Zeitschnift fur Analysis und ihre Anwendungen
Journal for Analysis and its Applications
Volume 13 (1994), No. 4, 577-582

A Further Result on Analyticity of some Kernels

S. Ramaswamy

Abstract. Let H, (n € IV) be the Hermite functions. The object is to prove that the series
3" AnHa(z)Ha(y) is an analytical function if the sequence (A,) is such that sup, ¢ RV™|aa| <
400 for some constant R > 1. This answers completely in the affirmative as a consequence
the question treated in {3]. The method given here also gives an alternative proof of a theorem
proved in that earlier paper.

Keywords: Hermite functions, Hermite polynomials, analytic functions

AMS subject classification: 26E05, 26B99, 45C05, 47B10

1. Introduction

In this section we will formulate the result and give some preliminaries. Let H,, be the
Hermite functions as defined in [4: p. 261], let R > 1 be a constant and set

F;{ﬂ = {(Xn)nezzv

supRﬁIz\,J < +Ioo} .

The object of this paper is to prove the following theorem and settle completely a
question in the affirmative raised by A.L. Brown and mentioned already in [3].

Theorem: Let (Ap)nemw € I‘;{z. Then the series 3 or ) AnHa(z)Ha(y) 18 an ana-
Iytic function in IR2. , ,

Before we proceed to prove this theorem, we give some preliminaries. The following
definitions of Hermite functions and operators 74 are taken from [4: p. 261]. The mth
Hermite function H, (m a non-negative integer) is defined as Hm(z) = Hp(z)e ™=
where
2 d™

— _1_ 27z
Hun(2) = Cm®  dzm

e~ with Cp = (=1)"Vml2™"/4z™/2,

The following recurrence formula is well-known and can be easily proved using the
definition of Hermite functions:

VmHm =27z Hm-1 — V/(m = 1)Hpm—y  forall m >2.
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Define the operators 4 and 7_ from the space C! of all once continuously differen-
tiable functions to the space C of continuous functions as

d
T4 = & + 2wz and Top = —d—‘p + 27 zp.
dz dz
It is easily seen that
d*p 22 2
T_(T4) = -5 + (47°z% = 2m)p forall peC

where C? means the space of all twice differentiable functions. Using the recurrence
formula, it can be easily seen that

CT4Mm = 2/TmHmoy and oMy = 2/7(m + 1) Hme1.
Therefore, 7_(7+Hm) = 47mH,,. Consider in IR? the operator
L=-A+4r%z? +¢%) —4r
where A is the Laplacian. It is easy to see that
L(Hn(Ha(y)) = 877 Ha(2)Ha(y). (1.1)

Definition 1: A sequence (¢n)nemw is said to be rapidly decreasing if sup, e v n¥|tn]
< oo for.all k € IV.

Let S(IR") be the Schwartz space of functions on R™. If the sequence (u,) is rapidly
decreasing, then it is proved in [4: p. 262] that 3 27 | uaHn € S(R). It can be easily
proved by adapting the argument there that if the sequence (u,) is rapidly decreasing,
then 307 | pnHMn(z)Hn(y) € S(R?) and that, for m — oo,

E HnHn(2)Hn(y) — D pnHa(2)Ha(y)

in the topology of S(R2) :
Since (An)nem € ry/ R , this sequence is easily seen to be rapidly decreasing. Hence,
for m — oo,

Y AnHa(2)Haly) — f = AaHn(2)Ha(y) € S(R?)

n=1 n=1

and, for m — oo, ‘
Z,\,,H YHa(y) — f  in S(R?). (1.2)
In an obvious manner we have the representation - . ‘ N

f=MHM(2)Hi(y)+9g - where g= AHa(z)Ha(y).

n=2

Since M, is analytic for all n € N, to prove that f is analytic, it is sufficient to prove
that g is analytic. This is what we shall show in the next section.
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2. Proof of the Theorem

We shall prove now that the function g = 3 oo, AnHn(z)Ha(y) is analytic. For this
we make use of the following result due to T. Kotaké and M.S. Narasimhan (see [2:
Theorem 3.8.9]) which we recall without proof.

Let Q C IR" be non-trivial and open and L : C°(2) — C°(82) be an elliptic operator
of order m with analytic coefficients. "If f € C°(Q) and if for any relatively compact
open subset ' C S there ezists a constant M > 0 such that ||[L7f||F < M+ (rm!) for
all r € IN where |L" f||} stands for (Jor |L" f|2dz)'/?, then f is analytic in Q.

Proof of the Theorem: We have the representation ¢ = f — A\ Hy(z)Hi(y).
Hence g € S(R?) as f € S(IR?) and H;(z)H1(y) € S(IR?). Therefore g € C*(IR?).
We shall deduce the analyticity of the function g by using the above result of T. Kotaké
and M.S. Narasimhan, taking for L the second-order operator A — 4n2(z? + y?) + 4=.
Since L is of order 2, we have to prove that there exists a positive M € IR such that
IL7g||¥ < M ™'(2r!) for all r € IN. We shall prove that there exists a positive real
number M such that |[L7g|; < M"t(2r!) for all r € IN where |L"g||, stands for

(fm? |L'g|2dx)l/2.

Let us estimate [|L"g||2. From (1.2), 3.0, AnHa(z)Ha(y) — ¢ in the topology of

n=2
S(IR?) as m — oo. Since L : S(IR?) — S(IR?) is a continuous linear operator, we have

L (Z A,,H.,(:z)'H,,(y)) —Lg in S(RY).

n=2

From (1.1), therefore,

- Z A(8mn)Hn(z)Ha(y) — Lg in S(R?)

n=2

follows. By induction, there follows that

(=1)" D An(87n) Ha(z)Maly) — L'g  in S(R?)

n=2

for all r € IN. Hence

(=1)" ) Aa(87n) Ha(z)Ha(y) — L'g  in L*(R?)

n=2

2
r_n2
— |IL7gll; -

’ Z An(87n) " Ha(z)Hn(y)

n=2

2
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Since {Hn(z)Hn(y)}nem is an orthonormal system in L2(IR?),

2

=) _(87n)*"|A\q[* = (8m)" > n? Al

2 n=2 . . n=2

3 An(870) Ha(2)Hal(y)
n=2

Therefore, we have

oo
IZ7gllz = (87)* D _ n"iAal2. - (@D

n=2

Since (A,) € I‘;{z, there exists a positive constant C' such that RV"|\,| < C for all

n € IN. Hence there holds [An|? < C?/R?V™ for all n € IN. Therefore, from (2.1) we
obtain ’ : T '

e o] . B

IL7gll} < (87)*"C* Y n*"R72V". , (2.2)

n=2 . .

We shall now estimate 3°°°, n?"R~2v™ using the theory of I-function. Let k =

2log R. Consider the integral ' ’

o0 o0 o0 n
/e‘f‘t"dt > /e"“/‘-tz"dt =3 e KV gy
y /"

=20

Asn > 2 thereisn—12> %n. Hence we have

n

/ e~ kY gy > o=k (g)zr.

n—1
From this it follows that
-k\/itZrdt > i —k\/inzr _ L i anR—2\/r_1
€ = € 922r - 92r )
0 n=2 n=2
Therefore, there holds
oo o0 ) .
> nFRTAVE < 9% / e FViray, (2.3)
n=2 1

By the substitution kv/t = y it is easily seen that

o0 e o]
2 —t,r—
/c""‘/‘-t"dt = WI‘(‘ir +2) where I'(z) = /e frdt
1 )
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for n > 0. Hence, from (2.2) and (2 3) we see that

2r4

IL7gli3 < 02(8702' I‘(4r +2) = C*(8r)" 2 (4r +1)!

kir+e kdr+2

Hence, we have
r+l 2

| gl < OB 2y
By the Stirling formula, n! ~ e "n"+1/2,/27. Hence, there holds
(47_ + 1)| ~ e—(4r+l)(4r + 1)4r+l+1/2\/2_7;

(4r + 1)"/2 h (2.4)

and, therefore, } :
(4r + 1)!1/2 - e—(2r+l/2)(4r + 1)2r+3/4\/2—1rl/2.
Further, we have (2r)! ~ e~27(2r)2r+1/2\/27. Hence, there exists a positive constant D
such that, for all r € IV, :
((47. + 1)!)1/2 < ’(47. + 1)2r+3/4
(2r)! - (2r)2r+1/2
(Sr)2r+3/4
(2r)2r+1/2
as r'/4 < 4% for all r > 0. Hence, from (2 4),

<D — D42r27/47;l/4 < D27/442r+2r — 927/4441'

1/2
M CON

DC (2-8n-4* -
= 9T/4+1/22 2 (—k2 ) 2r) < M (2,-!)
for some positive number M, € R mdependent of r. Sinc M] < (M;+1)" < (M +1)"t1,
putting M = M, + 1, we have |L7g|l < M™*!(2r!) forallne IN B

Corollary 1: Let the sequence (An)nemv be such that there ezists a positive constant
C and a number p > 1 such that

IL7gll; < DC2/4(8) 2

|z\,,|$p—c; - for all 'nGN. o (2.9)

Then 3 o> | AnHa(z)Hn(y) s an analytic function.
Proof: This follows 1mmed1ately from the above theorem by noting that if the
sequence (An)neav satisfies condition (2.5), (An)nenv € I"/z foral R>1 B

Remark: In (3] the above corollary was proved by a different method for all se-
quences (Ap)nenv that satisfy condition (2.5) for some p > 2.

Corollary 2: Let the sequence (An)nenv be such that, for some € € (0, ;) and for
some real R > 1, there holds

sup R"‘-‘Iz\,,l < 4o00. (2.6)
nEN

Then 32, AnMa(z)Ha(y) is an analytic function.
Proof: Note that if condition (2.6) is satisfied, then the sequence (A, )nemn belongs
to the class I'Y R . Hence the result follows immediately from the above theorem #
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3. Application to integral operators

In this section, we shall apply our Theorem to the study of kernels of integral operators
in relation to their eigenvalues.

Proposition: Let T: L?(R) — L*(IR) be a self-adjoint integral operator given
by a kernel belonging to the space Lz(B2) such that its eigenvalues are in the class I‘l/2
for some constant R > 1. Then T is unitarily equivalent to an integral operator TG
given by a kernel G whick is analytic and belongs to S(IR?).

Proof: Let the eigenvalues of T be (A,). By assumption (A,) € I‘l/ for some
constant R > 1. Hence by the Theorem, G(z,y) = 3 oo | AnHn(z)Hn(y) is an analytic
function belonging to the space S(IR?). Let T¢ be the integral operator given by G.
Then T has the eigenvalues A,,. Now the result follows from the fact that if two compact
symmetric operators have the same eigenvalues, then they are unitarily equivalent ®

S. Ganapathiraman in his thesis considers: integral operators K on L?(I) where
I is a closed bounded interval [a,b], induced by kernels K which are analytic in a
neighbourhood of I x I. He proves (see also [1: Theorem 3.2}]) that the eigenvalues of
K belong to the space '~ which is defined as the set of all sequences (A,) such that
the sequence R™“|A4| is bounded for all constants R > 0 and all € € (0,1).. Obviously,
- c FR for any R. Hence, if (A,) € T'", then the function Y} AnH.(z)Ha(y) is
analytic. This answers in the affirmative the question asked by A.L. Brown, in the
course of my lectures on these problems.
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