$, where the ball $B(x^0, r) \subset \mathbb{R}^n$ has a small radius r , $0 < r \le \rho(x_0)/2$. Thus $\Omega = B(x^0, r) \subset G$. We consider an integral equation on Ω : *If p* is even and $\mathcal{D}_{\theta}^{0}\mathcal{K}(x,y,u) = \mathcal{K}_{\theta}^{0}(x,y,u) = \mathcal{K}(x,y,u)$.
 EOTEM 1
 Were the set of $\theta \in C^{m,\nu}(G)$ *, and let* $u_0 \in L^{\infty}(G)$ *be a solution*
 have to prove that $u_0 \in C^{m,\nu}(G)$.
 point $x^0 \in G \subset \mathbb{R}$ **heorem 1**

and (3) be fulfilled, $f \in C^{m,\nu}(G)$, and let $u_0 \in L^{\infty}(G)$ be a solution

have to prove that $u_0 \in C^{m,\nu}(G)$.

y point $x^0 \in G \subset \mathbb{R}^n$ and introduce the set $\Omega = B(x^0, r) \cap G$, where
 \mathbb{R}^n has a small

$$
u(x) = \int_{\Omega} \mathcal{K}(x, y, u(y)) dy + f_{\Omega}(x) \qquad (x \in \Omega)
$$
 (13)

where

$$
f_{\Omega}(x) = f(x) + \int\limits_{G \setminus \Omega} \mathcal{K}(x, y, u_0(y)) dy \qquad (x \in \Omega). \tag{14}
$$

Clearly, u_0 solves this equation. But we will show also that equation (13) is uniquely solvable and the solution is as smooth in Ω as asserted in Theorem 1. Since $x^0 \in G$ is arbitrary, it finally proves that $u_0 \in C^{m,\nu}(G)$.

Let us define (cf. (4))

The all
$$
B(x^0, r) \subset R^n
$$
 has a small radius $r, 0 < r \le \rho(x_0)/2$. Thus $\Omega =$
\nWe consider an integral equation on Ω :
\n
$$
u(x) = \int_{\Omega} K(x, y, u(y)) dy + f_{\Omega}(x) \quad (x \in \Omega)
$$
\nwhere
\n
$$
f_{\Omega}(x) = f(x) + \int_{G \setminus \Omega} K(x, y, u_0(y)) dy \quad (x \in \Omega).
$$
\nClearly, u_0 solves this equation. But we will show also that equation (1
\nsolvable and the solution is as smooth in Ω as asserted in Theorem 1. Si
\narbitrary, it finally proves that $u_0 \in C^{m,\nu}(G)$.
\nLet us define (cf. (4))
\n
$$
w_{\lambda}^{\Omega}(x) = \begin{cases} 1 & \text{for } \lambda < 0 \\ (1 + |\log \rho^{\Omega}(x)|)^{-1} & \text{for } \lambda = 0 \\ (\rho^{\Omega}(x))^{\lambda} & \text{for } \lambda > 0 \end{cases} \quad (x \in \Omega)
$$
\nwhere $\rho^{\Omega}(x)$ is the distance from $x \in \Omega$ to $\partial\Omega$ (cf. (5)). Introduce the s with the norm $|| \cdot ||_{m,\nu,\Omega}$ in a similar way as in Section 3: $u \in C^{m,\nu}(\Omega)$ if

where $\rho^{\Omega}(x)$ is the distance from $x \in \Omega$ to $\partial\Omega$ (cf. (5)). Introduce the space $C^{m,\nu}(\Omega)$ with the norm $\|\cdot\|_{m,\nu,\Omega}$ in a similar way as in Section 3: $u \in C^{m,\nu}(\Omega)$ if

$$
||u||_{m,\nu,\Omega} := \sum_{|\alpha| \leq m} \sup_{x \in \Omega} \Bigl(w_{|\alpha|-(n-\nu)}^{\Omega} (x) |D^{\alpha} u(x)| \Bigr) < \infty.
$$

An important observation is that $f_n \in C^{m,\nu}(\Omega)$. Indeed, for $x \in \Omega$ and $y \in G \setminus \Omega$ we have $|x - y| \ge \rho^{\Omega}(x) > 0$, and we may differentiate the function $\int_{G\setminus\Omega} K(x, y, u_0(y)) dy$ under the integral sign. The result of differentation $\Omega \in C^{m,\nu}(\Omega)$. Indeed, for $x \in \Omega$
nay differentiate the function \int
 $= \int_{G \setminus \Omega} D_x^{\alpha} \mathcal{K}(x, y, u_0(y)) dy$ if the distance from $x \in \Omega$
 $\|\cdot\|_{m,\nu,\Omega}$ in a similar way
 $\|u\|_{m,\nu,\Omega} := \sum_{|\alpha| \leq m} \sup_{x \in \Omega} \left(u \right)$

observation is that $f_{\Omega} \in C$
 $\rho^{\Omega}(x) > 0$, and we may d

gral sign. The result of dif
 $\int_{G \setminus \Omega} K(x, y, u_0(y)) dy =$

$$
D_x^{\alpha} \int\limits_{G \setminus \Omega} \mathcal{K}(x, y, u_0(y)) dy = \int\limits_{G \setminus \Omega} D_x^{\alpha} \mathcal{K}(x, y, u_0(y)) dy \qquad (|\alpha| \leq m)
$$

is a continuous function on Ω . Further, using (8) we estimate

$$
D_{\mathbf{z}}^{\alpha} \int_{G \backslash \Omega} \mathcal{K}(x, y, u_{0}(y)) dy = \int_{G \backslash \Omega} D_{\mathbf{z}}^{\alpha} \mathcal{K}(x, y, u_{0}(y)) dy \qquad (|\alpha| \leq m)
$$

\nntinuous function on Ω . Further, using (8) we estimate
\n
$$
D_{\mathbf{z}}^{\alpha} \int_{G \backslash \Omega} \mathcal{K}(x, y, u_{0}(y)) dy
$$
\n
$$
\leq \int_{G \backslash B(x, \rho^{\Omega}(x))} |D_{\mathbf{z}}^{\alpha} \mathcal{K}(x, y, u_{0}(y))| dy
$$
\n
$$
\leq \text{const}_{u_{0}} \begin{cases} 1 & \text{if } |\alpha| < n - \nu \\ 1 + |\log \rho^{\Omega}(x)| & \text{if } |\alpha| = n - \nu \\ \rho^{\Omega}(x)^{n - \nu - |\alpha|} & \text{if } |\alpha| > n - \nu \end{cases} (x \in \Omega, |\alpha| \leq m).
$$

thus $f_{\Omega} \in C^{m,\nu}(\Omega)$.

Further, define the operators T_{Ω} and S_{Ω} , for $x \in \Omega$, by

We see that the second term on the right-hand side of (14) belongs to
$$
C^{m,\nu}(\Omega)
$$
, and
thus $f_{\Omega} \in C^{m,\nu}(\Omega)$.
Further, define the operators T_{Ω} and S_{Ω} , for $x \in \Omega$, by

$$
(T_{\Omega}u)(x) = \int_{\Omega} \mathcal{K}(x, y, u(y)) dy \quad \text{and} \quad (S_{\Omega}u)(x) = (T_{\Omega}u)(x) + f_{\Omega}(x).
$$

Denote $||u||_{0,\Omega} = \sup_{x \in \Omega} |u(x)|$. Using (2) and (3) with $k = |\alpha| = |\beta| = 0$ and (7) it is Denote $||u||_{0,\Omega} = \sup_{x \in \Omega} |u(x)|$. Using (2) and (3) with $k = |\alpha| = |\beta| = 0$ and (7) easy to check that, for any $u, v \in L^{\infty}(\Omega)$ with $||u||_{0,\Omega} \le d$ and $||v||_{0,\Omega} \le d$, we have $\mu \| \sigma_{0,\Omega} = \sup_{x \in \Omega} |u(x)|$. Using (2) and (3) with $k = |\alpha| = |\beta| = 0$ and (7) neck that, for any $u, v \in L^{\infty}(\Omega)$ with $||u||_{0,\Omega} \le d$ and $||v||_{0,\Omega} \le d$, we have $||T_{\Omega}u||_{0,\Omega} \le b_{1}(d)\varepsilon_{r}$ and $||T_{\Omega}u - T_{\Omega}v||_{0,\Omega} \le b_{2}(d)\vare$

$$
||T_{\Omega}u||_{0,\Omega} \le b_1(d)\varepsilon_r \quad \text{and} \quad ||T_{\Omega}u - T_{\Omega}v||_{0,\Omega} \le b_2(d)\varepsilon_r ||u - v||_{0,\Omega} \quad (15)
$$

where $\varepsilon_r \to 0$ as $r \to 0$. A consequence is that, for sufficiently small $r > 0$, the operator S_{Ω} maps the ball *d*
 d
 d
 d
 d

$$
B_{0,\Omega,d} = \left\{ u \in L^{\infty}(\Omega) : ||u||_{0,\Omega} \le d \right\} \qquad (d > ||f_{\Omega}||_{0,\Omega})
$$

contractive on it:
- $S_{\Omega}v||_{0,\Omega} \le q||u - v||_{0,\Omega}$ for all $u, v \in B_{0,\Omega,d}$ $(q < 1)$
the fixed point theorem, $S_{0,\Omega}v$ is a unit of $u, v \in B_{0,\Omega,d}$

into itself and is contractive on it:

and is contractive on it:
\n
$$
||S_{\Omega}u - S_{\Omega}v||_{0,\Omega} \leq q||u - v||_{0,\Omega} \quad \text{for all } u, v \in B_{0,\Omega,d} \quad (q < 1).
$$

Due to the Banach fixed point theorem, S_{Ω} has a unique fixed point in $\mathcal{B}_{0,\Omega,d}$; we know this fixed point - it is u_0 , the solution of equation (1) under consideration. A more serious consequence of (2) and (3) is that, for sufficiently small $r > 0$, the operator S_{Ω} maps a closed subset $B_{m,\nu,\Omega,d,d'}$ of the space $C^{m,\nu}(\Omega)$ into itself and is contractive on this liked point $-$ it is u_0 , the solution of equation (1) under consideration. A more
serious consequence of (2) and (3) is that, for sufficiently small $r > 0$, the operator S_{Ω}
maps a closed subset $B_{m,\nu,\Omega,d,d'}$ if $v = 0$ is u_0 , the solution of equation (1) under considerate

vience of (2) and (3) is that, for sufficiently small $r > 0$, the

subset $B_{m,\nu,\Omega,d,d'}$ of the space $C^{m,\nu}(\Omega)$ into itself and is c

t to a norm $||u||'_{m$

$$
||S_{\Omega}u - S_{\Omega}v||'_{m,\nu,\Omega} \le q||u - v||'_{m,\nu,\Omega} \qquad \text{for all } u, v \in \mathcal{B}_{m,\nu,\Omega,d,d'} \quad (q < 1). \tag{16}
$$

We soon present the definitions of the subset $\mathcal{B}_{m,\nu,\Omega,d,d'}$ as well of the norm $\|u\|'_{m,\nu,\Omega}$. In order to prove these properties of S_{Ω} we have to study various derivatives of the weakly singular integral. As a first step we note that for any $u \in C^{m,\nu}(\Omega)$ the singularities of the terms $\begin{aligned} \n\lim_{\mu} \mathbf{p}_{1} \Omega \text{ & \text{under.}} \n\mathbf{p}_{1} \n\end{aligned}$

as of the subset of S_{Ω} we have note

tep we note
 $\frac{\partial u}{\partial y_{i_1}} \cdots \frac{\partial u}{\partial y_{i_n}}$ $\begin{aligned} &u-v\Vert_{m,\nu,\Omega}\ \text{as of the subs}\ \text{es of}\ S_\Omega\ \text{we have}\ \text{step we note} \ &\frac{\partial u}{\partial y_{i_1}}\ \cdots\ \frac{\partial u}{\partial y_{i_p}}\ \frac{\partial u}{\partial u}\ \cdots\ \frac{\partial u}{\partial u}\ \end{aligned}$

$$
\leq q||u - v||'_{m,\nu,\Omega} \qquad \text{for all } u, v \in \Omega
$$
\nmitions of the subset $B_{m,\nu,\Omega,d,d'}$ as
\nperties of S_{Ω} we have to study var
\n
$$
\frac{\partial u}{\partial y_{i_1}} \cdots \frac{\partial u}{\partial y_{i_p}}
$$
\n
$$
\frac{\partial u}{\partial y_{i_1}} \cdots \frac{\partial u}{\partial y_{i_p}} \frac{\partial^2 u}{\partial y_{i_p} \partial y_{i_{p-1}}} \cdots
$$
\n
$$
\frac{\partial u}{\partial y_{i_1}} \frac{\partial v}{\partial y_{i_p} \cdots \partial y_{i_2}}
$$
\nthe singularity allowed for $\partial^p u/\partial y$

\n
$$
\frac{\partial u}{\partial y_{i_p}} \Big| \leq \text{const} \left\{ \frac{1}{(1 + |\log \rho^{\Omega}(y)|)^p} \right\}
$$

in (12) are weaker than the singularity allowed for $\partial^p u/\partial y_{i_p} \cdots \partial y_{i_1}$ by the definition of the space $C^{m,\nu}(\Omega)$:

$$
\overline{\partial y_{i_1}} \overline{\partial y_{i_p} \cdots \partial y_{i_2}}
$$

reaker than the singularity allowed for $\partial^p u / \partial y_{i_p} \cdots \partial y_{i_1}$ by the
 $n, \nu(\Omega)$:

$$
\left| \frac{\partial u(y)}{\partial y_{i_1}} \cdots \frac{\partial u(y)}{\partial y_{i_p}} \right| \le \text{const} \begin{cases} 1 & \text{if } \nu < n - 1 \\ (1 + |\log \rho^{\Omega}(y)|)^p & \text{if } \nu = n - 1 \\ (\rho^{\Omega}(y))^{p(n-\nu)-p} & \text{if } \nu > n - 1 \end{cases}
$$

and, for $p \geq 2$,

The Smoothness of Solutions
\n
$$
\begin{aligned}\n &\text{The Smoothness of Solutions} \\
 &\left|\frac{\partial u(y)}{\partial y_{i_1}}\cdots\frac{\partial u(y)}{\partial y_{i_{p-2}}}\frac{\partial^2 u(y)}{\partial y_{i_p}\partial y_{i_{p-1}}}\right| \\
 &\leq \text{const}\n \begin{cases}\n 1 &\text{if } \nu < n-2 \\
 1 + |\log \rho^{\Omega}(y)| &\text{if } \nu = n-2 \\
 (\rho^{\Omega}(y))^{n-\nu-2} (1 + |\log \rho^{\Omega}(y)|)^{p-2} &\text{if } \nu = n-1 \\
 (\rho^{\Omega}(y))^{(p-1)(n-\nu)-p} &\text{if } \nu > n-1\n \end{cases}\n \end{aligned}
$$

and, for $p \geq 3$,

 $\bar{1}$

$$
\left\{\begin{array}{ll}\n\left(\frac{\partial}{\rho} \alpha(y)(p-1)(n-\nu)-p\right) & \text{if } \nu > n-1\n\end{array}\right.\right.
$$

\nand, for $p \ge 3$,
\n
$$
\left\{\begin{array}{ll}\n\frac{\partial u(y)}{\partial y_{i_{1}}} & \frac{\partial p-1}{\partial y_{i_{2}}}\n\end{array}\right\}
$$

\n
$$
\le \text{const}\n\left\{\n\begin{array}{ll}\n1 + |\log p^{\Omega}(y)| & \text{if } \nu = n-p+1 \\
(\rho^{\Omega}(y))^{n-\nu-p+1} & \text{if } \nu = n-p+1 & \text{if } \nu < n-1 \\
(\rho^{\Omega}(y))^{n-\nu-p+1} & \text{if } \nu > n-1\n\end{array}\right.
$$

\nand
\n
$$
\left\{\n\frac{\partial^{p}u(y)}{\partial y_{i_{p}}... \partial y_{i_{1}}}\n\right\} \le \text{const}\n\left\{\n\begin{array}{ll}\n1 + |\log p^{\Omega}(y)| & \text{if } \nu < n-p \\
(\rho^{\Omega}(y))^{n-\nu-p} & \text{if } \nu > n-p\n\end{array}\n\right.
$$

\nTherefore it is sufficient to analyze only the terms with $\frac{\partial v}{\partial y_{i_{p}}... \partial y_{i_{1}}} \Rightarrow v_{n-p}$.
\nTherefore it is sufficient to analyze only the terms with $\frac{\partial v}{\partial y_{i_{p}}... \partial y_{i_{1}}} \text{ in (12) and\n
$$
\delta = \frac{\rho^{\Omega}(\overline{x})}{2}.\n\end{array}
$$

\n(13). Consider any point $\overline{x} \in \Omega = B(x^{0}, r)$ and take the ball $B(\overline{x}, \delta) \subset \Omega$ with
\n
$$
\delta = \frac{\rho^{\Omega}(\overline{x})}{2}.\n\tag{17}
$$

\nThen, for $y \in B(\overline{x}, \delta) \cup S(\overline{x}, \delta), \rho^{\Omega}(\overline{x}) \le 2\rho^{\Omega}(y) \le 3\rho^{\Omega}(\overline{x}), \text{ and } w_{\lambda}^{\Omega}(\overline{x}) \text{ and } w_{\lambda}^{\Omega}(y) \text{ are of\nthe same order, i.e.\n
$$
\left(\frac{
$$$$

and

$$
\left| \begin{array}{ll} (\rho^{\Omega}(y))^{n-\nu-p+1} (1+|\log \rho^{\Omega}(y)|) & \text{if } \nu = n-1 \\ (\rho^{\Omega}(y))^{2(n-\nu)-p} & \text{if } \nu > n-1 \end{array} \right|
$$

$$
\left| \frac{\partial^p u(y)}{\partial y_{i_p} \cdots \partial y_{i_1}} \right| \le \text{const} \left\{ \begin{array}{ll} 1 & \text{if } \nu < n-p \\ 1+|\log \rho^{\Omega}(y)| & \text{if } \nu = n-p \\ (\rho^{\Omega}(y))^{n-\nu-p} & \text{if } \nu > n-p \end{array} \right\}.
$$

(13). Consider any point $\overline{x} \in \Omega = B(x^0, r)$ and take the ball $B(\overline{x}, \delta) \subset \Omega$ with

$$
\delta = \frac{\rho^{\Omega}(\overline{x})}{2}.
$$
\n(17)

the same order, i.e.

\n
$$
|\partial y_{i_p} \cdots \partial y_{i_1}| = \text{arcsin} \left(\left(\rho^{\Omega}(y) \right)^{n-\nu-p} \text{ if } \nu > n-p \right)
$$
\n

\n\n Therefore it is sufficient to analyze only the terms with $\partial^p u / \partial y_{i_p} \cdots \partial y_{i_1}$ in (12) and (13). Consider any point $\overline{x} \in \Omega = B(x^0, r)$ and take the ball $B(\overline{x}, \delta) \subset \Omega$ with\n

\n\n
$$
\delta = \frac{\rho^{\Omega}(\overline{x})}{2}.
$$
\n

\n\n Then, for $y \in B(\overline{x}, \delta) \cup S(\overline{x}, \delta)$, $\rho^{\Omega}(\overline{x}) \leq 2\rho^{\Omega}(y) \leq 3\rho^{\Omega}(\overline{x})$, and $w^{\Omega}(\overline{x})$ and $w^{\Omega}(\overline{y})$ are of the same order, i.e.\n

\n\n
$$
\left(\frac{1}{2} \right)^{\lambda} w^{\Omega}(\overline{x}) \leq w^{\Omega}(\overline{y}) \leq \left(\frac{3}{2} \right)^{\lambda} w^{\Omega}(\overline{x}) \quad (\lambda > 0).
$$
\n

\n\n Let us estimate the terms on the right-hand side of (11) for $u \in C^{m,\nu}(G) \subset C^{m,\nu}(\Omega)$,\n

\n\n If $u \in B(\overline{x}, \delta) \subset \Omega$. First, it follows from (7) and (10) that\n

Let us estimate the terms on the right-hand side of (11) for $u \in C^{m,\nu}(G) \subset C^{m,\nu}(\Omega)$, Let us
 $||u||_{0,\Omega}\leq$ $d, x \in B(\overline{x},\delta) \subset \Omega$. First, it follows from (7) and (10) that

i.e.
\n
$$
\left(\frac{1}{2}\right)^{\lambda} w_{\lambda}^{\Omega}(\overline{x}) \le w_{\lambda}^{\Omega}(y) \le \left(\frac{3}{2}\right)^{\lambda} w_{\lambda}^{\Omega}(\overline{x}) \qquad (\lambda > 0).
$$
\n(18)
\nate the terms on the right-hand side of (11) for $u \in C^{m,\nu}(G) \subset C^{m,\nu}(\Omega)$,
\n
$$
B(\overline{x}, \delta) \subset \Omega. \text{ First, it follows from (7) and (10) that}
$$
\n
$$
w_{p-(n-\nu)}^{\Omega}(\overline{x}) \bigg|_{B(\overline{x}, \delta)} \mathcal{K}_{i_1, ..., i_p}^p(x, y, u(y)) dy \bigg| \qquad (19)
$$
\n
$$
\le \text{const } b_1(d) \begin{cases} \delta^n & \text{if } \nu < 0 \\ \delta^{n-1} & \text{if } \nu > 0 \end{cases}
$$

472 A. Pedas and G. Vainikko
Using (7) and (18), for $1 \leq j \leq p \leq m$ and $\{i_{l_1},\ldots, i_{l_j}\} \subset \{i_1,\ldots, i_p\}$ we have

A. Pedas and G. Vainikko
\n') and (18), for
$$
1 \le j \le p \le m
$$
 and $\{i_{l_1},...,i_{l_j}\} \subset \{i_1,...,i_p\}$ we have
\n
$$
w_{p-(n-\nu)}^{\Omega} \left| \int \limits_{B(\overline{x},\delta)} \frac{\partial}{\partial u} \mathcal{K}_{\{i_1,...,i_p\}\setminus\{i_{l_1},...,i_{l_j}\}}^{p-j} (x, y, u(y)) \frac{\partial^j u(y)}{\partial y_{i_{l_j}} \cdots \partial y_{i_{l_1}}} dy \right|
$$
\n
$$
\le \text{const } b_1(d) \left\{ \begin{array}{ll} \delta^n & \text{if } \nu < 0 \\ \delta^{n}(1+|\log \delta|) & \text{if } \nu = 0 \\ \delta^{n-\nu} & \text{if } \nu > 0 \end{array} \right.
$$
\n
$$
\times \sup_{y \in B(\overline{x},\delta)} w_{j-(n-\nu)}^{\Omega} (y) \left| \frac{\partial^j u(y)}{\partial y_{i_{l_j}} \cdots \partial y_{i_{l_1}}} \right|.
$$
\n(20)

Here we roughly estimated $w_{p-(n-\nu)}^{\Omega}(\overline{x})$ and $w_{p-(n-\nu)}^{\Omega}(\overline{x})/w_{j-(n-\nu)}^{\Omega}(\overline{x})$, respectively, by a constant. The area of $S(\bar{x},\delta)$ is equal to $\sigma_n \delta^{n-1}$, where σ_n is the area of the unit sphere in \mathbb{R}^n . Using (2) for $x = \overline{x} \in B(\overline{x}, \delta)$ we find

$$
\begin{aligned}\n&\leq \text{const}(a) \left\{ \begin{array}{ll} \int_0^a (1 + |\log b|) & \text{if } b = 0 \\
\int_0^{a - \nu} & \text{if } b > 0\n\end{array} \right. \\
&\leq \text{sup} \left\{ \frac{\partial^j u(y)}{\partial y_{i_j} \cdots \partial y_{i_{l_1}}} \right\}.\n\end{aligned}
$$
\n
$$
\text{g}(\text{estimated } w_{p - (n - \nu)}^{\Omega}(\overline{x}) \text{ and } w_{p - (n - \nu)}^{\Omega}(\overline{x}) / w_{j - (n - \nu)}^{\Omega}(\overline{x})
$$
\n
$$
\text{g}(\text{area of } S(\overline{x}, \delta) \text{ is equal to } \sigma_n \delta^{n-1}, \text{ where } \sigma_n \text{ is the}
$$
\n
$$
\text{Using (2) for } x = \overline{x} \in B(\overline{x}, \delta) \text{ we find}
$$
\n
$$
\left| \int_{S(\overline{x}, \delta)} \frac{\partial^{p-1}}{\partial x_{i_p} \cdots \partial x_{i_2}} \mathcal{K}(x, y, u(y)) \omega_{i_1}(y) \, dS_y \right|
$$
\n
$$
\leq c \, b_1(d) \, \delta^{n-1} \left\{ \begin{array}{ll} 1 & \text{if } \nu + p - 1 < 0 \\
1 + |\log \delta| & \text{if } \nu + p - 1 = 0 \\
\delta^{-\nu - (p-1)} & \text{if } \nu + p - 1 > 0 \\
\delta^{-\nu - (p-1)} & \text{if } \nu + p - 1 > 0\n\end{array} \right.
$$

and, after the multiplication by $w_{p-(n-\nu)}^{\Omega}(\overline{x})$, we obtain

$$
\leq c \, b_1(a) \, e^{-\frac{1}{2} \int \frac{1}{\delta - \nu - (p-1)}} \quad \text{if} \quad \nu + p - 1 = 0
$$
\n
$$
\leq c' b_1(d) (w_{p-(n-\nu)}^{\Omega}(\overline{x}))^{-1}
$$
\n
$$
\text{or the multiplication by } w_{p-(n-\nu)}^{\Omega}(\overline{x}), \text{ we obtain}
$$
\n
$$
w_{p-(n-\nu)}^{\Omega}(\overline{x}) \left| \int \frac{\partial^{p-1}}{\partial x_{i_p} \cdots \partial x_{i_2}} \mathcal{K}(x, y, u(y)) \, \omega_{i_1}(y) \, dS_y \right| \leq \text{const } b_1(d). \tag{21}
$$

Further, using (2) and (18), we estimate, for $x = \bar{x} \in B(\bar{x}, \delta)$, $2 \leq k \leq p \leq m$,

Further, using (2) and (18), we estimate, for
$$
x = \overline{x} \in B(\overline{x}, \delta)
$$
, $2 \le k \le$
\n $1 \le j \le k - 1$ and $\{i_{l_1}, \ldots, i_{l_j}\} \subset \{i_1, \ldots, i_{k-1}\},$
\n
$$
\left| \int_{S(\overline{x}, \delta)} \frac{\partial^{p-k}}{\partial x_{i_p} \cdots \partial x_{i_{k+1}}} \frac{\partial}{\partial u} \right|
$$
\n
$$
\mathcal{K}_{\{i_1, \ldots, i_{k-1}\}\backslash \{i_{l_1}, \ldots, i_{l_j}\}}^{k-1-j} (x, y, u(y)) \omega_{i_k}(y) \frac{\partial^{j} u(y)}{\partial y_{i_{l_j}} \cdots \partial y_{i_{l_1}}} dS_y \right|
$$
\n
$$
\le c b_1(d) \delta^{n-1} \begin{cases} 1 & \text{if } \nu + p - k < 0 \\ 1 + |\log \delta| & \text{if } \nu + p - k = 0 \\ \delta^{-\nu - (p-k)} & \text{if } \nu + p - k > 0 \end{cases}
$$
\n
$$
\times \sup_{y \in S(\overline{x}, \delta)} \left| \frac{\partial^{j} u(y)}{\partial y_{i_{l_j}} \cdots \partial y_{i_{l_1}}} \right|
$$

and

The Smoothness of Solutions 473
\n
$$
w_{p-(n-\nu)}^{\Omega}(\overline{x})\Bigg|_{S(\overline{x},\delta)} \frac{\partial^{p-k}}{\partial x_{i_p}\cdots\partial x_{i_{k+1}}}\frac{\partial}{\partial u}
$$
\n
$$
\mathcal{K}_{\{i_1,\ldots,i_{k-1}\}\backslash\{i_{l_1},\ldots,i_{l_j}\}}^{k-1-j} (x,y,u(y))\omega_{i_k}(y)\frac{\partial^j u(y)}{\partial y_{i_{l_j}}\cdots\partial y_{i_{l_1}}}dS_y\Bigg|_{S(\overline{x},\delta)}
$$
\n
$$
\leq c'b_1(d)\begin{cases} \delta^{n-1} & \text{if } \nu+p-k<0\\ \delta^{n-1}(1+|\log\delta|) & \text{if } \nu+p-k=0\\ \delta^{n-1-\nu-p+k} & \text{if } \nu+p-k>0 \end{cases}
$$
\n
$$
\times \frac{w_{p-(n-\nu)}^{\Omega}(\overline{x})}{w_{j-(n-\nu)}^{\Omega}(\overline{x})}\sup_{y\in S(\overline{x},\delta)}w_{j-(n-\nu)}^{\Omega}(y)\Bigg|\frac{\partial^j u(y)}{\partial y_{i_{l_j}}\cdots\partial y_{i_{l_1}}}.
$$
\nwhile causes only the case $\nu+p-k>0$ (the third row in estimation (21))

Some trouble causes only the case $\nu + p - k > 0$ (the third row in estimation (21)). If thereby $n - 1 - \nu - p + k \ge 0$, then we have again no difficulty in estimation (21) (estimating $w_{p-(n-\nu)}^{\Omega}(\overline{x})/w_{j-(n-\nu)}^{\Omega}(\overline{x})$ coarsely by a constant). Consider the case $n - \nu - p + k < 0$. Together with the inequality $k \ge 2$ we have then $n - \nu + 1 < p$. Therefore $w_{p-(n-\nu)}^{\Omega}(\overline{x}) = (\rho^{\Omega}(\overline{x}))^{p-(n-\nu)}$ and, due to (17),

$$
\begin{vmatrix}\n\delta^{n-1-\nu-p+k} & \text{if } \nu + p - k > 0 \\
\delta^{n-1-\nu-p+k} & \text{if } \nu + p - k > 0\n\end{vmatrix}
$$
\n
$$
\times \frac{w_{p-(n-\nu)}^{\Omega}(\overline{x})}{w_{j-(n-\nu)}^{\Omega}(\overline{x})} \sup_{y \in S(\overline{x},\delta)} w_{j-(n-\nu)}^{\Omega} (y) \left| \frac{\partial^{j} u(y)}{\partial y_{i_{j}} \cdots \partial y_{i_{l}}}\right|;
$$
\ntrouble causes only the case $\nu + p - k > 0$ (the third row in estimation (21)).
\nreby $n - 1 - \nu - p + k \ge 0$, then we have again no difficulty in estimation (21).
\nating $w_{p-(n-\nu)}^{\Omega}(\overline{x})/w_{j-(n-\nu)}^{\Omega}(\overline{x})$ coarsely by a constant). Consider the case $n - p + k < 0$. Together with the inequality $k \ge 2$ we have then $n - \nu + 1 < p$.
\nfor $w_{p-(n-\nu)}^{\Omega}(\overline{x}) = (\rho^{\Omega}(\overline{x}))^{p-(n-\nu)}$ and, due to (17),
\n
$$
\delta^{n-1-\nu-(p-k)} \frac{w_{p-(n-\nu)}^{\Omega}(\overline{x})}{w_{j-(n-\nu)}^{\Omega}(\overline{x})}
$$
\n
$$
\leq \delta^{n-1-\nu-(p-k)} \begin{cases}\n(\rho^{\Omega}(\overline{x}))^{p-(n-\nu)} & \text{if } j < n - \nu \\
(\rho^{\Omega}(\overline{x}))^{p-1} & \text{if } j < n - \nu \\
(\rho^{\Omega}(\overline{x}))^{p-j} & \text{if } j > n - \nu \\
\delta^{n-\nu+k-1-j} & \text{if } j > n - \nu\n\end{cases}
$$
\n
$$
\leq c''' \begin{cases}\n\delta^{k-1} & \text{if } j < n - \nu \\
\delta^{k-1}(1 + |\log \delta|) & \text{if } j = n - \nu \\
\delta^{n-\nu} & \text{if } j > n - \nu \\
\delta^{n-\nu} & \text{if } j > n - \nu\n\end{cases}
$$
\n
$$
\leq c''' \begin{cases}\n\delta^{k-1} & \text{if } j < n
$$

It follows from (11), (12) and (19) - (22) that, for $x = \overline{x} \in B(\overline{x}, \delta) \subset \Omega$,

$$
\leq c \int_{\delta^{n-\nu}}^{\delta(1+|\log \delta|)} \int_{\delta^{n-\nu}}^{\delta(1+|\log \delta|)} \frac{f}{f} = n - \nu
$$
\n
$$
\text{from (11), (12) and (19) - (22) that, for } x = \overline{x} \in B(\overline{x}, \delta) \subset \Omega,
$$
\n
$$
w_{p-(n-\nu)}^{\Omega} \left| \frac{\partial^p}{\partial x_{i_p} \cdots \partial x_{i_1}} \int_{B(\overline{x}, \delta)} K(x, y, u(y)) dy \right|
$$
\n
$$
\leq \text{const } b_1(d) \left(1 + \left\{ \frac{\delta^{\min\{1, n-\nu\}} \|u\|_{p, \nu, \Omega}}{\delta(1+|\log \delta|)} \right\} \|u\|_{p, \nu, \Omega} \text{ if } \nu \text{ is a fraction}
$$
\n
$$
\in \Omega = B(x^0, r) \text{ is arbitrary and } \delta = \rho^{\Omega}(\overline{x})/2, \text{ we finally find that, } f'(G) \text{ with } \|u\|_{0, \Omega} \leq d,
$$
\n
$$
w_{|\alpha|-(n-\nu)}^{\Omega}(x) |D_x^{\alpha}(T_{\Omega}u)(x)| \leq b_1(d)(c' + \varepsilon_r' \|u\|_{|\alpha|, \nu, \Omega})
$$

Since $\bar{x} \in \Omega = B(x^0, r)$ is arbitrary and $\delta = \rho^{\Omega}(\bar{x})/2$, we finally find that, for any Since $\overline{x} \in \Omega = B(x^0, r)$ is $u \in C^{m,\nu}(G)$ with $||u||_{0,\Omega} \leq$ $u \in C^{m,\nu}(G)$ with $||u||_{0,\Omega} \leq d$,

$$
\|u\|_{0,\Omega} \leq d,
$$
\n
$$
w_{|\alpha|-(n-\nu)}^{0}(x)|D_{x}^{\alpha}(T_{\Omega}u)(x)| \leq b_{1}(d)(c' + \varepsilon'_{r}||u||_{|\alpha|, \nu, \Omega})
$$
\n(23)

where $x \in \Omega = B(x^0, \frac{r}{2}), 1 \leq |\alpha| \leq m, \varepsilon_r' \to 0$ as $r \to 0$ and the constant $c' > 0$ is independent of x, *u* and *d.*

Using (2) and (3) we find in a similar way that, for any $u, v \in C^{m,\nu}(G)$ with independent of x, u and α
Using (2) and (3) w
 $||u||_{0,\Omega} \leq d$ and $||v||_{0,\Omega} \leq$ *d,*

474 A. Pedas and G. Vainikko
\nwhere
$$
x \in \Omega = B(x^0, \frac{r}{2}), 1 \leq |\alpha| \leq m, \varepsilon'_r \to 0
$$
 as $r \to 0$ and the constant $c' > 0$ is
\nindependent of x, u and d.
\nUsing (2) and (3) we find in a similar way that, for any $u, v \in C^{m,\nu}(G)$ with
\n $||u||_{0,\Omega} \leq d$ and $||v||_{0,\Omega} \leq d$,
\n $w_{|\alpha|-(n-\nu)}^{\Omega}(x)|D_x^{\alpha}(T_{\Omega}u - T_{\Omega}v)(x)|$
\n $\leq c''b_2(d)||u - v||_{0,\Omega} + b_1(d)\varepsilon''_r||u - v||_{|\alpha|, \nu, \Omega}$
\nwhere $x \in \Omega = B(x^0, \frac{r}{2}), 1 \leq |\alpha| \leq m, \varepsilon''_r \to 0$ as $r \to 0$ and the constant $c'' > 0$ is
\nindependent of x, u, v and d.

independent of x, *u, v* and *d.*

Inequalities (23) and (24) may be extended to any $u, v \in C^{m,\nu}(\Omega)$ with $||u||_{0,\Omega} \leq d$ where $x \in \Omega = B(x^0, \frac{r}{2}), 1 \leq |\alpha| \leq m, \varepsilon_r' \to 0$ as $r \to 0$
independent of x, u and d .
Using (2) and (3) we find in a similar way that, for
 $||u||_{0,\Omega} \leq d$ and $||v||_{0,\Omega} \leq d$,
 $w_{|\alpha|-(n-\nu)}^{\Omega}(x)|D_x^{\alpha}(T_{\Omega}u - T_{\Omega}v)(x)|$
ies (23) and (24) may be extended
 $\begin{aligned}\n\frac{1}{m}, \mu, \Omega &= M \|\mu\|_{0}, \Omega + \|\mu\|_{m,\nu,\Omega}\n\end{aligned}$

$$
\Omega = B(x^0, \frac{r}{2}), 1 \leq |\alpha| \leq m, \varepsilon_r'' \to 0 \text{ as } r \to 0 \text{ and the constant}
$$

nt of x, u, v and d .
lities (23) and (24) may be extended to any $u, v \in C^{m,\nu}(\Omega)$ with $|\alpha| \leq d$. Introduce the norm $\| \cdot \|_{m,\nu,\Omega}'$ in $C^{m,\nu}(\Omega)$:
 $\|u\|_{m,\nu,\Omega}' = M \|u\|_{0,\Omega} + \|u\|_{m,\nu,\Omega}$
 $= (M+1) \|u\|_{0,\Omega} + \sum_{1 \leq |\alpha| \leq m} \sup_{x \in \Omega} \left(w_{|\alpha|-(n-\nu)}^{\Omega}(x) |D_x^{\alpha}u(x) | \right)$
 ≥ 1 is a sufficiently large constant. We fix
 $M > \max\{c'b_1(d), c''b_2(d)\}\sum_{1 \leq |\alpha| \leq m} 1$.
that the norms $\| \cdot \|_{m,\nu,\Omega}$ and $\| \cdot \|_{m,\nu,\Omega}'$ are equivalent:
 $\|u\|_{m,\nu,\Omega} \leq \|u\|_{m,\nu,\Omega}' \leq (M+1) \|u\|_{m,\nu,\Omega}$.

where $M \geq 1$ is a sufficiently large constant. We fix

$$
M>\max\{c'b_1(d),c''b_2(d)\}\sum_{1\leq |\alpha|\leq m}1.
$$

 $M >$
It is clear that the norms $\|\cdot\|$

$$
\text{ns} \|\cdot\|_{m,\nu,\Omega} \text{ and } \|\cdot\|'_{m,\nu,\Omega} \text{ are equivalent:}
$$

$$
\|u\|_{m,\nu,\Omega} \le \|u\|'_{m,\nu,\Omega} \le (M+1) \|u\|_{m,\nu,\Omega}.
$$

Introduce the set

1 \n
$$
1 \leq |\alpha| \leq m
$$
\n1 is a sufficiently large constant. We fix\n
$$
M > \max\{c'b_1(d), c''b_2(d)\} \sum_{1 \leq |\alpha| \leq m} 1.
$$
\nthat the norms $\|\cdot\|_{m,\nu,\Omega}$ and $\|\cdot\|'_{m,\nu,\Omega}$ are equivalent:\n
$$
\|u\|_{m,\nu,\Omega} \leq \|u\|'_{m,\nu,\Omega} \leq (M+1)\|u\|_{m,\nu,\Omega}.
$$
\nthe set\n
$$
\mathcal{B}_{m,\nu,\Omega,d,d'} = \left\{ u \in C^{m,\nu}(\Omega) : \|u\|'_{m,\nu,\Omega} \leq d' \text{ and } \|u\|_{0,\Omega} \leq d \right\}
$$
\n
$$
\|f_{\Omega}\|_{0,\Omega} \text{ and } d' > \|f_{\Omega}\|'_{m,\nu,\Omega} + M. \text{ It is clear that } \mathcal{B}_{m,\nu,\Omega,d}
$$
\nand (24)

where $d > ||f_{\Omega}||_{0,\Omega}$ and $d' > ||f_{\Omega}||'_{m,\nu,\Omega} + M$. It is clear that $B_{m,\nu,\Omega,d,d'} \subset B_{0,\Omega,d}$ and $B_{m,\nu,\Omega,d,d'}$ is closed in $C^{m,\nu}(\Omega)$. A consequence of (15), (23) and (24) is that, for sufficiently small $r > 0$, the operator S_{Ω} maps $B_{m,\nu,\Omega,d,d'}$ into itself and satisfies (16) with $q = 1/2$. Indeed, using the first inequality in (15) and (23), for $u \in B_{m,\nu,\Omega,d,d'}$ we have $||S_{\Omega}u||_{0,\Omega} \le b_1(d)\varepsilon_r + ||f_{\Omega}||_{0,\Omega}$ have

$$
||S_{\Omega}u||_{0,\Omega}\leq b_1(d)\varepsilon_r+||f_{\Omega}||_{0,\Omega}
$$

and

$$
||S_{\Omega}u||_{0,\Omega} \leq b_1(d)\varepsilon_r + ||f_{\Omega}||_{0,\Omega}
$$

$$
||S_{\Omega}u||'_{m,\nu,\Omega} = (M+1)||S_{\Omega}u||_{0,\Omega} + \sum_{1 \leq |\alpha| \leq m} \sup_{x \in \Omega} \left(w_{|\alpha|-(n-\nu)}^{\Omega}(x)|D_x^{\alpha}(S_{\Omega}u)(x)| \right)
$$

$$
\leq (M+1)b_1(d)\varepsilon_r + ||f_{\Omega}||'_{m,\nu,\Omega} + \sum_{1 \leq |\alpha| \leq m} b_1(d) (c' + \varepsilon'_r ||u||_{|\alpha|,\nu,\Omega}).
$$

uniformly small $r = r_1 > 0$ it follows that $S_{\Omega}u \in B_{m,\nu,\Omega,d,d'}:$
 $||S_{\Omega}u||_{0,\Omega} \leq d$ and $||S_{\Omega}u||'_{m,\nu,\Omega} \leq d'.$

For sufficiently small $r = r_1 > 0$ it follows that $S_{\Omega} u \in$
 $||S_{\Omega} u||_{0,\Omega} \le d$ and $||$

$$
||S_{\Omega}u||_{0,\Omega}\leq d \qquad \qquad \text{and} \qquad \qquad ||S_{\Omega}u||'_{m,\nu,\Omega}\leq d'.
$$

Similarly, using the second inequality in (15) and (24) we find that, for $u, v \in B_{m,\nu,\Omega,d,d'}$,

Similarly, using the second inequality in (15) and (24) we find that, for
$$
u, v \in B_{m,\nu,\Omega,d,d'},
$$

\n
$$
\|S_{\Omega}u - S_{\Omega}v\|_{m,\nu,\Omega}^{l}
$$
\n
$$
= (M+1)\|S_{\Omega}u - S_{\Omega}v\|_{0,\Omega}
$$
\n
$$
+ \sum_{1 \leq |\alpha| \leq m} \sup_{x \in \Omega} \left(w_{|\alpha| - (n-\nu)}^{0}(x)|D_{x}^{\alpha}(S_{\Omega}u - S_{\Omega}v)(x)| \right)
$$
\n
$$
\leq (M+1)b_{2}(d)\varepsilon_{r} \|u - v\|_{0,\Omega}
$$
\n
$$
+ \sum_{1 \leq |\alpha| \leq m} (c''b_{2}(d)\|u - v\|_{0,\Omega} + b_{1}(d)\varepsilon_{r}^{\mu}\|u - v\|_{|\alpha|,\nu,\Omega})
$$
\n
$$
\leq \left(b_{2}(d)\varepsilon_{r} + \frac{(c''b_{2}(d) + b_{1}(d)\varepsilon_{r}^{\mu})\sum_{1 \leq |\alpha| \leq m} 1}{M+1} \right) (M+1)\|u - v\|_{0,\Omega}
$$
\nWe see that for sufficiently small $r = r_{2} > 0$ (such that the inequalities $b_{2}(d)\varepsilon_{r_{2}} \leq 1/4$ and $b_{1}(d)\varepsilon_{r_{2}}^{\mu} \left(\sum_{1 \leq |\alpha| \leq m} 1 \right) \sum_{1 \leq |\alpha| \leq m} \sup_{x \in \Omega} \left(w_{|\alpha| - (n-\nu)}^{0}(x)|D_{x}^{\alpha}(u - v)(x)| \right).$

\nWe see that for sufficiently small $r = r_{2} > 0$ (such that the inequalities $b_{2}(d)\varepsilon_{r_{2}} \leq 1/4$ and $b_{1}(d)\varepsilon_{r_{2}}^{\mu} \left(\sum_{1 \leq |\alpha| \leq m} 1 \right) \leq 1/2$ are fulfilled) and for sufficiently large M (such that the inequality $(c''b_{2}(d) + b_{1}(d)\varepsilon_{r_{2}}^{\mu})\sum$

 $\begin{aligned}\n\frac{1}{1 \leq |\alpha| \leq m} & \int \frac{1}{1 \leq |\alpha| \leq m} \sum_{x \in \Omega} \frac{\sup}{|\alpha| - (n - \nu)(x)| D_x^2(u - v)(x)|} \, du \\
\text{by small } & r = r_2 > 0 \text{ (such that the inequalities } b_2(d) \varepsilon_{r_2} \leq 1/4 \\
1) & \leq 1/2 \text{ are fulfilled)} \text{ and for sufficiently large } M \text{ (such that } b_1(d) \varepsilon_{r_1}^{\prime\prime\prime} \leq 1/4 \varepsilon_{r_2}^{\prime\prime\prime} \leq$ the inequality $(c''b_2(\bar{d})+b_1(d)\varepsilon''_{r_2})\sum_{1\leq |\alpha| \leq m} 1/(M+1) \leq 1/4$ is fulfilled) the operator

again the Banach fixed point theorem we see that equation (13) is uniquely solvable in $\mathcal{B}_{m,\nu,\Omega,d,d'}$. The solution coincides with the unique solution u_0 of equation (13) (equation (1)) in $B_{0,\Omega,d}$. In other words, the restriction to Ω of u_0 , the solution to equation (1) under consideration, belongs to $B_{m,\nu,\Omega,d,d'} \subset C^{m,\nu}(\Omega)$. Especially, for the point $x^0 \in \Omega = G \cap B(x^0, r_0/2)$ we have

$$
|D^{\alpha}u_0(x^0)| \leq \text{const} \begin{cases} 1 & \text{if } |\alpha| < n - \nu \\ 1 + |\log \rho^{\Omega}(x^0)| & \text{if } |\alpha| = n - \nu \\ (\rho^{\Omega}(x^0))^{n-\nu-|\alpha|} & \text{if } |\alpha| > n - \nu \end{cases}
$$

with a constant which is independent of $x^0 \in G$. Since $x^0 \in G$ is arbitrary and, for $= B(x^0,r_0/2), \, \rho^{\Omega}(x^0) = \min\{\rho(x^0)/2,r_0/2\},$ dependent of $x^0 \in G$. Since x^0
 $\min\{\rho(x^0)/2, r_0/2\},$
 $\frac{r_0}{2 \text{diam } G} \rho(x^0) \leq \rho^{\Omega}(x^0) \leq \rho(x^0)$

$$
\frac{r_0}{2\text{diam }G}\rho(x^0)\leq\rho^{\Omega}(x^0)\leq\rho(x^0)
$$

we obtain that $u_0 \in C^{m,\nu}(G)$. Theorem 1 is proved.

References

- [1] Graham, I.G.: *Singularity expansion for the solutions of second kind Fredholm integral equations with weakly singular convolution kernels.* J. mt. Equ. 4 (1982), 1 - 30.
- *[2] Kaneko, H., Noren, R. and Y. Xu: Regularity of the solution of Hammerstein equations* with weakly singular kernel. Int. Equ. Oper. Theory 13 (1990), 660 - 670.
- *[3] Kangro, R.: On the smoothness of solutions to on integral equation with a kernel having a singularity on a curve.* Acta Comm. Univ. Tartuensis 913 (1990), 24 - 37.
- *[4] Kangro, U.: The smoothness of the solution of a two-dimensional integral equations with logarithmic kernel* (in Russian). Proc. Eston. Acad. Sci., Phys.-Math. 39 (1990), 196 - 204.
- [5] Kangro, U.: *The smoothness of the solution to a two-dimensional integral equation with logarithmic kernel.* Z. Anal. Anw. 12 (1993), 305 - 318.
- *[6] Pedas, A.: On the smoothness of the solution of an integral equation with weakly singular kernel* (in Russian). Acta Comm. Univ. Tartuensis 492 (1979), 56 - 68.
- [7] Pitkäranta, J.: *On the differential properties of solutions to Fredholm equations with weakly singular kernels.* J. Inst. Math. AppI. 24 (1979), 109 - 119.
- *[8] Pitkäranta, J.: Estimates for the derivatives of solutions to weakly singular Fredhoim integral equations.* SIAM J. Math. Anal. 11(1980), 952 - 968.
- *[9] Richter, C. R.: On weakly singular Fredholm integral equations with displacement kernels.* J. Math. Anal. AppI. 55 (1976), 32 - 42.
- *[10] Schneider, C.: Regularity of the solution to a class of weakly singular Fredholm integral equations of the second kind.* mt. Equ. Oper. Theory 2 (1979), 62 - 68.
- *[11] Vainikko, G. M.: On the smoothness of the solution of the multidimensional weakly singular integral equation* (Russian original 1989). Math. USSR Sbornik 68 (1991), 585 - 600.
- *[12] Vainikko, G.: Estimations of derivatives of a solution' to a nonlinear weakly singular integral equation.* In: Problems of Pure and Applied Mathematics (ed.: M. Rahula). Tartu: PubI. Univ. Tartu 1990, pp. 212 - 215.
- *[13] Vainikko, G.: Multidimensional weakly singular integral equations.* Lect. Notes Math. 1549 (1993), 1 - 158.
- *[14] Vainikko, G. and A. Pedas: The properties of solutions of weakly singular integral equations.* J. Austral. Math. Soc. (Ser B) 22 (1981), 419 - 430.
- [15] Vainikko, G., Pedas, A. and P. Uba: *Methods for Solving Weakly Singular Integral Equations* (in Russian). Tartu: Univ. Tartu 1984.

Received 30.12.1993