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The Griinwald-Letnikov Difference Operatorv
and Regularization of the
Weyl Fractional Differentiation

Vu Kim Tuan and R. Gorenflo

Abstract. The limit for A — 0 of the Grinwald-Letnikov difference operator
R (AL f)(z)=h™" Z( 1)’ (‘;) fz+3h)  (h>0)

is proved to be the inversion of the Weyl integral operator of the form
a (t Y
(I2u)(z) = F( ) u(t)dt f(z) (0<z <o)

under the assumptions a > 1/p, 1 < p < oo and (z* + 1)u € Ly(0,00). This result is then
applied to obtain a regularized approximate solution u. to the Weyl integral equation. Under
some additional conditions on u error estimates are obtained.
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1. Introduction

In [1, 7] the limit for A — 0 of the Griinwald-Letnikov difference operator
a :
Ao (AR ) = h- Z -y () fa+iny B0 M

is proved to ‘be the inversion of the Rmma.nn-Liouville fractional integral operator of
periodic functions in L,(0,27), 1 < p < co. In (5] this result is generalized to the Weyl
fractional integral operator of non-periodic functions in L,(IR)

a-1

(I2u)(z) = / =16 (0<z<) ©)
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with the order @, 0 < @ < 1/p, 1 < p < 0c0. We prove that this generalization is still
valid for the Weyl fractional integral operator with the order @ > 1/p, provided that
(z* 4+ 1)u € Lp(0,00), 1 < p < o00. This result is then applied to regularize the Weyl
integral equation (2), that is in general ill-posed. Indeed, suppose

(I2uy)(z) = nf-ae—nz (1/p<B<a+1/qg,1<p,qg< 00).

Then
un(z) = nfe (3)
and we have
llwnllz, (0,000 = p PRl o as n — oo
although
I1%unllL, (0,000 = ¢~/ I0P~2"9 0 as n o oo.

Suppose instead of I2u the data f is known with some noise and the noise level is given
by .
12w~ fllp <e. - (4)

In the work [2] this problem has been considered by applying the Marchaud integral (see
[5: p.101]). Here the Griinwald-Letnikov difference operator is applied as the regular-
izing operator. Together with [6] they seem to be the first works where the Griinwald-
Letnikov difference operator is used as the regularizing operator (for other regularization
methods for analogous Abel integral equations see [3]). Since the Griinwald-Letnikov
difference operator is an operator depending on a step length k, our method can be used
as a discretization method, and moreover, is a local method, that means for recovering
the function u at point z one needs the given data f only in the neighbourhood of z,
therefore is convenient for numerical treatment. Under the additional assumptions

a>1 and u' € Ly(0,00)
the error estimate
lue = ullp < Ce/CVA 4 [lz%u]lp + [lu']l,) (1< p < o0)

is obtained. This estimate is shown to have optimal order of approximation. If the
function u belongs to the Hélder space H,(0,00) of order A [5: p. 200] then the error
estlmate

llue = ully < CeXMEDA 4 Izullp + [lullwp) (1< p<oo)

is valid. Here ||u| x> is the norm of u in the Hélder space H}(0, 00).
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2. Inversion of the Weyl fractional integral operator

The main result of this section is the following

Theorem 1. Let a 2 1/p and (z® + 1)u € L,(0,00), 1 < p<oo. Then
: _paACTO —
Jim [[u(z) - b= (A3170)@)], = 0, )

that means limp_gy+ h~AS is the tnversion of the Weyl fractional integral operator.
+ A 4

Proof. First we note that the condition (z® + 1)u € Lp(0,00) implies IZu €
L,(0,00). This follows from the Hardy-Littlewood inequality (see [4: p. 583])

I(Z2u)(@)lp < Cliz®u(2)llp-

Consequently,
Py} (%) azoxo =00 w(a)l
SEGAIERS 0G=*"") = O(k™%). | (6)
j=zk;1 (]> j=Zk+1 ’ :

Therefore, in the expression h=*(A$I%u)(z) one can change the order of summation
and integration to obtain

A (A1) (z) = / Pa(hu(e +ht)dt, )

where

=3 (0) T = (5 200 S0

Since (see [7]) o

Pa € Lp(0,00) and /pa(t) dt =1 (8)

P 1/p
d:r:} .

oo oo 1/p
lu(z) - =25 120)@)], < [ Ipaltl { [ 1z + be) = @ dz} dt.

we have

e o]

”u(z) — h‘“(AﬂIﬁu)(z)“P = {/

0

oo

/ Palt)[u(z) — u(z + ht)] dt

0

Applying the Minkovski inequality [5: p. 26] we obtain
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From u € Ly(0,00) we conclude that for all § > 0 there exists 55 > 0 such that ng — 0
as § — 0 and

oo 1/p
{/|u(z+t)—u(x)|”d:r} < ns as 0<t<é.

0
Now we have, by a standard splitting technique,

5/h

lu(a) - h=2(ag 120, < s [ Ipatlat + 2l [ Ipatedlat

6/h
o0 o0

<o / 1Pa(t)] dt + 2llull, / IPa(t)] dt.
0 6/h

From (8) we see that
,Ili_r‘x}) ”u(:c) - h"a(AﬂISU)(I)”p =0

as §/h — 0 and h — 0. Hence the theorem is proved 0

3. A regularized solution

Suppose now instead of I°u we know only the data f with some noise level (4). From
now throughout the paper we assume that

u € Ly(0,00) if 0<a<l/p

9
(z* +1)u € Lp(0,00) if @ >1/p, 1 <p< oo0. ©

First we shall show that A=A% f, with an appropriate choice of the step length A, is a
regularizing scheme for the ill-posed problem (2) under the conditions (4) and (9). We
have

lu(z) = A7(AF£)(2)] < lu(z) — ™ (AR I2u)(2)| + R |(AF(I%u — f))(2)]
= In(z) + Ip(2).

()

From (4) and the inequality
Z < 20+1

J=0

[5: p.279] we get

oo

I Zullp < R

=0

((;)‘ Nf(z +jh) — I2u(z + jh)|l, < 2%t A2,
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For the function I4 from [5: p. 287] for the case 0 < a < 1/p and Theorem 1 for the
case a > 1/p we have lima_q |4, = 0. Therefore, if we choose k such that k = o(1)
and h=® = o(e~!) (this can be satisfied, for example, by h = €!/(e*1)); then h=Ag f
tends towards u in p norm as ¢ — 0. Hence h™®Af f is a regularizing scheme for the
equation (2).

Putting now

k
ue =h™* Y (-1y (a) f(z + k) (10)
j=0 J
where k — oo as € — 0, we have

l[ue(z) = b=*(AZ ),

= h-"j:i:;l(—l)’ (j) f(z+jh) P
< h-e jg’; -1y (‘]’) (I - f)(z + jh)
_ g (11)
Ao j;l(—l)j (‘J’.‘)Iiu(zﬂh) ,,

1/p

. )
< 2::\(-{-1}1'—0E + Z

)
j=ke1 1N

< 27 =% 4 Ck~O|z%ul|,

/ zPfu(z)|Pdz

ik

because of (6). Therefore, since

M = uellp < flu = A7 (AR Allp + Hlue = B (AF I,

we obtain the following

Theorem 2. Let u € Ly(0,00) f 0 < a < 1/p and (z* + 1)u € Ly(0,00) f
a>1/p, 1< p<oo. Assume that (4) holds. Then u, according to (10) is a reqularized
solution of the equation (2) if

h=0o(1), h™®=o(e""), k™'=o0(1) ase—0. (12)

Remark. The scheme (10) means “regularization by discretization” , the step
length h playing the role of the parameter of regularization. Note that k can be chosen
so that kh — 0 as € — 0. Then u, will depend only on local values of f and therefore
we obtain a local regularization scheme.
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4. Regularization estimate

In practice sometimes we have a priori some information about the solution u, for
example, knowledge on.the smoothness of the solution. In this case more precise reg-
ularization estimates are expected to be obtained. Here we consider the following two

cases:

(i) u' exists and belongs to L,(0,00), 1 < p < oo
(i) u is a Holder function, u € H}(0,00) [5] with the norm

oo

1/p
el = Nl + sup 6= { / Ju(z + 6) - u(z)l”dr} .
0

Consider the first case (i). Suppose that u' € L,,(O,oo), a > 1. We have
lle =R (AR NNlp < allp + 1 Enll,  where || Tnl|, < 22+ R

Suppose now that 1 < p < co. Almost everywhere in IR we have

z+hr
lu(z + h7) —u(z)| < / [u'(¢)| dt

z

4hr P ¢ cvnr y (P-1)/p
5{ / |u’(t)|Pdt} {/dt}

k4 z

z+hr 1/p
s(hrr-‘/"{ / |u'(t)|’dt}. ‘

Therefore,
P 1/p

A oo ( oo - z+hr 1/p
I Inll, < R'-1/P / /Tl_l/plpa(r)|{ / |u'(t)|sz} dr Y dz
. ] 0

z

oo z4hr.

‘ o ) RNR Y/ 2
< hi- 1/”/7'1_1/”|pa(7')| {/ / |u (t)l”dt} dr
0 0 z

¢ 1/p
=i [1mim, (r)|{ Lo dw} ar
0/ / l[r -
e - e
—h / rIpa(™)] { / |u’(t)|"dt} dr.
0 0

(13)
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Here we have applied the Minkovski inequality and the Fubini Theorem. Since ps(7) =
O(r72~ ') as 7 — oo [1: p. 128)], we have ||7pa(7)|i € C < oo when a > 1. Conse-
quently,

I Zallp < Chllu'llp.

Let now p = co. Then

oo z+hr oo

Mille < [ 1ol [ W(Oldtdr < bilen [ rlpa(r)ldr

0 z 0

Therefore '
IZullp < Chfl'l, (1< p<oo).

Consequently,

llu = A=*(AF1)llp < 27+ A2 + Chllwl-

Combining with (11) we obtain
llu = welly < 27+2h=2¢ + ChJlWll, + Ck~*[=°ull.

Choosing h = e1/(et1) and k = [¢~!/(2(@*+1D)] where [y] is the greatest integer number
less or equal y, we get '

= wellp < Ce/CHD+ flzullp + f1u'l,)- (14)

Thus we have proved the following

Theorem 3. Let u' ezist and belong to Ly(0,00),a > 1. Then the regularized
solution (10), where h = e'/(@*)) and k = [e~1/(a(@+D)] sqtisfies the error estimate

(14).

Remark. Notice that kh = O(elo~D/(a(e+1))) , 0 as e — (j, so the regularization
scheme is local.

Suppose now that u € H;,\(O, 00) [5: p. 200}, 0 < A £1 and A < @. Then we have
oo| oo ‘ P 1/p
”Ih”p < {/ \Pa(")("(x + h7) - u(:t)) l dr| dz }
o lo

< 7|pa('r)| {]o'u(:c +hr) - u(:z:)lpdx} " dr

oo §/h
<2lully [ Ipa(rldr + Pluly [ 7lpa(r)]dr.
6/h 0
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Since T*pa(7) = O(7*~°~!) as 7 — oo, we have f:/h 7 |pa(7)ldT < C < 00. Conse-
quently, ||Ix]|, < 2C|ullp(k/6)* + Ch’\||u||H:. Therefore,

llu = uellp < 2°%2h7% + 2C(h/6)°lullp + CRM[ul|4a + Ck™*||zu]l,.

Choosing h = 61/(0+/\)’6 . E(O_A)/(Q(Q+A)),k —_ IE_A/(Q(0+A))] and noting that ”u”P S
lull sy, we get

llue = ull, € CeMFN(L 4 |leully + flullwz) (1< p < oo). (15)

Hence we have proved the following

Theorem 4. Let u € H}(0,00) end 0 < A < 1, A < a. Then the regularized
solution (10), where h = g!/(a+) § = gla=N)/(ala+d)) 4ng | = [e=M(elat )] gatisfies
the error estimate (15).

Remark. If it is known a priori that ||z%u||, + ||lu/||l, < E or [|z%u]|, + lullny < E,
respectively, with a positive constant E, then we can by appropriate choice of k and k
obtain the estimates

lue — ull, < Ce'/letD pallatl) instead of (14),
||u¢ —ullp £ Ce?Mlatd) pallatd) instead of (15).

5. Optimal order of approximation

We shall show that the exponent 1/(a + 1) of € in the error estimate (14) is the best
possible provided that u' € L,(0,00). Without restriction of generality one may assume
that [lz2%ull,, lu'l, < 1.

Taking 8 = 1/p — 1 in the example considered in the Introduction we have, with
un(x) — pl/pnl/p—le—nx’

1

”“n”p =n"", ”u;”p =1, ||Ifu,.||,, =n""1

Suppose that the exponent 1/(a + 1) of ¢ is not the best possible. Since (14) is still
valid if we put ||f — I2uf|, instead of €, we see that there exists a regularizing operator
A: f—ujsand v > 1/(a + 1), such that ' '

llug —ullp < CIIf - I2u]l;

where the constant C does not depend on f and wu. Taking u = +u, and f = 0, we see
that u, when n is big enough satisfy the conditions imposed on u. Hence,

lus £ uallp < CIun||} = Cn=2(e+D),

But

n™t = lually < 4(llus + unllp + llus — ually)-

Therefore n=! < Cn=Y°+1) that cannot hold for all integers n if v > 1/(a + 1).
Consequently, ¥ < 1/(a + 1), that means the exponent 1/(a + 1) of € is the best
possible.
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