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Abstract. We prove a theorem on differential-functional inequalities in the Carathéodory 
sense. The proof is based on the faèt that we can solve a linear differential equation with 
first-order partial derivatives. We use also an integral Volterra-type inequality. We obtain 
a theorem on the uniqueness of generalized entropy solutions to the initial-value problem for 
non-linear partial differentialfunctional equations of the first order. 
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0. Introduction 
Let b>, R+ = [0,00), roE R+ ,r = (ri ,... ,i-0 ) E Rn and denote 

Eb = [—ro,b] x R",	E(b) = [0, b] x R",	D = [—ro,0] x [—r,r]. 

Further, for arbitrary metric spaces X and Y denote by C(X, Y) the set of all continuous 
functions defined on X and taking values in Y. For z : Et, - R and (x, y) E E(b) we 
define a function Z(z,y) : D - R by 

Z()(e, ,) = z(x + C, y +,?) for (, i) E D. 

At last, let
= E 6 x R x C(D,R) x R' 

Assume that f : Q - R and :Eo - R. If z E C(E(b) ,R) is a function of variables 
(x, y) = (x, yr,... , y,,) and if there exist derivatives Dy z (j = .. , n) on E( b), then 
we denote

Dz(x,y) = (Dyz(x,y),. .. ,D5,,z(x,y))	for (x, Y) E E(b) 
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We consider the differential-functional equation 

Dz(x, y) =	y, z(x, y),	Dz(x, v))	 (0.1) 

with the initial condition 

z(x,y)=(x,y)	for (x,y)EE0 .	 (0.2) 

Let M[k,l] denote the class of all k x 1 real matrices. If.0 = [u i ,,] E M[k,l], then 
lull = maxilEi I u R,I} . Let Al be the set of all natural numbers. For every k E Al 
and' = (ifl,... , i k) E R c we define ll'iIl = maxi J i7i l. Throughout the paper we will 
denote norms of matrices and vectors by the same symbols. At last, if I = [a i , a2 ] is an 
interval, then £(I, R) denotes the set of all functions A : I - R for which f' 2 IA(t)ldt 
exists. 

Numerous problems in the theory of differential equations have been solved by 
means of the differential inequalities methods. Let us mention only the most important 
problems; an estimation of the domain of the existence of solutions, establishing some 
uniqueness criteria, the research of stability conditions, finding some estimations of 
solutions, continuous dependence on initial data and on right-hand-side functions, error 
estimations for approximate solutions. Some inequalities in a Haar pirainid or in an 
unbounded domain are considered there. For some more reference connected with the 
subject we send the reader to the papers [1, 3, 6]. The classical theory of differential 
inequalities with its applications is founded in the monographs [9, 15]. 

The subject of the uniqueness of solutions to initial or initial-boundary value prob- 
lems is mostly connected with differential inequalities. Consider the initial value problem 

Dz(x,y) = F(x,y,z(x,y),Dz(x,y))	for (x, Y) E E	
(0.3) 

z(0, y) =	 for yE [—b,b] 

where

E= {(x, y) x  [0,a], y=(yi,...,yn), Jyj I <b— Mx for all 

b = (b1 ,... ,b) and Dz = (D,z,... ,D,,z). Assume that F: E x R x R" - Rand 
that for some function a: [0, a] x R+ -' R+ we have the estimate 

IF(x,y,p,q) - F(x,y,)l <a(x, I - l) +	M1 q1 - 

If a is a Perron type comparison function, then there exists at most one classical solution 
of problem (0.3) that is continuous, possesses first-order partial derivatives in E and 
total differential in aEn([0, a) x Ri'). If we assume that a is a comparison function of the 
Kamke type, then a solution of problem (0.3) is unique in the class of functions satisfying 
the above condition and possessing a continuous partial derivative with respect to x for 

= 0, see [9, 15].
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The above results can be extended on the differential-functional problems 

Dz(x,y) = F(x,y,z(.),Dz(x,y))	((z,y) E E)	
(0.4) 

z(x,y) = 41 ( -T , Y)	 ((X, Y) E E0) 

where E0 = [—ro,O] x [—b,b] and F: E x C(E,R) x R n -+ R. A comparison problem 
for problem (0.4) is of the form

= a(x,ii())	(x E [0,a])	
(0.5) 

= 0	 (x E [—To,0]) 

where & : [0, a] x C([—ro, a], R+) -, R+. The essential fact in these considerátions is 
that operators F and & satisfy the Volterra condition, see M. 

If we consider problem (0.3) in an unbounded zone E = [0, a] x R, then we can 
omit the assumption that solutions of the Cauchy problem have the total differential 
in some points of the domain. In this case we assume that the comparison function 
is linear with respect to the second variable, which means that F satisfies a Lipschitz 
condition. The proof of the uniqueness result is based on the fact that we can solve a 
linear differential inequality with first-order partial derivatives. 

An interesting result for the global uniqueness of the Cauchy problem when F 
satisfies the Holder condition with respect to the last variable can be found in [2]. In 
[11] we proved some uniqueness results for differential-functional equations considered 
on [0, a] x W1 with the Cauchy data given on [—To, 0] x R". The method of differential-
functional inequalities is used. 

Non-linear equations with partial derivatives have the following property: any clas-
sical solution to initial-value problems exists locally with respect to x. This leads to 
definitions of solutions in the sense "almost everywhere" or Caraihéodorj solutions. The 
class of weak (Carathéodory) solutions consists of all functions which are continuous, 
have their derivatives almost everywhere in some domain, and the set of all points where 
the differential equation is not fulfilled is of Lebesgue measure zero. The main existence 
and uniqueness results for initial-value problems in the class of generalized solutions can 
be found in [8, 121 (see also [13, 14]). 

Generalized solutions of non-linear equations are also investigated in the case that 
assumptions for the given functions are extended. A function z E C(Eb , R) is called 
a CC-solution of equation (0.1) if it is a solution in the Caratheodory sense, z( . ,y) is 
absolutely continuous for y E R', the derivative D, z exists on E( b), and for every y E R' 
equation (0.1) is satisfied almost everywhere on [0, b]. CC-solutions to problem (0. 1), 
(0.2) are obtained as solutions of suitable systems of integro-functional equations, see 
[4], 101, 131. Theorems on the uniqueness of CC-solutions with non-linear comparison 
functions are proved by means of integro-functional inequalities of the Volterra type. 
The papers [4, 10] deal with the existence and uniqueness of CC-solutions. This class 
of generalized solutions seems to be important if we look for classical solutions because 
the assumptions that right-hand side of equations is continuous is sufficient to prove 
that every CC-solution to it is a classical solution. This observation is known in the 
literature (see [4, 10]).
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Solutions of equation (0.1) in the Caratheodory sense are not unique. That is the 
reason why in the literature two natural subclasses of the set of all solutions in the 
Carathéodory sense are considered - CC-solutions and generalized entropy solutions, 
which are the subject of our investigations in the paper. It is easy to construct examples 
of generalized entropy solutions which are not CC-solutions and vice versa. 

Our Theorems 1.1 and 2.1 are some extensions of Krukov's results on the case of 
differential-functional equations. Essentially, roots of our proof methods, similarly as in 
[8], are related to the Holmgren principle: "uniqueness of the solutions to some linear 
problems follows from existence for the adjoint problem". The proof of Theorem 1.1 
(like proofs in [8], 11, 14]) is a non-linear realization of this principle with the Cauchy 
problem (1.7) as the "adjoint problem". 

The existence of generalized entropy solutions is proved in [8] for differential equa-
tions and in [7] for equations with deviated variables. We cite the existence theorem for 
generalized entropy solutions of differential-functional equations from the paper [5]. In 
this part of the paper we put n = 1 and 7-0 > 0. Denote by CO3(D, R) the class of all 
functions w E C('D, R) which satisfy the Lipschitz condition on D. Define 

CO+L(D,J,i) = {W E CO+L(D,R) 
I li w ilo + II W IIL <_ t 

where 11 ° is the supremum norm in C(D,R) and 

I w IIL = SUPf Iw(t, s) - w(, )I(I t - I + Is - 31) 	s), (, ) E D }. 

In a similar way we define C(D, R, t). 

Theorem 0.1 [5]: Suppose that the following conditions are true. 
1. W eC(E,R) and there exist constants M,L E R such that 

o(z, )l <1f and I(x, y) - (x, )I	L I y -	on E0. 

2. There exists k E .tLf such that for I E R\{0} we have 

((x,Y+l)_2(x,y)+(X,y_l))l_2 k on E0. 

3. 1 E C2 (Q, R) and there exist a constant N > M and a non-decreasing function 
V E C([M, N], R) 'such that for t E 11 we have fZ V(t) 1 dt > b and 

If(x,y,p,w,q)	V(t)	on [0, b] x R x [—t, t] x C(D,R,t) x R. 

4. There exist N1 ^! L, A > 0 and a non-decreasing function W E C([L, N1 ], R) 
such that ffhh[(2t + 1)W(N + 3t)]'dt > b, and for t E R, P = (x,y,p,w,q) E 
[0,b] x R x [—N, N] x Co+L( D,R,t) x R we have 

Dq f(P)	A	and	I D f(P)I, IDf(P)I, II D f(P)II W(t) 

where Df is the Frechet derivative off with respect to w.
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5. For ui E D(D, R we have D f(P)(uiJ) > 0 on 

= [0,.b) x R x [—N,N] x CO+L(D,R, N +3N1 ) x [—N1,N1]. 

6. The second order derivatives of I are bounded on and D q f(P) 15 0 on 

Then there is a function u e C(E6 , R) which is a generalized entropy solution to problem 
(0.1), (0.2). 

The proof of the theorem is based on the difference method. Assumptions of ex-
istence theorems are by far more restrictive than assumptions of uniqueness theorems, 
which is typical for this class of problems. 

Now, we give an example of the Cauchy problem for which there are at least two 
Caratheodory solutions. For X C [0, 11 x R we denote by x . the characteristic function 
of X. Put

Xi={(x,Y)xE[0,1],2Y<x+2} 

= {(x, y) x  [0, 11, —x+2 y <2} 

= {(x,y) x  [0, 11, x —2 y < —x+.2} 

X4={(x,y)xE[0,1],-2<y<x-2} 

= {(x,y) x  [0, 1], -X —2 y < _21. 

We define g: [0,1]xR—Rby 

1	
2)2k (x, y) 	

1
(y _ 2+x)2 x21 x2(x,y) 

_x2x3 (X I y)+ 1(x - y - 2) 2 _ X 21 X ,,, ( X , Y) 

- (y +2+x)2x(x,y). 

Then g E C([0, 1] x R, R). Consider the differential-functional equation 

2 

D1z(x,y) = 
V 2

	+,$)ds -
	
sin z(x,y) - (Dy z(x,y)) 2	(0.6) 

on [0, 1] x R with the initial condition 

z(0,y)=0	for yER.	 (0.7) 

Then functions u(x, y) = 0 for (x, y) E [0,1] x R and v: [0, 1] x R -+ R given by 

10	for xE[0,1], y< —xory>x 
v(x,y)= y-r	for xE [0 , 1 ], 0y:^x 

-y - X for xE [0 , 1 ], —x<y<0 

are Carathéodory solutions to problem (0.6), (0.7).
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1. Differential-functional inequalities in Carat héodory sense 

We shall prove a theorem on differential-functional inequalities. As a consequence of this 
theorem we get a uniqueness criterion for generalized entropy solutions to the Cauchy 
problem. 

If G: [a,] x R'1 —* R (a, U E R+ and a ), then let supp G denote the support 
of function C. Given any normed spaces X and Y let C' (X, Y) stand for the set of all 
continuously differentiable functions defined on X and taking values in Y. For a, e E R+ 
such that a, a + c E [0, b] we shall denote 

= {E C 1 ([a, a + e] x R, R) 
G(a +	0 for e 

R } supp C is a compact set 

and

=	e C([a,a + e] x R', R+) supp 0 CE6 \Eo is a compact set } 

Let K2 (0, MI ) = {y E	11y112 M,}, where M1 E R. The symbol	12 denotes 
here the Euclidean norm. If M0 , M1 E R+ then let 

c(M0 ,M1 ) = E(b) > [—MO , MO ] < C(D,[—M0,M0]) x K2 (0, MI). 

If X is a non-empty compact normed space and T: C(X, R) —* R is a continuous linear 
functional, then

11 T1. = sup{hIThI 1 0 E C(X,R), hiiI	i} 

Assumption H1 . Suppose the following. 
1. f: Q — Rand for all P = (x,y,p,w,q) E Q there exist the derivatives 

Df(P), Dqf(P), Df(P), Df(P) 

Dyg f(P) , Dqq f(P) , Dqwf( P) , Dqpf(P) 

2. There exist constants M0 , M1 > 0 such that the functions 

Df, Dqf, Df, Df, Dyqf, Dqq f, Dqwf 

are continuous on 

3. There exist constants c1, c2 E R+ such that 

	

II D f(P)II, II1)qf(1)ll, hIDf(P)hI., Df(P)	c 

	

1)qpf(1)), II1 yq f(P)I, I1)qw f(1)II *	C2 

for every P = (x,y,p,w,q) E l(M0,M1). 

4. For every (x,y,p,w,q) E 1l(Mo,M1 ) and ü E C(D,[—M0,Mo]) with ti w the 
inequality

0 XT' y,p,ti,q) — f(x,y,p,w,q)
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is true 

5. There exist non-negative constants c3 and c4 with c3 > C4 such that, for all 
(z,y,p,w,q) E Q (Mo,M1 ), we have the estimates 

n 

c311 71112 2	(_Dq,q,fj(x,y,p,w,q))rijii 2 C4 1177 
j,I=1 

for arbitrary 77= (7 1,•• ,77n) E R. 

Let A: [0, b] - R be a bounded function on [, b) for every 6 E (0, b). A function 
is said to be of class C(Eb , R; M0 , M1 , A) if the following conditions are satisfied: 

(i) z E C(Eb ,R) and Iz(x,y)II	Mo for (x,y) E E6. 

(ii) Dz,Dz exist a. e. on E( b) and D. z E L o' (E(b),R),Dyz E L0(E(b),R'). 

(iii) II Dy z (x , y )112 <M1 for almost all (x,y) E E(b). 

(iv) z(x,y + i) - 2z(x,y) + z(x,y - i)	A ( x)jIiilI for every r E R,(x,y) E E(b). 

Now we are in positions to formulate the following theorem on differential-functional 
inequalities. 

Theorem 1.1. Suppose that the following conditions are true. 
1. Assumption H1 IS satisfied and u,v E C(Eb,R). 

2. There are constants M0 , M1 E R+ and a function A : [0, b] - R, bounded on 
[5,b] for every b E (0,b], such that u,v E C(Eb ,R;Mo, MI , A). 

3. The differential-functional inequalities 

	

Du(x, y)	f(x, y ) u(x, y ), U(z,y), Du(x, ))	 (1.1) 

	

Dv(x, y) ^: f(x, y, v(x, y ), V(xy), Dv(x, ))	 (1.2) 

are satisfied almost everywhere on E( b) and 

	

u(x,y)	v(x,y) for all (x,y) E E0 .	 (1.3) 

Then for every (x, y) E Eb we have the inequality 

u(x,y)	v(x,y)	 (1.4) 

provided either Df(x,y,p,w,q) = 0 for (x,y,p,w,q) E 1l(Mo,M1 ) or the function 
A : (0, b) - R is integrable on the interval [0, b].  

Proof. Let {u"}> and {v}> i be two fixed sequences of functions satisfying 
the following conditions: 

(i) For every v the functions	: Eb - Rare of class C2.
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(ii) For arbitrary compact subset X C E6 we have the limits 

1imuIx ulx and lithvIx = vix (uniformly) 
V 00

lim II Dy u Ix - Dy v IxIIL 2 (xft) = 0 = lim II Dy t'Ix - D V v IxIIL 2 (xR) . t, 00	 l,—.00 

(iii) For every (x, y) E E and 77 R" we have the estimates 

D,7 ,1 u(x,y) < (x)	and	D17,1v(x,y) < A(x) 

where D,z denotes the second order derivative of the function z in the direction of the 
vector i (note that sequences {u ( ") } and {v(")} can be constructed by the regularization 
method, see [8]). Denote  = v — u andw ( " ) = v()_u(&) for ii> 1. Then from inequality 
(1.3) it follows that w(x, y) 0 for (x, y) E E0 . Suppose that condition (1.4) is satisfied 
On Ea for some a E [0, b). We shall show that it is satisfied on Ea for some il E (a, b]. 

	

Let e > 0 such that a + e E [0, b]. Suppose G e	Then from inequalities (1.1), 
(1.2) we get the inequality 

a+c 

f/ G(x,y){D'(x,y) 

- [i (x, y, v(x, y), vDv(x, v)) (x,y)'
(1.5) 

	

- f (x, y, u(x, y),	Du(x, ))J } dxdy 

IG(x,y)r(x,y)dxdy 
11" a 

for v 1, where the function	is defined by 

r()(x,y) = Dv(x,y) - f (x)y,v(x,y),v),DYv(&)(x,y)) 

- (Dv(x,y) - f(xYv(xY),v(zy),Dyv(x,Y))) 

- (Du(x,) - I (x,y,uv(x,y),u),DYuv(x,y))) 

+ (Du(x, y) - I (x, y, u(x, y), (z,y), Du(x, n))). 

It follows from assumptions (i) - (iii) and Assumption H1 that lim....,,,, IIrIxIIL2(x,R) 
= 0 for arbitrary compact subset X C E(b) . Define 

P t ) (x, y , 9) 

	

= (, y, u"(x, y) + 9w(1, y), (u +	D(u + 9w)(x, u)).
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Applying the Hadamard mean-value theorem and integrating by parts in (1.5) we obtain 
the inequality 

O+e 

IL / I_v)(X) 

j=1 ayj


—G(x,y))

D. G(x, y) + G(x,	Df (P(x,y, 9)) dO 

[(x) J Dq I (P( " ) ( X, y, 9)) do} } 
0	 (1.6) 

Df (P(x,y,9)) dO ()} dxdy 

c+c 

> f / G(z, y)r(v)(r, y) dxdy +J G(a, y)w(a, y) dy
R. 

for v > 1. Take arbitrary 0 E Pa,, and consider the Cauchy problem 

D.: z(x, y) + z(x, )J Df (P(")(x,y,O)) dO  

-	!_ {z(xY)fD i i (P(x,y,9)) dO} = —O(X)Y)(1.7) 

z(a + e,y) = 0. 

Let
g(V)(. x, y) : [a,a + eJ —p R	for (x, Y) e E( a+e) \ E 

be solutions of the characteristic initial-value problem corresponding to problem (1.7): 

=	Dqf (P(t,7(i),9)) dO	and	i(x) = Y .	(1.8) 

For (x, y) E E(a+e) \ E( a ) we denote 

H(x,y) = J Df (P(x,y,O)) dO 
0	 (1.9) 

-	
f A

jj (P( ') (x, y, 9); u + 0,(v) ) dO 
0
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where the matrix A(P; z) = [A,,(P; z)], 1_ 1 is defined by 

A, i (P; z)	Dq, ,f(P) + D q, pkf(P ) DY z(x, 1/) 

+ Dqjwk f(P)(D y,z) (z,y) +	Dqqjf(P)Dyy,z(x,y)	(1.10) 

for z E C(Eb ,R;Mo, MI , A) and P = (z,y,p,w,q) E (M0 , M I ) . Consider inequality 
(1.6) with G") satisfying problem (1.7). Then we have the inequality 

a-fe 

II j W (') ( X , Y) 0( X , Y) 

- G(x,y) 
I 

D,,,f (P(x,y,8)) dO ())	}dxdY	(1.11) 

a-fe 

^ J j G ( ' ) (--, y)r(x, y)dxdy +J G(a, y)w(a, y) dy 

for u > 1, where 

C(x,y) 
= J (t,g(t;x,y)) exp (j H( ") (s,g(s;x,y)) ds) dt.	(1.12) 

Formula (1.12) defines a transformation of the set Pa,C onto P.. For (x, Y) E Ea+e\Ea 
the matrix Dyg(&)(. x, y) = [D,g( . x, y)J'.1 satisfies the equation 

[

d y	 (1.13) 
dt	

= —A (P(t, g(t; x, y), 0);	+ Ow) [(,]'1 
j,l=I 

with the initial condition

((x) = 6jI	(j, 1 = 1,... ,n)	 (1.14) 

where 6jj is the Kronecker symbol. Denote 

J ( ' ) (t; x, y) = det [Dy g(t; x, 01 for (x, y) E Ea+e\Ea, t E [a, a + e]. 

Observe that J(&)(i;x,y) >0, moreover we have the equality 

J(t; x, y) = exp (i	. 
Ajj (P(s, g(-)(Si x, y), 0); u	+ 0,,(-) ) ds) .	(1.15)
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Now we use the change of variables 

Eo+e\Ea 9 (x,y) -i (x,i) = (X I g(i;x,y))E Eae\Ea 

and obtain the equality 

I
(t, g(t; x,	exp 

(i	
(s) g(s; x, )) ds) 

x JDw1 (pv(xy9)) dO (w)dxdy 

= 	
(t, )J	(t; x,g(x; t,	 (1.16)

J a

 

x exp (IH	(s)g(s;x,g(x;i,71)) ds) 

JDwf (p (x,g(x;t,),O)) dO ( ( v ))	 dxdij. 
(x ,g( ) (x;t,,l)) 

0 

From (1.6), (1.7), (1.11), (1.16) it follows that for every 0 E V6, we have the inequality 

J I LI(V) ( X , Y) -	(x;i,g(t;x,y)) 

x exp (I	(, g(s; t, g(t; x, y)) ds) 

1•	
(1.17) 

x 
I 

Df (P0 )(t, g(t; x, ), 0)) ((v)) 
(t,g()(t;x,y)) 

dOdi

 

I 
dxdy 

I 
G(x, y)F(x, y)dxdy +J G(a, y)w(a, y)dy 
L  

for u	1. 
For P(v)(x,y,9) there are orthonormal vectors	= i" ) ( x,y,O) E R" (j = 

1,... ,n) and eigenvalues A(")(x,y,O) E R such that C3	.\(V3)(x,y,O) 2 c4 20 and 

-	Dqjq,f (P(x,y,O)) D1,z(x,y)
(1.18) 

.X"(x, y, 
j=1
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Thus from Assumption H1 and (1.18) combined with (1.9) it follows that the function 
is upper-bounded by a measurable function independent of ii > 1. The same 

property for the function j(t') can be stated. 
Let 5 E (0, e) be an arbitrary number. Since for 0 E 1' with supp 0 e Ea+e\Ea+& 

the right-hand side of inequality (1.17) tends to 0 as u - oo, we have the inequality 

a-fe 

f f (x, y) { (x, y) - urn inf f J (x; i, g(t; x, 
U OO

0 

X exp (H(' )J (s,g(s;t,g(t;x,y))) ds)	 (1.19) 

X fDwf (P(t,g(t;x,y),e))"	 dedi} dxdy > 0.  I (t,g()(t;z,y)) 
0 

If Df = 0, then we get what was to be proved(compare [8]). If Df 54 0, then from 
inequality (1.19) we get the Volterra integral inequality 

I 

w(x, y) > limijf I  
v—. j 

0 

x exp
(i	

(, g(s; i, g(t; x, n))) ds)	 (1.20) 
tz 

X fDwf (P(t,g(t;x,y),9)) dOdt "	I (i,g()(t;z,y)) 
0 

for (x, Y) E E0+\E0+6, where	(0,e). Denote by c	and (w( & )) for v > 1 the

functions that are given by equality 

w(x,y) = min{0,w(x,y)}	and	(w)(x,y) = min{0,w(x,y)}	(1.21)


for (z, y) e Eb . From inequality (1.20) it is easy to see that 

w(x,y) > lirninff J(M) y)) 

x exp
(i	(Sig M (S; t, g(,) (t ; x, n))) ds)	 (1.22)


ix 

x f 
Df (P( -) (t, g(t; x, y), 0)) (() 

i(t,g(t;r,y))
dOdi 

0
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for (x,y) e Ec+c\Ea+ô, where 6 E (0,e). In view of conditions (1.9), (1.10), (1.15), 
(1.18) and Assumption H1 we have the inequality 

J	(x; t, g(t; x,	exp
(i 

H(v) (, g(s; t, g(,) (t ; x, u))) ds)

(1.23) 

exp (IJ(c i + 2nc2 (1 + 2M1 ) + c3A(s))ds) 
tX 

Let a function W: [a, a + e] - R_ be given by 

W(x) = inf w(t,y)	for x E [a,a+c].	 (1.24) 
(t ii) E Er 

Next, from (1.18), (1.22) - (1.23) and Assumption H1 we obtain the inequality 

	

W(x) 
2 Ie 

(J (c1 +2nc2 (1 +2M1 ) + c3 A(s))ds) c i W(t)dt	(1.25) 

for x E [a,a + c]. From definition (1.21) we get the inequalities w(x,y) 2 W(x) 2 0 
for (x, y) E Eo+e. As a E [0, b) was taken to be arbitrary, we have obtained inequality 
(1.4), which finishes the proof of Theorem 1.1 U 

Remark 1. Let LP (X, R) (p 2 1) denote the Banach space of real functions de-
fined on a metric space X that are integrable with power p. In the above given the- 
orem one can replace the constants M0 , M 1 , c 1 , c2 , c3 E + by measurable functions 
M0 , M 1 , , C2, 6 : [0, b] - R+. It is enough to assume then that there are con 
stants Po, Pi , P2 ,P3 E R with	+ *	1 and * + *	1 such that M1 E 

PO 

E L1([01b],R+),o2 E L"([01b],R+),53 E L"([0,b],R+) and A E 
L"2 ([0 , b], Ri). 

2. Uniqueness result 

The following theorem on the uniqueness of generalized entropy solutions to problem 
(0.1), (0.2) is a simple consequence of Theorem 1.1. 

Theorem 2.1. Suppose that the following assumptions are true. 
1. Assumption H 1 is satisfied and u,v E C(E6,R). 

2. There are constants M0 , M1 E R+ and a function A : [0, b] - R+, bounded on 
[6, b] for every SE (0, b], such that u,v E C(Eb,R;Mo,Ml,A). 

3. The functions u,v are solutions to the Cauchy problem (0.1),(0.2), where	E 
C(Eo, R). 

Then for every (x, y) E Et, we have the equality 

u(x,y) = v(x,y)	 (2.1)
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provided either D f(x , y , p , w ) q ) = 0 for (x,y,p,w,q) E fl(M0 , M1 ) or the function 
[0, b] -+ R is integrable on the interval [0, b]. 

Proof. The functions u, v satisfy assumptions of Theorem 1.1, thus from (2.1) we 
have u v for (X, y) E E6 . The inverse inequalitis obtained in the same way. 

Remark 2. If we omit condition (iv) in the definition of class C(Eb, R; Mo, M1 , )), 
then Theorem 2.1 is not true, because there may exist two different solutions of problem 
(0.1), (0.2). An adequate example of f without a functional variable is given in [8). 

Remark 3. Our uniqueness result and a theorem on differential-functional inequal-
ities remain valid if we replace problem (0.1),(0,2) by the following Cauchy problem for 
the weakly-coupled system of non-linear equations: 

Dz(x, y)	F(x, y, z(x, y), Z(xy), Dy zg (x, y)), i = 1,..., m, 

z(x,y) = (x, y) on E0 

We assume in this case that the function 

F(x, y,p, w, q)	(F,(-T, y,p, w, q),... , Fm(x, y,p, w, q)) 

satisfies the quasi-monotonicity condition with respect to p. While proving a theorem 
on differential-functional inequalities we get a system of Volterra integral inequalities, 
which implies an appropriate inequality for functions. 
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