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A Further Result on Analyticity of some Kernels 
S. Ramaswamy 

Abstract. Let 1	(n E iN) be the Hermite functions. The object is to prove that the series 
Nn (z)11,(y) is an analytical function if the sequence (A,) is such that sup€, R"I A,I < 

+oo for some constant R > 1. This answers completely in the affirmative as a consequence 
the question treated in [3]. The method given here also gives an alternative proof of a theorem 
proved in that earlier paper. 
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1. Introduction 
In this section we will formulate the result and give some preliminaries. Let flm be the 
Hermite functions as defined in [4: p. 261], let R> 1 be a constant and set 

1/2 rR =	 supR'IA0I < 

The object of this paper is to prove the following theorem and settle completely a 
question in the affirmative raised by A.L. Brown and mentioned already in [3]. 

Theorem: Let (X0 )€i,v E rR1/2 . Then the series E n'=1 \nfln(2)fn(y) is an ana- 
lytic function in 1112 

Before we proceed to prove this theorem, we give some preliminaries. The following 
definitions of Hermite functions and operators r± are taken from [4: p. 2611. The rnth 
Hermite function 11m (m a non-negative integer) is defined as 7m(x) = Hm(x)e12 
where

1 2,rz2 d	—2z2 Hm(x) = —e	—e	with Cm (_1)mVIi2m_1/4irm/2 

The following recurrence formula is well-known and can be easily proved using the 
definition of Hermite functions: 

= 2/X1m_i -	- 1)Hm_2	for all m > 2. 
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Define the operators r+ and r_ from the space C' of all once continuously differen-
tiable functions to the space C of continuous functions as

dW 
=	+ 2irx 

dx 

It is easily seen that

dço and	7--W = —	+ 27rx. 
dx 

r_(r^cp) = —-- + (47r 2X 2 — 27r)ça	for all W E C 2 

where C 2 means the space of all twice differentiable functions. Using the recurrence 
formula, it can be easily seen that 

T+flm = 2/11m_i	and T_flm = 2/7r(m + 1)flm+i. 

Therefore, T_ ( T+flm) = 47rmflm. Consider in JR2 the operator 

L = —L+47r 2 (x 2 +y2)-4ir 

where A is the Laplacian. It is easy to see that 

L(fl(x)fl(y)) = 87rn fl(x)H(y).	 (1.1) 

Definition 1: A sequence (pn)nEjp is said to be rapidly decreasingif sup 
<+oo for. all k1PL 

Let S(IRTh ) be the Schwartz space of functions on R'2 . If the sequence (u,,) is rapidly 
decreasing, then it is proved in [4: p. 2621 that j1-1,, E S(R). It can be easily 
proved by adapting the argument there that if the sequence (s,,) is rapidly decreasing, 
then >_

00
 pnlmn(x)Hn(y) E S(R2) and that, for rn — no, 

M	 00 

i pnfln(x)7n(y)	,.	pN,(x)fl(y) 

in the topology of S(1R2). 
Since (.X 0 ) 0 € jp E r 2 , this sequence is easily seen to be rapidly decreasing. Hence, 

for m —+ 00,

In	 00 

Anfln(X)fln(y) .' I =12 AnIn(X)fln(y) E S(1R2) 

and, for m —' no,

(x)fl(y)	. f	in S(JR2 ).	 (1.2)


In an obvious manner we have the representation 

I = i 71 i (x)fl i (y) + g	where g =	Anfl8(x)fl0(y). 

Since fl0 is analytic for all n E IN, to prove that I is analytic, it is sufficient to práve 
that g is analytic. This is what we shall show in the next section.
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2. Proof of the Theorem 

We shall prove now that the function g = )infln(x)fln(y) is analytic. For this 
we make use of the following result due to T. Kotaké and M.S. Narasimhan (see [2: 
Theorem 3.8.9)) which we recall without proof. 

Let Q C 1R be non-trivial and open and L: C OO (Q) -4 C°°(fl) be an elliptic operator 
of order rn with analytic coefficients. If f E C(fl) and if for any relatively compact 
open subset l' C Q there ezzsts a constant M > 0 such that IIL'fII'M'4(rm!) for 
all r € N where IILrfII' stands for (fe, IL7I 2 dx) 1 /2 , then f is analytic in Q. 

Proof of the Theorem: We have the representation g I - Ai1ii(x)fli(y). 
Hence g € S(1R2 )as f E S(1R2 ) and fl i (x)fl i (y) € S(1R2 ). Therefore g E C°°(1R2). 
We shall deduce the analyticity of the function g by using the above result of T. Kotaké 
and M.S. Narasimhan, taking for L the second-order operator A - 47r2 (x2 + y2 ) + 47r. 
Since L is of order 2, we have to prove that there exists a positive M € JR such that 
IL"gII'	Mr+1(2r!) for all r € N. We shall prove that there exists a positive real

number M such that Lrg2 :5 M' +1 (2r!) for all r € N where 11J7g 112 stands for 
(fm. I L'I2d/2. 

Let us estimate IL'gI. From (1.2),	Anlmn(x)fln(y) —i g in the topology of

as m - oo. Since L: S(1R2 ) —* S(1R2 ) is a continuous linear operator, we have 

L 
( Yn

	

 1: 	— Lg in S(1R2) 

From (1.1), therefore,

	

—p Lg	in S(1R2) 

follows. By induction, there follows that 

(_1)r>(81rn)r7mn(x)1.1n(y)	L	in S(1R2) 

for all r € N. Hence

Lrg	in L2(1R2) 

and

	

Tn	 2 
i A(87rn)'fl(x)fl(y) __4 IILgII.


	

n=2	 2
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Since {fl fl (x)flfl (y)} flEJ,v is an orthonormal system in L2(1R2), 

2 M	 m	 m 
>2 Xn(8irn)'fln(x)nn(y)O = >2(8n)2tI Ini - 2 (87r )2 > fl2r IAI 2 - 
n=2	 112	n=2	 I	 n=2 

Therefore, we have
00 

IIL'9II2= (87r)2t >	2rI2	 (2.1)

n2 

Since E f 2 , there exists a positive constant C such that RV' i A n I < C for all 
n E RV. Hence there holds I)I 2 C2 /R2 'i for all n E N. Therefore, from (2.1) we 
obtain

(8)2t.C2>2fl2rR_2V
	

(2.2) 

	

We shall now estimate	'2 fl2rR_2V' using the theory of 17-function. Let k =

2 log R. Consider the integral 

00	 CO	
00 

fe't'dt > f e'"i'dt = >2 f e— k\fit2rdt. 

0	 i	 "2n-i 

As n 2, there is n - 1 > I n. Hence we have 

n
2r 

J	e'1 () 
n—i 

From this it follows that 

00
1 

00

00J	 >	e 22? = ; > 
0	 n=2	 n=2 

Therefore, there holds

00 

>2 n 
2r-2/	22r J e_k't2Tdt.	 (2.3)


n=2 

By the substitution k/ = y it is easily seen that 

00	 00 

	

e— kvit2rdt =	2 r(4r + 2)	where r(x) = fe_htdt



A Further Result on Analyticity of some Kernels	581 

for n > 0. Hence, from (2.2) and (2.3) we see that 

	

22 + 1	 22r+i 
II L ' g II ^ C2(81r)2rf(4r + 2) = C2(87r)2' 

k4 +2 (4T + 1)1 

Hence, we have
2th/2 

IILT9II2 < C(8-) ' k2r+1 (4r + 1)111'2.	 (2.4) 

By the Stirling formula, n! e_nn/2/. Hence, there holds 
(4r + 1)!	 ''(4r + 1)4r+1+1/21 

and, therefore,
(4r + 1)! 1 1' 2 -' e_(2t2)(4r + 1)2r+3/4/1/2. 

Further, we have (2r)! - e_2r (2r)2 /2 V'. Hence, there exists a positive constant D 
such that, for all r E IV, 

((4r + 1)!)1/2 
< D' + 1)2+3/4 

(2r)!	-	(2r)2r+1/2	S 

10 \2r+3/4 
<	 = D42 ' 2714 r 1/4 < D27144t.2 = D271444' 

(2r) 2 '+I2	 - 

as r 1 < 4' for all r > 0. Hence, from (2.4), 
27/2 

IIL'g11 2 ^ DC27/'4(81r)T k2r+1 4'(2t) 

= 27/4+h/2	(2. 87r 44 
) (2r!) < Mr(2r!) 

for some positive number M i E JR independent of r. SincM	(M1 +1)' (M1+1)r+i,

putting M = M1 + 1, we have I lL rgI 2 M'(2r!) for all n E iN I 

Corollary 1: Let the sequence ( A fl ) fl€j be such that there exists a positive constant 
C and a number p> 1 such that 

	

IAI < £	for all n E .IN.	 (2.5)
pn 

Then	.X?((x)fl(y) is an analytic function. 

Proof: This follows immediately from the above theorem by noting that if the 
1/2 sequence (.\n)nElV satisfies condition (2.5), (An )flE E rR for all R> 1 U 

Remark: In [31 the above corollary was proved by a different method for all se-
quences (.X) Ejjv that satisfy condition (2.5) for some p > 2. 

Corollary 2: Let the sequence (An)nEBv be such that, for some e E (0, ) and for 
some real R > 1, there holds

sup	< +00.	 (2.6)

nEI'1 

Then	An?1n(X)1n(y) is an analytic function. 

Proof: Note that if condition (2.6) is satisfied, then the sequence (A fl ) flEj belongs 
to the class r'2 . Hence the result follows immediately from the above theorem U
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3. Application to integral operators 

In this section, we shall apply our Theorem to the study of kernels of integral operators 
in relation to their eigenvalues. 

Proposition: Let T : L2(R) -+ L2 (JR) be a self-adjoint integral operator given 
by a kernel belonging to the space L 2 (1R2 ) such that its eigenvalues are in the class r2 
for some constant R > 1. Then T is unitarily equivalent to an integral operator TG 
given by a kernel G which is analytic and belongs to S(1R2). 

Proof: Let the eigenvalues of T be (.X). By assumption (A,,) E rW2 for some 
constant R> 1. Hence by the Theorem, G(x,y) = Anfln(x)71n(y) is an analytic 
function belonging to the space S(1R2 ). Let TG be the integral operator given by G. 
Then TG has the eigenvalues A,,. Now the result follows from the fact that if two compact 
symmetric operators have the same eigenvalues, then they are unitarily equivalent U 

S. Ganapathiraman in his thesis considers' integral operators K on L2 (I) where 
I is a closed bounded interval [a, b], induced by kernels K which are analytic in a 
neighbourhood of I x I. He proves (see also [ 1: Theorem 3.2)) that the eigenvalues of 
K belong to the space r- which is defined as the set of all sequences (A,,) such that 
the sequence R"''	is bounded for all constants R> 0 and all e E (0, 1).. Obviously, 
r- c r j2 for any R. Hence, if (A,,) e r-, then the function E A,,fl,,(x)fl,,(y) is 
analytic. This answers in the affirmative the question asked by A.L. Brown, in the 
course of my lectures on these problems. 

Acknowledgement: It is a pleasure to thank Dr. S. Thangavelu for some stimu-
lating and useful discussions. 
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