A Further Result on Analyticity of some Kernels

S. Ramaswamy

Abstract. Let \mathcal{H}_n $(n \in \mathbb{N})$ be the Hermite functions. The object is to prove that the series $\sum \lambda_n \mathcal{H}_n(x) \mathcal{H}_n(y)$ is an analytical function if the sequence (λ_n) is such that $\sup_{n \in \mathbb{N}} \mathbb{R}^{\sqrt{n}} |\lambda_n| < +\infty$ for some constant $\mathbb{R} > 1$. This answers completely in the affirmative as a consequence the question treated in [3]. The method given here also gives an alternative proof of a theorem proved in that earlier paper.

Keywords: Hermite functions, Hermite polynomials, analytic functions AMS subject classification: 26E05, 26B99, 45C05, 47B10

1. Introduction

In this section we will formulate the result and give some preliminaries. Let \mathcal{H}_m be the Hermite functions as defined in [4: p. 261], let R > 1 be a constant and set

$$\Gamma_R^{1/2} = \left\{ (\lambda_n)_{n \in \mathbb{N}} \middle| \sup_n R^{\sqrt{n}} |\lambda_n| < +\infty \right\}.$$

The object of this paper is to prove the following theorem and settle completely a question in the affirmative raised by A.L. Brown and mentioned already in [3].

Theorem: Let $(\lambda_n)_{n \in \mathbb{N}} \in \Gamma_R^{1/2}$. Then the series $\sum_{n=1}^{\infty} \lambda_n \mathcal{H}_n(x) \mathcal{H}_n(y)$ is an analytic function in \mathbb{R}^2 .

Before we proceed to prove this theorem, we give some preliminaries. The following definitions of Hermite functions and operators τ_{\pm} are taken from [4: p. 261]. The *m*th Hermite function \mathcal{H}_m (*m* a non-negative integer) is defined as $\mathcal{H}_m(x) = H_m(x)e^{-\pi x^2}$ where

$$H_m(x) = \frac{1}{C_m} e^{2\pi x^2} \frac{d^m}{dx^m} e^{-2\pi x^2} \quad \text{with} \quad C_m = (-1)^m \sqrt{m!} 2^{m-1/4} \pi^{m/2}.$$

The following recurrence formula is well-known and can be easily proved using the definition of Hermite functions:

$$\sqrt{m}\mathcal{H}_m = 2\sqrt{\pi}x\mathcal{H}_{m-1} - \sqrt{(m-1)}\mathcal{H}_{m-2}$$
 for all $m \ge 2$.

S. Ramaswamy: Tata Inst. Fund. Res. (TIFR), School Math., P.O. Box 1234, Bangalore - 560012, India

Define the operators τ_+ and τ_- from the space C^1 of all once continuously differentiable functions to the space C of continuous functions as

$$au_+ \varphi = rac{d \varphi}{d x} + 2 \pi x \varphi$$
 and $au_- \varphi = -rac{d \varphi}{d x} + 2 \pi x \varphi.$

It is easily seen that

$$au_-(au_+arphi)=-rac{d^2arphi}{dx^2}+(4\pi^2x^2-2\pi)arphi \qquad ext{for all} \quad arphi\in C^2$$

where C^2 means the space of all twice differentiable functions. Using the recurrence formula, it can be easily seen that

$$au_+ \mathcal{H}_m = 2\sqrt{\pi m} \mathcal{H}_{m-1}$$
 and $au_- \mathcal{H}_m = 2\sqrt{\pi (m+1)} \mathcal{H}_{m+1}.$

Therefore, $\tau_{-}(\tau_{+}\mathcal{H}_{m}) = 4\pi m \mathcal{H}_{m}$. Consider in \mathbb{R}^{2} the operator

$$L = -\Delta + 4\pi^{2}(x^{2} + y^{2}) - 4\pi$$

where Δ is the Laplacian. It is easy to see that

$$L(\mathcal{H}_n(x)\mathcal{H}_n(y)) = 8\pi n \ \mathcal{H}_n(x)\mathcal{H}_n(y).$$
(1.1)

Definition 1: A sequence $(\mu_n)_{n \in \mathbb{N}}$ is said to be rapidly decreasing if $\sup_{n \in \mathbb{N}} n^k |\mu_n| < +\infty$ for all $k \in \mathbb{N}$.

Let $\mathcal{S}(\mathbb{R}^n)$ be the Schwartz space of functions on \mathbb{R}^n . If the sequence (μ_n) is rapidly decreasing, then it is proved in [4: p. 262] that $\sum_{n=1}^{\infty} \mu_n \mathcal{H}_n \in \mathcal{S}(\mathbb{R})$. It can be easily proved by adapting the argument there that if the sequence (μ_n) is rapidly decreasing, then $\sum_{n=1}^{\infty} \mu_n \mathcal{H}_n(x) \mathcal{H}_n(y) \in \mathcal{S}(\mathbb{R}^2)$ and that, for $m \to \infty$,

$$\sum_{n=1}^{m} \mu_n \mathcal{H}_n(x) \mathcal{H}_n(y) \longrightarrow \sum_{n=1}^{\infty} \mu_n \mathcal{H}_n(x) \mathcal{H}_n(y)$$

in the topology of $\mathcal{S}(\mathbb{R}^2)$.

Since $(\lambda_n)_{n \in \mathbb{N}} \in \Gamma_R^{1/2}$, this sequence is easily seen to be rapidly decreasing. Hence, for $m \to \infty$,

$$\sum_{n=1}^{m} \lambda_n \mathcal{H}_n(x) \mathcal{H}_n(y) \longrightarrow f = \sum_{n=1}^{\infty} \lambda_n \mathcal{H}_n(x) \mathcal{H}_n(y) \in \mathcal{S}(\mathbb{R}^2)$$

and, for $m \to \infty$,

$$\sum_{n=1}^{m} \lambda_n \mathcal{H}_n(x) \mathcal{H}_n(y) \longrightarrow f \quad \text{in } \mathcal{S}(\mathbb{R}^2).$$
(1.2)

In an obvious manner we have the representation

$$f=\lambda_1\mathcal{H}_1(x)\mathcal{H}_1(y)+g \qquad ext{where}\quad g=\sum_{n=2}^\infty\lambda_n\mathcal{H}_n(x)\mathcal{H}_n(y).$$

Since \mathcal{H}_n is analytic for all $n \in \mathbb{N}$, to prove that f is analytic, it is sufficient to prove that g is analytic. This is what we shall show in the next section.

2. Proof of the Theorem

We shall prove now that the function $g = \sum_{n=2}^{\infty} \lambda_n \mathcal{H}_n(x) \mathcal{H}_n(y)$ is analytic. For this we make use of the following result due to T. Kotaké and M.S. Narasimhan (see [2: Theorem 3.8.9]) which we recall without proof.

Let $\Omega \subset \mathbb{R}^n$ be non-trivial and open and $L: C^{\infty}(\Omega) \to C^{\infty}(\Omega)$ be an elliptic operator of order m with analytic coefficients. If $f \in C^{\infty}(\Omega)$ and if for any relatively compact open subset $\Omega' \subset \Omega$ there exists a constant M > 0 such that $\|L^r f\|_{2}^{\Omega'} \leq M^{r+1}(rm!)$ for all $r \in \mathbb{N}$ where $\|L^r f\|_{2}^{\Omega'}$ stands for $(\int_{\Omega'} |L^r f|^2 dx)^{1/2}$, then f is analytic in Ω .

Proof of the Theorem: We have the representation $g = f - \lambda_1 \mathcal{H}_1(x)\mathcal{H}_1(y)$. Hence $g \in \mathcal{S}(\mathbb{R}^2)$ as $f \in \mathcal{S}(\mathbb{R}^2)$ and $\mathcal{H}_1(x)\mathcal{H}_1(y) \in \mathcal{S}(\mathbb{R}^2)$. Therefore $g \in C^{\infty}(\mathbb{R}^2)$. We shall deduce the analyticity of the function g by using the above result of T. Kotaké and M.S. Narasimhan, taking for L the second-order operator $\Delta - 4\pi^2(x^2 + y^2) + 4\pi$. Since L is of order 2, we have to prove that there exists a positive $M \in \mathbb{R}$ such that $\|L^r g\|_2^{\Omega'} \leq M^{r+1}(2r!)$ for all $r \in \mathbb{N}$. We shall prove that there exists a positive real number M such that $\|L^r g\|_2 \leq M^{r+1}(2r!)$ for all $r \in \mathbb{N}$ where $\|L^r g\|_2$ stands for $(\int_{\mathbb{R}^2} |L^r g|^2 dx)^{1/2}$.

Let us estimate $||L^r g||_2^2$. From (1.2), $\sum_{n=2}^m \lambda_n \mathcal{H}_n(x) \mathcal{H}_n(y) \longrightarrow g$ in the topology of $\mathcal{S}(\mathbb{R}^2)$ as $m \to \infty$. Since $L: \mathcal{S}(\mathbb{R}^2) \to \mathcal{S}(\mathbb{R}^2)$ is a continuous linear operator, we have

$$L\left(\sum_{n=2}^{m}\lambda_{n}\mathcal{H}_{n}(x)\mathcal{H}_{n}(y)\right)\longrightarrow Lg$$
 in $\mathcal{S}(\mathbb{R}^{2}).$

From (1.1), therefore,

$$-\sum_{n=2}^{m} \lambda_n(8\pi n) \mathcal{H}_n(x) \mathcal{H}_n(y) \longrightarrow Lg \quad \text{in} \quad \mathcal{S}(\mathbb{R}^2)$$

follows. By induction, there follows that

$$(-1)^r \sum_{n=2}^m \lambda_n(8\pi n)^r \mathcal{H}_n(x) \mathcal{H}_n(y) \longrightarrow L^r g \quad \text{in} \quad \mathcal{S}(\mathbb{R}^2)$$

for all $r \in \mathbb{N}$. Hence

$$(-1)^r \sum_{n=2}^m \lambda_n (8\pi n)^r \mathcal{H}_n(x) \mathcal{H}_n(y) \longrightarrow L^r g \quad \text{in} \quad L^2(\mathbb{R}^2)$$

and

$$\left\| \sum_{n=2}^{m} \lambda_n (8\pi n)^r \mathcal{H}_n(x) \mathcal{H}_n(y) \right\|_2^2 \longrightarrow \left\| L^r g \right\|_2^2.$$

Since $\{\mathcal{H}_n(x)\mathcal{H}_n(y)\}_{n\in\mathbb{N}}$ is an orthonormal system in $L^2(\mathbb{R}^2)$,

$$\left\|\sum_{n=2}^{m} \lambda_n (8\pi n)^r \mathcal{H}_n(x) \mathcal{H}_n(y)\right\|_2^2 = \sum_{n=2}^{m} (8\pi n)^{2r} |\lambda_n|^2 = (8\pi)^{2r} \sum_{n=2}^{m} n^{2r} |\lambda_n|^2.$$

Therefore, we have

$$\|L^{r}g\|_{2}^{2} = (8\pi)^{2r} \sum_{n=2}^{\infty} n^{2r} |\lambda_{n}|^{2}.$$
(2.1)

Since $(\lambda_n) \in \Gamma_R^{1/2}$, there exists a positive constant C such that $R^{\sqrt{n}}|\lambda_n| \leq C$ for all $n \in \mathbb{N}$. Hence there holds $|\lambda_n|^2 \leq C^2/R^{2\sqrt{n}}$ for all $n \in \mathbb{N}$. Therefore, from (2.1) we obtain

$$\|L^{r}g\|_{2}^{2} \leq (8\pi)^{2r} C^{2} \sum_{n=2}^{\infty} n^{2r} R^{-2\sqrt{n}}.$$
(2.2)

We shall now estimate $\sum_{n=2}^{\infty} n^{2r} R^{-2\sqrt{n}}$ using the theory of Γ -function. Let $k = 2\log R$. Consider the integral

$$\int_{0}^{\infty} e^{-\sqrt{t}} t^{2r} dt \geq \int_{1}^{\infty} e^{-k\sqrt{t}} t^{2r} dt = \sum_{n=2}^{\infty} \int_{n-1}^{n} e^{-k\sqrt{t}} t^{2r} dt.$$

As $n \ge 2$, there is $n-1 \ge \frac{1}{2}n$. Hence we have

$$\int_{n-1}^{n} e^{-k\sqrt{t}} t^{2r} dt \ge e^{-k\sqrt{n}} \left(\frac{n}{2}\right)^{2r}.$$

From this it follows that

$$\int_{0}^{\infty} e^{-k\sqrt{t}} t^{2r} dt \ge \sum_{n=2}^{\infty} e^{-k\sqrt{n}} \frac{n^{2r}}{2^{2r}} = \frac{1}{2^{2r}} \sum_{n=2}^{\infty} n^{2r} R^{-2\sqrt{n}}.$$

Therefore, there holds

$$\sum_{n=2}^{\infty} n^{2r} R^{-2\sqrt{n}} \le 2^{2r} \int_{1}^{\infty} e^{-k\sqrt{t}} t^{2r} dt.$$
(2.3)

By the substitution $k\sqrt{t} = y$ it is easily seen that

$$\int_{1}^{\infty} e^{-k\sqrt{t}} t^{2r} dt = \frac{2}{k^{4r+2}} \Gamma(4r+2) \quad \text{where} \quad \Gamma(x) = \int_{0}^{\infty} e^{-t} t^{x-1} dt$$

for n > 0. Hence, from (2.2) and (2.3) we see that

$$||L^{r}g||_{2}^{2} \leq C^{2}(8\pi)^{2r} \frac{2^{2r+1}}{k^{4r+2}} \Gamma(4r+2) = C^{2}(8\pi)^{2r} \frac{2^{2r+1}}{k^{4r+2}} (4r+1)!$$

Hence, we have

$$\|L^{r}g\|_{2} \leq C(8\pi)^{r} \frac{2^{r+1/2}}{k^{2r+1}} (4r+1)!^{1/2}.$$
(2.4)

By the Stirling formula, $n! \sim e^{-n} n^{n+1/2} \sqrt{2\pi}$. Hence, there holds

$$(4r+1)! \sim e^{-(4r+1)}(4r+1)^{4r+1+1/2}\sqrt{2\pi}$$

and, therefore,

$$(4r+1)!^{1/2} \sim e^{-(2r+1/2)}(4r+1)^{2r+3/4}\sqrt{2\pi}^{1/2}$$

Further, we have $(2r)! \sim e^{-2r}(2r)^{2r+1/2}\sqrt{2\pi}$. Hence, there exists a positive constant D such that, for all $r \in \mathbb{N}$,

$$\frac{((4r+1)!)^{1/2}}{(2r)!} \le D\frac{(4r+1)^{2r+3/4}}{(2r)^{2r+1/2}}$$
$$\le D\frac{(8r)^{2r+3/4}}{(2r)^{2r+3/4}} = D4^{2r}2^{7/4}r^{1/4} \le D2^{7/4}4^{2r+2r} = D2^{7/4}4^{4r}$$

as $r^{1/4} \le 4^{2r}$ for all r > 0. Hence, from (2.4),

$$||L^{r}g||_{2} \leq DC2^{7/4}(8\pi)^{r} \frac{2^{r+1/2}}{k^{2r+1}} 4^{4r}(2r!)$$

= $2^{7/4+1/2} \frac{DC}{k} \left(\frac{2 \cdot 8\pi \cdot 4^{4}}{k^{2}}\right)^{r} (2r!) \leq M_{1}^{r}(2r!)$

for some positive number $M_1 \in \mathbb{R}$ independent of r. Sinc $M_1^r \leq (M_1+1)^r \leq (M_1+1)^{r+1}$, putting $M = M_1 + 1$, we have $\|L^r g\|_2 \leq M^{r+1}(2r!)$ for all $n \in \mathbb{N}$

Corollary 1: Let the sequence $(\lambda_n)_{n \in \mathbb{N}}$ be such that there exists a positive constant C and a number $\rho > 1$ such that

$$|\lambda_n| \leq \frac{C}{\rho^n}$$
 for all $n \in \mathbb{N}$. (2.5)

Then $\sum_{n=1}^{\infty} \lambda_n \mathcal{H}_n(x) \mathcal{H}_n(y)$ is an analytic function.

Proof: This follows immediately from the above theorem by noting that if the sequence $(\lambda_n)_{n \in \mathbb{N}}$ satisfies condition (2.5), $(\lambda_n)_{n \in \mathbb{N}} \in \Gamma_R^{1/2}$ for all R > 1

Remark: In [3] the above corollary was proved by a different method for all sequences $(\lambda_n)_{n \in \mathbb{N}}$ that satisfy condition (2.5) for some $\rho > 2$.

Corollary 2: Let the sequence $(\lambda_n)_{n \in \mathbb{N}}$ be such that, for some $\varepsilon \in (0, \frac{1}{2})$ and for some real R > 1, there holds

$$\sup_{n \in \mathbb{N}} R^{n^{1-\epsilon}} |\lambda_n| < +\infty.$$
(2.6)

Then $\sum_{n=1}^{\infty} \lambda_n \mathcal{H}_n(x) \mathcal{H}_n(y)$ is an analytic function.

Proof: Note that if condition (2.6) is satisfied, then the sequence $(\lambda_n)_{n \in \mathbb{N}}$ belongs to the class $\Gamma_R^{1/2}$. Hence the result follows immediately from the above theorem

581

3. Application to integral operators

In this section, we shall apply our Theorem to the study of kernels of integral operators in relation to their eigenvalues.

Proposition: Let $T: L^2(\mathbb{R}) \longrightarrow L^2(\mathbb{R})$ be a self-adjoint integral operator given by a kernel belonging to the space $L^2(\mathbb{R}^2)$ such that its eigenvalues are in the class $\Gamma_R^{1/2}$ for some constant $\mathbb{R} > 1$. Then T is unitarily equivalent to an integral operator T_G given by a kernel G which is analytic and belongs to $S(\mathbb{R}^2)$.

Proof: Let the eigenvalues of T be (λ_n) . By assumption $(\lambda_n) \in \Gamma_R^{1/2}$ for some constant R > 1. Hence by the Theorem, $G(x, y) = \sum_{n=1}^{\infty} \lambda_n \mathcal{H}_n(x) \mathcal{H}_n(y)$ is an analytic function belonging to the space $S(\mathbb{R}^2)$. Let T_G be the integral operator given by G. Then T_G has the eigenvalues λ_n . Now the result follows from the fact that if two compact symmetric operators have the same eigenvalues, then they are unitarily equivalent \blacksquare

S. Ganapathiraman in his thesis considers integral operators K on $L^2(I)$ where I is a closed bounded interval [a, b], induced by kernels K which are analytic in a neighbourhood of $I \times I$. He proves (see also [1: Theorem 3.2]) that the eigenvalues of K belong to the space Γ^- which is defined as the set of all sequences (λ_n) such that the sequence $R^{n^{1-\epsilon}}|\lambda_n|$ is bounded for all constants R > 0 and all $\varepsilon \in (0, 1)$. Obviously, $\Gamma^- \subset \Gamma_R^{1/2}$ for any R. Hence, if $(\lambda_n) \in \Gamma^-$, then the function $\sum \lambda_n \mathcal{H}_n(x) \mathcal{H}_n(y)$ is analytic. This answers in the affirmative the question asked by A.L. Brown, in the course of my lectures on these problems.

Acknowledgement: It is a pleasure to thank Dr. S. Thangavelu for some stimulating and useful discussions.

References

- [1] Ganapathiraman, S. and R. Vittal Rao: Eigenvalues of integral operators on $L^2(I)$ given by analytic kernels. Int. Equ. Oper. Theory 18 (1994), 109 117.
- [2] Narasimhan, R.: Analysis on Real and Complex Manifolds (Advanced Studies in Pure Mathematics: Vol. 1). Amsterdam: North-Holland Publ. Comp. 1973.
- [3] Ramaswamy, S.: Analyticity of some kernels. Z. Anal. Anw. 13 (1994), 547 554.
- [4] Schwartz, L.: Théorie de Distributions. Paris: Hermann 1966.

Received 27.05.1994