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The Grünwald-Letnikov Difference Operator
and Regularization of the 

Weyl Fractional Differentiation 
Vu Kim Than and R. Gorenflo 

Abstract. The limit for h —i 0 of the Grünwald-Letnikov difference operator 

h(1f)(x) = h	(-1)' () f(x +jh)	(h >0) 

is proved to be the inversion of the Weyl integral operator of the form 

(I°u)(x) - J (t - u(t)di=f(x)	(0<x<oo) -	-	r(a) 
I 

under the assumptions a > l/p, 1 < p < oo and (a + 1)u E L(0,00). This result is then 
applied to obtain a regularized approximate solution ti, to the Weyl integral equation. Under 
some additional conditions on u error estimates are obtained. 
Keywords: Griinwald-Letnikov difference operator, Weyl integral operator, regularization, 8ta-

bility estimates 
AMS subject classification: 6511,30, 45E10, 45L05, 45L10 

1. Introduction 
In [1, 7] the limit for h - 0 of the Grünwald-Letnikov difference operator 

h°(f)(x) = h0(_1)) () f(x +jh)	(h >0)	 (1) 

is proved to be the inversion of the Riemann-Liouville fractional integral operator of 
periodic functions in L(0, 27r), 1 < p < cx. In [5 1 this result is generalized to the Weyl 
fractional integral operator of non-periodic functions in L(1R) 

00 

-J u(t)dt = 1(x)	(0 < x <oo)	 (2) 
(ru)(x) 

 
r(a) 

I 
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with the order a, 0 < a < l/p, 1 < p < oo. We prove that this generalization is still 
valid for the Weyl fractional integral operator with the order a > l ip, provided that 
(x° + 1)u € L(O, no), 1 p < no. This result is then applied to regularize the Weyl 
integral equation (2), that is in general ill-posed. Indeed, suppose 

(Iu)(x) = n0eZ	(i/p < 0 < a + l/q, 1 < p, q no). 

Then
u(x) = nfle	 (3) 

and we have

	

I IUnIIL(O,cc) 
=	 no	as ri - no 

although
IVtLnIILq(O,00) qmna1k —* 0	as n — no. 

Suppose instead of La u the data I is known with some noise and the noise level is given 
by

IIIu - flip <e.	 (4) 

In the work [2] this problem has been considered by applying the Marchaud integral (see 
[5: p.101]). Here the Grünwald-Letnikov difference operator is applied as the regular-
izing operator. Together with [6] they seem to be the first works where the Grünwald-
Letnikov difference operator is used as the regularizing operator (for other regularization 
methods for analogous Abel integral equations see [3]). Since the Grünwald-Letnikov 
difference operator is an operator depending on a step length h, our method can be used 
as a discretization method, and moreover, is a local method, that means for recovering 
the function u at point x one needs the given data f only in the neighbourhood of x, 
therefore is convenient for numerical treatment. Under the additional assumptions 

	

a>1	and	u'EL(0,no) 

the error estimate 

litL e — UlIp	Cc 1/(a+1)(1 + lixu llp + lI u 'lI)	(1	p '.5 no) 

is obtained. This estimate is shown to have optimal order of approximation. If the 
function u belongs to the Holder space H'(0, no) of order A [5: p.2001, then the error 
estimate

hUe — u11, < ce'(1 + hIxu Ihi, + II U IIH A )	(1 <_ P < no) 

is valid. Here II tL IIHAis the norm of u in the HOlder space H(0, no).
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2. Inversion of the Weyl fractional integral operator 
The main result of this section is the following 

Theorem 1. Let a i/p and (x° + 1)u E L(0, no), 1 < p < no. Then 

lim II u (x ) — h (txI5z)(x)II = 0, (5) 

that means lim,.o+ hAis the inversion of the Weyl fractional integral operator. 

Proof. First we note that the condition (° + 1)u E L(0,00) implies Iu E 
L(0, oo). This follows from the Hardy- Littlewood inequality (see [4: p. 583]) 

ll(Iu)( x )lip 5 CIiXaU(X)ii. 

Consequently,
I,-
ii (	\ (Iu)(x) h = O(k°)llx°u(x)ii 

j=k+1	 lip 

since co
= >2 O(j) = 0(k —a ).	 (6) 

j=k+1	j=k+i 

Therefore, in the expression h(zL°u)(x) one can change the order of summation 
and integration to obtain 

h°(Iu)(x) = J p(t)u(x + ht)dt,	 (7) 

where

p,(i) = >2(_1)i (a" (I	'	with	I (x) for (x) >0 
,)	()	

+(x)=0	for(x)0 
j=o 

Since (see [71)

Pa E L(o,00)	and	Jpc(t)dt = 1	 (8) 
0 

we have 

11u (x) -	 = {
J I Pa(t)[) — u(x + ht)]dtdx} 

Applying the Minkovski inequality [5: p. 261 we obtain

1/p 

u(x) - h(I°u)(z)J 	
1 I !j	 Ju(x + hi) — u(x)i dx }

	
di. 

0	 0M
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From u E L(0, oo) we conclude that for all 6 > 0 there exists Y7 6 > 0 such that 77b -* 0 
as 6 -i 0 and

{
Jiu (x + t)_ u (x )i Pdx }	'16	as 0< t <6. 
000  

Now we have, by a standard splitting technique, 

6/h	 00 

Iu(x) - h 0 (L Iu)(x)I p < '161 1p0 (i)l di + 2 IJ u iI
 I Ip(i) di 

O	 6/h 
CO	 CO 

f ip(t)i di + 21iuii f 1 p0(t)i di. 
o	 6/h 

From (8) we see that
lirn II u (x) - h_ a(Iu)(X)II = 0 

as 61h -p 0 and h - 0. Hence the theorem is proved I 
3. A regularized solution 

Suppose now instead of Lu we know only the data f with some noise level (4). From 
now throughout the paper we assume that 

U E L(0,00) if 0< a <i/p	
() (Xa+1)UEL(0,OO) if a> l/p, 1 <p< 00. 

First we shall show that h°i.f, with an appropriate choice of the step length h, is a 
regularizing scheme for the ill-posed problem (2) under the conditions (4) and (9). We 
have

lu(x) - h ( i. f)(x )l ^ iu(x) - h(LIu)(x)I + h i((Iu - f))(x) 
= Ih(X) + ffh(X). 

From (4) and the inequality

' ^ (a) ^ < 2-+1 

[5: p.2791 we get

00 

11.1h lip :5h	( 0' )
 

Ilf( x +jh) - Lau(x +jh)II	21he. 
j=O
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For the function 'h from [5: p. 287] for the case 0 < a < 11p and Theorem 1 for the 
case a i/p we have lim,_c IVh lip = 0. Therefore, if we choose h such that h = 0(1) 
and h° = o(e') (this can be satisfied, for example, by h = e'/ ( °±' ) ), then hif 
tends towards u in p norm as e -i 0. Hence hif is a regularizing scheme for the 
equation (2). 

Putting now

= h	(-1)i () f(x +jh)	 (10) 

where k -i 00 as e - 0, we have 

lIUe(X) - 
h_0(Lf)(x)lI 

"p 

=	 (_i)i	f(x +h)M 
'\3)  j=k+1	 II "p 

h°	(_1)i (aj) (Iu - f)(x +jh) 
\	 Ii l jrk + 1	 II "p

(11) 

(_1)i
II j=k+1	 'I uP

" 
00	a 

'00 

<2'h° +	
(j) J xaPIu(x)IPdx}  

j=
 

k+1 jh 

<r'he + Ck°IIx°uII 

because of (6). Therefore, since 

lu - uep	I1 - h °( L f)ll + h Ue - h(Lf)hIp, 

we obtain the following 

Theorem 2. Let u E L(0,00) if 0 < a < i/p and (x° + 1)u E L(0,00) if 
a i/p, 1 < p < co. Assume that (4) holds. Then u according to (10) is a regularized 
solution of the equation (2) if 

h = o(1), h	= o(e), k = o(1)	as e - 0.	 (12) 

Remark. The scheme (10) means "regularization by discretization" , the step 
length h playing the role of the parameter of regularization. Note that k can be chosen 
so that kh - 0 as e - 0. Then u will depend only on local values of f and therefore 
we obtain a local regularization scheme.
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4. Regularization estimate 

In practice sometimes we have a priori some information about the solution u, for 
example, knowledge on the smoothness of the solution. In this case more precise reg-
ularization estimates are expected to be obtained. Here we consider the following two 
cases:

(i) u' exists and belongs to L(O, oo), 1 p oo 
(ii) u is a Holder function, u E H'(O, oo) [5] with the norm 

/ 00	 1/p 

lNIlH = lI u ll + sup6	lu(x + fi) - u(x )lPdx }	}.	(13) 
6>0 

Consider the first case (i). Suppose that u' E Lp (O,00), a > 1. We have 

lu - h (if)ll	ll IhlIp + Il 1 hIlp	where ll lThllp	201hc. 

Suppose now that 1 p < oo. Almost everywhere in 1R we have 

r+hr 

lu(x + hr) - u(x)l	 lu'(i)I di 

x+hr	 11p	z+hr	(p-1)/p 

^ { / lu'(t)lPdt}
	

I / dt} 

+hr	 1/P 

<(hr)'' I J lu'(t)lPdt 	r} 

Therefore,

X 
I 001

lIhllp	h''	 J 1f 
00	+hr	 1/p	

Pr11/PIpa(T)I { / lu'(t)lPdt}	dT} .	

1/p 

dx} 

I /P 00	 00	z4- 

I

hr

,
(t)IPdi}	dT <hll 'P jr1_3Ipo(r)l 

fdx	
Iu 

0	 0	x 

00	 /00	 i 

= h	Jr'I(r)l 

Iflu'(t)lpdt f dx}	dr 
t- hr 0	 hr 

=	
" 

h f TIP(T)l { J lu'(t)Idt }
	

dr.
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Here we have applied the Minkovski inequality and the Fubini Theorem. Since pa (r) = 
O(r') as r —+ cc [1: p. 128), we have II rpa(r)IIi C < cc when .> 1. Conse-
quently,

IIIaII :5 ChIIu'lI. 

Let now p = oc. Then 

IlIhII	J IP(r )I	 <hIIu'IIJrIPo(T)Idr. 

Therefore
lI IhIIp	Ch II u 'II	(1 < p	cc). 

Consequently,
lu — h °( z. f)ll < 2'h°e + Chllu'lI. 

Combining with (11) we obtain 

lu - u,11 p <2 2 h°c + Ch ll u 'Il + Ck°llx°ulI. 

Choosing h =	and k = [e'I(('))], where [y] is the greatest integer number 
less or equal y, we get

u - u ll,,,	Ce' A-+ (i + xaup + l u 'Il) .	 ( 14) 

Thus we have proved the following 

Theorem 3. Let u' exist and belong to L(0,cc),a > 1. Then the regularized 
solution (10), where h = chf(0+1) and k = [e_h/(0(0+1))I, satisfies the error estimate 
(1.4).

Remark. Notice that kh = 0(e( 1 ) / 1 ) - 0 as e - 0, so the regularization 
scheme is local. 

Suppose now that u E H(O,00) [5: p. 200], 0 < A < 1 and A <a. Then we have 

lIhlIp {JJ P (r)(u(x +hr)_u(x))drdx} 

00	 I/P 

J
Ip ) l {ju(x + hr) - u(x)Idx} d7- 

21IulI p J p(r)I dr + hA IIuII nA	 dr. 

61h	 0
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Since r"	 A p0,(r)	 -,= O(r\__ 1 ) as r	oo, we have f0 
6/h 

T lp(r)ldr < C < 00. Conse-
quently, iI Ih lip	2ClluIl(h/8) + ChA IIuII H A. Therefore, 

il u - ue p !^ 2+2h_0E + 2c(hIö)'lIull + Ch A llull H + CkIixuIlp. 

Choosing h = E' I ° ) ,8 e(A)/((c)),k [e /))] and noting that 
lI u llH, we get 

lFue - u llp 5 Ce ( ') (l + x0up 
+ II U IIH A )	(1 5 p	0).	(15)

Hence we have proved the following 
Theorem 4. Let u E H(O,00) and 0 < A	1, A < a. Then the regularized 

solution (10), where h = 6 1 /( a+ A) = (a_A)/((c+A)) and k = [e_A/(0(x))], satisfies 
the error estimate (15). 

Remark. If it is known a priori that IlX auIl + lI u1 II, E or ll2ul p + iltIIji <E, 
respectively, with a positive constant E, then we can by appropriate choice of h and k 
obtain the estimates 

hue - ull p < Cc	 instead of (14), 

Ih u -	CCA/(+A)Ea/(a+A)	instead of (15). 

5. Optimal order of approximation 
We shall show that the exponent 1/(ci + 1) of c in the error estimate (14) is the best 
possible provided that u' E L(0, 00). Without restriction of generality one may assume 
that hlxauli,, hh u 'hhp < 1. 

Taking 6 = i/p - 1 in the example considered in the Introduction we have, with 
u 0(x) = pl/Pnl/P_I_nx, 

hh u hl = n— 1,	hhuhI p = 1,	 = 

Suppose that the exponent 1/(c + 1) of c is not the best possible. Since (14) is still 
valid if we put 11f - Iufl 7, instead of e, we see that there exists a regularizing operator 
A:f—.* u j and -y>1/(a+1), such that 

lhtz i - u	Cf - Iuhi 

where the constant C does not depend on f and u. Taking u = ±U n and f = 0, we see 
that u,, when n is big enough satisfy the conditions imposed on u. Hence, 

lu 1 ± u ll, < CIIIaull =Cn'. 

But
= i u Il	(ll u j + U .11P + ll u i - unhlp). 

Therefore n	Crz(°'), that cannot hold for all integers ri if y > 1/(i + 1). 
Consequently, y	11(a + 1), that means the exponent 1/( + 1) of e is the best
possible.
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