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Sequential Convergence in the Space of 
Absolutely Riemann Integrable Functions 

M.A. Jiménez, E. Lopez and J.-J. Rückmann 

Abstract. The concept of R-convergence in the space of usual Riemann integrable functions 
was introduced by Dickmeis, Mevissen, Nessel and van Wickeren in 1986. They proved that 
this space, provided with R-convergence, is sequentially complete and that every function in 
the space can be approximated by a sequence of continuous functions. They gave several 
applications. This paper extends that concept to the space of absolutely Riemann integrable 
functions and it is shown that the results mentioned above still hold there. 
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1. Introduction 

Let X be a finite or infinite closed interval of JRtm whose interior set (mt X) is non-
empty. Furthermore, *let L'(X), B(X) and C(X) denote the real Banach spaces of 
Lebesgue integrable, bounded, and continuously bounded functions on X, respectively. 
If X is bounded, we will also denote the real space of Riemann integrable functions on 
X by R(X). 

If we consider R(X) as asubspace of L'(X), then it is not closed. In other words, 
R(X) is not complete under the induced norm i of L'(X). On the other hand, if 
we induce the sup-norm 11 . lix of B(X) in R(X), then it is not possible to approximate 
every Riemann integrable function by sequences of continuous functions. This means 
that C(X) is not dense in R(X). 

Inspired by a work of Polya in 1933 (cf. [4]), Dickmeis, Mevissen, Nessel and van 
Wickeren (cf. [11) introduced the following concept of convergence. 

• Definition 1.1: Let X be bounded. A sequence {fn}nEJN C B(X) is called 1?-
convergent (i.e. Riemann convergent) to I E B(X) and denoted by R - limn...m fn = f 
if

sup UNIX <no	 (1) 
nEIN 
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and

J
sup lfk_fI_+o	asnElq	 (2) 
k>n 

where f (and further f) denotes the usual upper (lower) integral. 

- Condition (1) ensures the existence of the upper integral in condition (2), and since 
ff I is a seminorm on B(X), the R-convergence is linear. 

The approach given in Definition 1.1 shows that the space of Riemann integrable 
functions as a linear subspace of B(X) is sequentielly .11-complete and that C(X) is 
R-dense in it. 

Of course, this definition cannot solve all deficiencies derived from the well-known 
fact that the collection of Jordan measurable sets does not form a a-algebra. In Section 
3 we will show some examples. However, the introduced concept is good enough to 
enable the authors from (1] to discuss several approximation problems successfully. See 
not only [1], but the references cited there, and also [3], for instance. We can search 
at least for two different generalizations of Definition 1.1. A first one deals with the 
abstract version of the Riemann integral that has been already accomplished by van 
Wickeren in [6]. The present paper discusses a second generalization: the extension to 
unbounded functions on unbounded domains. 

2. Absolutely Riemann integrable functions 

A first step is to define the functional spaces that will support the generalization of the 
R-convergence and, in the same way, the upper integral for unbounded functions on 
unbounded domains. 

Let v := i/rn denote the Lebesgue measure in 111m, and E the set of real functions f 
defined on JRtm that satisfy the following condition. 

Definition 2.1: The function f belongs to E if there exists an open set A C JRtm 

such that
zi(lRm\A)=O	 (3) 

and, if K C A is a compact set,

	

11111K <00.	 (4) 

Let A(f) denote the collection of all open sets A satisfying conditions (3) and (4) 
for agiven feE. If f,g E E, A E A(f), Be A(g) and  C 111, then A n B. is an open 
set that satisfies condition (3) with respect to I + ag. Hence, E is a real linear space. 
We remark that a function in E is not necessarily measurable. 

Definition 2.2: If A is a non-empty open set of lRtm , a partition P of A is a numer-
able collection of compact intervals {c, I j € JN} that satisfies the following conditions: 

Intc,O for 
all 

j€JN 
Int(c1 flc,)=ø for all i,j€1N with ij 
A = U{c1Ij€ IN).
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The collection of all partitions of A will be denoted by P(A). 
Of course P(A) is not empty. In order to prove this, construct for every x E A a 

compact interval I, C A such that x E Jut I. By the Lindelöf Theorem we obtain a 
numerable set of intervals { I } that covers A and using it we can define a partition 
P E P(A) by induction. 

Definition 2.3: A function f E E is absolutely Riemann integrable if there exist 
A E A(f) and P E P(A) such that 

I E R(c,) for all c3 E P	 (5)
and

>JiIi<oo.	 (6) 
jEIN C7 

The collection of all absolutely Riemann integrable functions will bedenoted by R' 
R 1 (R-). 

It is well-known in the usual theory of Riemann integration that a bounded function 
f belongs to R(X) if and only if the Lebesgue measure of the set of discontinuities of I 
in X is equal to zero (cf., e.g., (2, 5)). Of course, in that case f E L1(X). 

Theorem 2.4: A real junction f defined on JRtm is in R' if and only if f E Ll(lRm) 
and the Lebesgue measure of the set D(f) of discontinuities off in JR tm is equal to zero. 

Proof: Let I E R' be fixed. It follows from Definition 2.3 that f E L l (JRm ) . De-
note the characteristic function of a set S by Xs. We obtain from (5) that v(D(x, 1)) = 
0 for every j E .W. Then zi(D(f)) = 0 since D(f) c D(xc, I) . Now we recall that 
the modulus of continuity of a function g at x E X is defined for a > 0 by the finite or 
infinite value 

w(g,x,a)	sup {Ig (y ) - 9 (Z)J y,z E x, ir - I <a, Ix - zI <a} 

and the oscillation of g at x by 

0(g , X ) :=(g,x,0) := lim w(g,x,a). 

The function g is continuous at x if and only if 0(g, x) = 0. So, for a fixed f 
we have

F {X € JRtm 0(g, X) ^: i} c D(f) 

and, under the assumptions of the second part of the theorem, v(F) = 0. 
Since we can prove that F is closed, the complement set A of F is open and satisfies 

condition (3). So, for every z E A, there exists an open neighbourhood V C A of x 
such that O(f,y) < 1 for every y E V. If K C A is a compact set, we can choose a 
covering {V 1 ,.. . , V, } of K. This implies that f is bounded on K and condition (4) 
holds. So, we have proved that f belongs to E. 

Furthermore, if P € P(A), then f is bounded on each c. Denote the boundary of 
a set SbyOS. Since

D(x,f) C D(f) UOc,, 
we have v(D(x 1 1)) = 0 and condition (5) holds. Now condition (6) follows from 
I E L (lRm) and then f meets the requirements of Definition 2.3 1
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Remark 2.5: From Theorem 2.4 it follows that the Riemann integral 

I i:=>fj
f iE JN  

does not depend on the choice of A E A(f) and P € P(A) in Definition 2.3. It coincides, 
of course, with the Lebesgue integral of f . If f is only defined on a compact interval X, 
we also define f(x) = 0 for every x E jjm \ X, in order to construct the space R 1 (X). 
So we have the inclusions R(X) c R'(x) c Rl(lRm). 

We can perform the same extension when f is only defined in any Jordan measurable 
set or even on certain unbounded sets. However, since there exist open sets U that are 
not Jordan measurable, a reexamination of this theory with U instead of JR tm will be 
necessary if we want to extend the Riemann integration to those sets. Other approaches 
are also possible. For an open but not Jordan measurable set see, e.g., [5]. 

We still need to define the upper integral for unbounded functions and unbounded 
domains. 

Lemma 2.6: Let f > 0 be a bounded function on a compact interval C. Extend 
the concept of a partition P {c, },E1N of C as in the Definition 2.2 with C instead of 
A. Then

fCi jEiN C 

Proof: We have

ICf = <kL + 
J fxu c 

but

Ic fX 1>1)	if lic v(Uj>kcj)	0	as k--+ cc.

Thus the statement is proved U 

Lemma 2.7: Let f > 0 be in E and A,B € A(f), P	{c1}1ev € P(A), P' :=
{c',}jejv E +P(B). Then, for a finite or infinite value, the equality 

fi f= >7 f IEIN jEIN 

is true. 

Proof: Define	c, fl c'3 for every i,j E JAr. Using Lemma 2.6 and since we
deal now with positive values, it follows 

>7i=>I f=>1>ff=>J,f iE)N C.	iEJN jEJN	 , 	jEI'I IEJN	 j 	jEI C 

and the statement is proved U
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Lemma 2.7 enables us to define the upper integral of a positive function I in E 
independent on the set A E A(f) or the partition P E P(A). Moreover, 
Lemma 2.6 guarantees that it will be consistent with the normal definition of an upper 
integral in the case of positive bounded functions on bounded intervals. 

Definition 2.8: Let f 2 0 be given in E. The upper integral of f is the finite or 
infinite value

Ji:=f i:=Ji. 
tEIN C 

We will systematically use the following properties. 

Proposition 2.9: The upper integral of positive functions satisfies the following 
three conditions:	 -	- 

(a) Ill, g E E and 0 <f g, then ff fg. 

(b) fill is a seminorm on E. 
(c) If  E R', then f f = ff. 
The proof of these properties can be carried out without any difficulties. Now we 

can give a trivial but useful equivalence of Definition 2.3. 

Proposition 2.10: Let J € E and  € A(f). Then f € R' if and only if f € R(X) 
for every compact interval X C A and fill < 00. 

Definition 2.11: For a function I € E, the class [f) of I is defined by [f] := {g € 

El fil-gl=°}• 
It follows from Condition (b) in Proposition 2.9 that the relation 1 g if and only 

if g € [f] is an equivalence relation in the linear space E. 

Proposition 2.12: If  € R', then [f] C W. Moreover, if g E [I], then f  = fg. 
Proof: Let g E [I] be fixed. Furthermore, let A € A(f), B € A(g) and X be a 

compact interval in A fl B. It follows that 

0 

So (f - g) E R(X) and then g = f - (f - g) E R(X). In particular, ff = g. 
Now, if P := {cj},jiv € P(A fl B), we have 

7ii = i 7 M = > 7 III = Jill 
iEff Cj	 Cj 

So, the first part of the proposition follows from Proposition 2.10. Furthermore, we 
have

If f —Jg -<Jll_gHO. 

Thus the statements are proved I
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3. Convergent sequences 

Let C C R' be a set of positive functions with the property that for all 91,92 E C there 
exists 93 E C such that g' + 92 S g. 

Definition 3.1: A sequence {fn}ncv C B is called C-convergent to f E E and 
denoted by G -	fn = f if the properties 

lfmf g	for some gEG	and all nEW	 (7) 

and

	

J
sup lfk_fI O	asnoo	 (8) 
k>n 

are fulfilled. 

Since fill is a seminorm, the C-convergence has linear properties. Here we have to 
use the assumptions on C for the proof of property (7). 

Example 3.2: Let X be bounded and denote R {nxxln E Er} . Take C R. 
Then the C-convergence induced in R(X) is the R-convergence in Definition 1.1. 

Proposition 3.3: If C - lim_, In = I and { fn) nEliV C W, then I E R'. 

Proof: Let X be a bounded interval where I is uniformly bounded. Then.f E R(X) 
because

o. <J )f^2j
X

 sup lfk_fl^ 2J SUP iIk_fl 
VX —xl	 k>n	 k>n 

and the latter term tends to zero according to property (8). 
On the other hand, for k large enough we have 

Jill JlI — fkl+Jlfki Jif—Ikl+J9<oo. 

Thus all statements are proved I 
Proposition 3.4:. Let Jfn)nE1V C E and C—lim_ f, = f. Then G—limn. In 

= h if and only if h E [f]. 
Proof: Suppose that h E [I] . Since 

supllk — hl suplfk — fl+ If — hi k>n	 k>n 

we have (8) for h instead of f. The inequality 

If — hi sup if — fkl . + sup ifk — hl
k>n	 k>n 

leads to the other implication I
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• Definition 3.5: A sequence	c E is a Cauchy G-sequence if it satisfies
property (7) and the relation 

J
sup IfJ_fkl_40 aSfl-400.	 (9)

j,k>n 

is fulfilled. 

Theorem 3.6: A sequence {fn}nEI( C E is G-convergent if and only if it is a 
Cauchy G-sequence. So we say that E is G-complete. 

Proof: If G - lim_. f, = f, then relation (9) follows from 

sup Ifi — ftl <2 sup lf, —f I. 

	

j,k>n	 j^!n 

Now suppose that {ffl}fl,v is a Cauchy G-sequence and define the function f by 1(z) 
limn..supf(z). Since (7) holds, we have Ill <g and, in particular, f € E. 

On the other hand, for every /c > n, 

Ifk(x) - f(')I <sup Ifk(z) - f,(x)I :5 sup If,(z) - f,(x)I. 
j 2! n	 i,i>T' 

Hence, (8) follows from (9) I 
Corollary 3.7: W is a G-complete space. 

Proof: Combine Theorem 3.6 and Proposition 3.3 I 
Proposition 3.8: The R-convergence (and then the G-convergence) is not meiriz-

able.

Proof: Following Proposition 3.4, we must search for apseudometric d on R(X) x 
R(X) such that

d(f,h)=O	he[f] 

and
R—limf=f.=d(f,f)--'O. 

If such a pseudometric existed and if R - lim_. f,, = f (for instance, fn 1) then 
we should also have R - = I for any sequence {h} E jv such that hn € [In] 
for every n € ff. In fact 

However, that is not always possible as it will be shown in the following example. 

Example 3.9: Suppose R - = f in R(X). Let {z}€, be the set of 
points in X whose coordinate components are rational numbers. If M > 0 is a uniform 
bound for the norms IIfnIIx, n €IJV and 1 1f II define h(z) = 2M and h(z) = f(z) 
otherwise. Then (1) holds, but fsup k> fl Ihk - fI	Mii(X) > 0 and so (2) is not 
fulfilled.
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Proposition 3.8 is neither a good result nor a real trouble. However, the above 
example clearly shows a disadvantage of the R-convergence and, thus, of the general 
G-convergence. Note that we have only changed every f at one point! 

However, Definition 1.1 and later Definition 3.1 have been conceived for functions 
and not for classes of functions as it is the case in LI(lRm): It must be so because of 
the well-known intrinsic deficiencies of the Riemann integration as we have pointed out 
in the comments to Definition 1.1. 

In a personal letter, Prof. Nessel kindly explained to one of the authors that he had 
already understood the above deficiency of the R-convergence. All the time, in the very 
beginning their intention only was to give an appropriate concept of convergence in order 
to establish Polya's work about quadrature formulas for Riemann integrable functions 
by an application of Banach-Steinhaus type theorems, as it was successfully treated in 
[1]. Other applications to approximation theory came later. However, perhaps it is 
our main interest that the concept of R-convergence brings to light some links of the 
relevant but historically intrincate integration theory. 

4. Approximation by continuous functions 

This paper would be incomplete without the following result, which is a very important 
feature in dealing with approximation problems. 

Theorem 4.1: Let f e R'. Suppose Ill g for some g E C. Then there exists a 
sequence {fn}ncjjq of continuous and absolutely Riemann integrable functions such that 
G — limf =1. 

Proof: The case off 0 is trivial. Otherwise, consider the positive variations

f+ =	 and	f = fl —f 

which are Riemann integrable. Furthermore, f + f = If 1 <g, f = f+ - f and the 
C-convergence is linear. So we only need to prove the theorem for a positive f. 

Let A E A(f) and P := { c,lj E ITV} E P(A). Furthermore, fix any n E EV. For each 
.j E 1W, let P (c,' 11 = 1,2,..., I(j)} be a finite partition of c3 , as we pointed out in 
Lemma 2.6, such that

f I -	rnv(ct,) <2	 (10) 

where rn' := inf{f(x)I x E ci, } . Define h	0 if each	is zero. In that case hn f g
and

ff_hnff	lei 
f<2'	2	 (11) 

jEliV	 jEIN 

where the inequality is deduced from (10): Consider a non-empty compact interval 
xCc',,withOx)floc;zrøand 

u(c \ x) < (m)'2 3 '	 (12)



Sequential Convergence of Integrable Functions	575 

whenever	0. Using the Urysohn Lemma, there exists a continuous function h,
with values in the real closed interval [0, 1] such that 

h/ i 1	and	h/JJm\iO. 

Define	0 whenever m = 0 and 

h(x) E E m h,(x). 
jEIN I<'<J(i) 

For a given x E jfm only one function could be different from zero at x. So h is 
well-defined and continuous. Therefore, if h(x) i4 0, then there exists one and only 
one ci such that x E intc, and in that case we obtain 

	

h,, (x)	m	1(x)	g(x). 

Using (10) and (12), we have 

i
f - h = f f - f

jEJIV  

(Ij ffh) 

[(11-
mu(c)) +

( jEIN C
'<i<I(j)  

2+ mv(c,\x,) 
JEIN jEJN 1<1<1(j) 

<2	+	i: 
jEIN 

<2'.

mv(c)_f ha)] (13) 

Now we define the sequence of continuous functions {fn}flEJN by induction. Construct 
h 1 and define Ii	h 1 . If fn has been defined, construct h+1 and define 

f+i(x) := max{f(x),hn+i(x)}. 

Since h <f, we have fn 5 f	f g and, using (11) and (13), we finally obtain 

f
SUP(f_ fn) ff_fnff_hn<2'0 asnoo. 

Thus the theorem is proved 0 
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