
Zeitschrift für Analysis und ihre Anwendungen 
Journal for Analysis and its Applications 

Volume 13 (1994), No. 4, 583-597 

The Carathéodory-Féjer Interpolation Problem 
in Hardy Classes 

D. Alpay and V. Bolotnikov 

Abstract. In this paper we study the Carat héodory-Féjer interpolation problem in the Hardy 
spaces H2 of the unit disk. The results are presented within a framework which slightly 
generalizes the H2 spaces, and allow to consider in a unified way Hardy spaces of the unit disk 
and of a half plane. 
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1. Introduction 
We denote by H2 the Hardy spaces of functions analytic in the open unit disk 1D (see 
[9, 10]). The Caraihéodory-Féjer problem for H 2 functions consists of the following: 

Given w E JD and h0 ,. . . , hN E C, find necessary and sufficient conditions for a 
function h € H2 to exist such that 

(i) II h IIH2 < 1	and	(ii) h(w) = hk (k = 0,... , N). 

Since H2 is a reproducing kernel Hubert space, this problem is easily solved using 
reproducing kernel Hubert space methods, as we now briefly recall. We set k(z, w) = 

to be the reproducing kernel of H 2 and let 

(z) = —k(z,w) = (1 _z)k+l 

Then, since
(f,')H2 = f(k)(w) 

it is readily checked that the set of all functions h € H2 for which property (ii) holds 
can be written as N+1 

h(z) = hmin(z) +	 )	u(z) 
Z(D

D. Alpay: Ben Gurion Univ. of the Negev, Dep. Math., POB 653, Beer Sheva 84105, Israel 
V. Bolotnikov: Ben Gurion Univ. of the Negev, Dep. Math., POB 653, Beer Sheva 84105, 
Israel 

ISSN 0232-2064 / $ 2.50 © Heldermann Verlag Berlin



584	D. Alpay and V Bolotnikov 

with
h0 

	

hmin(z) = ((0)(z)(1)(z) ..	

—' () 

P being the matrix with ij-entry 

Pu =	= 

and u being a free parameter in H2. 
Furthermore,

111
2	— z.	2	2 

" H 2 — "mm H 2 + U H2 

with

(hN)

h0 
1. 2_j1ILmin H2- I"O, .  ,fLpJ)I 

This allows to take care of constraint (i). There is a solution h of the Carathéodory-
Féjer problem with II h IIH2 < 1 if and only if II hminhlH2 :5 "Then, all solutions of the 
problem are given by

	

N	 - 

G
2 1/2 

(1— II hminhI	u(z)h(z) = hjn(z) +-	 H2) 

with 11 U 11H2 < 1. 
The purpose of this paper is to study a matrix-valued version of this problem. We 

denote by CP X q the space of p-rows, q-columns matrices with complex entries, by 'q the 
identity of Cq,q and write C" for CPX1. We set HPxq to be the space of 
functions with entries in H 2 . On the space HXq we define the inner product 

2,r 

(F, G) --fTr {G(ehi)*F(e)}dt 
2ir j 

0 

and the matrix-valued Hermitian form

2,r 

[F,G] I = ---	G(e1t)F(e't)dt. 2ir  
0 

When p = q = 1, then (F, G) = [F, G], but the conditions (F, F) !^ 1 and [F, F) !^ 'q 
are in general not equivalent for q> 1 or p> 1. 

A matrix valued version of the Carathéodory-Féjer problem for H 2 functions is the 
following
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Problem 1.1: Given matrices Co,... , C. C x P and do,..., d,, e Cr1q and given 
w E ID describe the set of all functions H E H2p Xq such that 

k 
[H, H] 5 1q	 and	

EC
	

k!	
= dk (k = 0,.. . , n).


i=O 

To solve this problem we use a characterization of elements H E W)<9 for which 
[H, H) 1, in terms of Schur functions and apply the Fundamental Matrix Inequality 
method (FMI) developed by I. Kovalishina and V. Potapov (see [11 - 13)). 

We will solve a problem more general than Problem 1.1, set in a framework devel-
oped in the papers (3 - 5) and which, in particular, allows to treat in a unified way the 
case of Hardy spaces of the unit disk and of a half plane. 

The outline of the paper is as follows.	 S 

The paper consists of four sections. This introduction is the first one. In Section 2, 
we review the above mentioned framework and prove a number of results of [2] in this 
context. The general problem to be solved is then described. In Section 3 we give a 
necessary and sufficient condition for the problem to be solvable, in terms of a matrix 
inequality. In Section 4 we give an explicit description in terms of a linear fractional 
transformation. 

2. The spaces HQ(Iq) 

Let a, b be a pair of functions which are analytic in an open subset Q C C. Let 

p,(A) = a(A)a(j)* - b)b(w)	 (2.1)


and let the subsets 

cl+={.xecl: PA( A)>0}	and	cl_={.XEIZ: pA(A)<o} 

be non-empty. Then there exists a point z such that Ia(ji)I = Ib(,)I 0 and hence, the 
subset

clo={AEc1: pA)=0} 

is non-empty. 
The kernel p,(A)' is non-negative in +: for every choice of integer k E 1.T'i and 

of points w 1 ,. .. ,w in ci+, the k x k Hermitian matrix with ij-entry p,,(w,) — ' is 
non-negative. Therefore, there exists a reproducing kernel Hilbert space H with the 
reproducing kernel The following direct characterization of the space H is 
given in [4: pp. 127 - 1281. 

Theorem 2.1: The space H consists of functions f which are analytic on	and

admit a representation of the form 

1(A) = (A).n(7(A)	 (2.2)
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with

IfII	= i ci <o 
n=O 

and where	
b(A)	

(2.3) 

We refer to the papers [3 - 51 for further properties of the spaces H and for various 
examples of p. Here we mention that the representation (2.1) is essentially unique, i.e. 
if p,(A) = c(A)c(w)* - d(A)d(w)* is another representation of p, then (a(A),b(A)) = 
(c(A),d(A))M where M is a ( °1 )-unitary matrix. 

	

Besides the case a(A) = 1 and b(A) = A (for which	= JD and Q0 is the unit circle

T) the following two cases are of interest: 

	

a(A)= 1—iA	and	b(A)= 1 +iA	 (2.4) 

and

	

a(A)=A+i(A2+1)	and	b(A)=A—i(A2+1).	 (2.5) 

In the first case, p,(A) = —i(A - ). Then,	= C (the open upper half plane)

and Q0 = lit In the second case, p(A) = —i(A - 0)(1 - AcZ), Qo = lit U T and 

= (1D fl C+) U (E fl C_) (where we have denoted by 1E the complementary of the 
closed unit disk and by C_ the open lower half plane). Note that, in this case, ci is 
not connected. 

We denote by HP q the space of p x q matrices with entries in H. Thus, an element 
in	can be written as

00 
H(A)=	H,,c(A)'	 (2.6)
a(A) 

' ' n=O 

with Hn € CPX9. On HPxq we define 

(H,G)pxq =Tr (GH)	 (2.7) 
n0=0 0 

[H,G]pxq = > G 1 Hn .	 (2.8) 

The representation (2.6) of H depends on the given representation (2.1) of p, but (2.7) 
and (2.8) are independent of the choice of a and b defining p. Indeed, we first consider 
the case q = 1 and denote HP x ' by H. The space H is the reproducing kernel Hubert 
space of Cr-valued functions with reproducing kernel I/p,(A). Since there is only one 
such Hubert space, definition (2.7) is independent of the choice of a and b when q = 1. 
To study the case q> 1, take H E	of the form (2.6) and c E	Then He € H 
and so, for every c,	CHHC is independent of the given realization of p. Hence 

and
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(2.8), and therefore (2.7), are independent of the given realizations of p. We denote by 
HPp (Iq ) the space of functions H € for which [H, H]PXq ^' Iq and now give two 
characterizations of its elements. We first define Sp,q to be the set of all C"9-valued 
functions S for which the kernel

rp - S(.))S(w)


p,(A) 

is non-negative on	Equivalently, the operator of multiplication by S is a contraction 

from H q into H (see [4: p. 128, Theorem 3.1]). 

Theorem 2.2: Let H be a	 function defined in 1+. Then H belongs 

to the space H P q (lq) (and is in particular analytic in 11+) if and only if the kernel 

KH(.\,w) —

	

_____ - H(A)H(w)	 (2.9)

- p) 

is non-negative in 

The Proof follows from that given in [2] for p,(A) = 1 - and relies on the fact 
that [H, H]H,xq ^ 1q if and only if the multiplication operator c —p Hc is a contraction 
from cq into H. Let us remark that in the scalar case p = q = 1 the result above has 
been proved by D. Sarason [14 - 16]. 

Theorem 2.3: Let H be a	valued function analytic in ftp. Itbelongs to the 

space H(Iq) if and only if it can be written as 

	

H(A) Si (A)(a(A)Iq - b7)S2 (A))	 (2.10) 

where

5= ()
	

(p+q)xq	 (2.11) 

The proof which will be given below follows the case a(A) = 1 and b(A) = ) which 
was considered in [2]. We need for the proof the following lemma. 

Lemma 2.4: Let U be an open subset of ID and let H be a	 function

defined on U and such that the function

'p
H(z)H(v) 

- 1 - zE7 

is non-negative in U. Then H is the restriction of a (unique) function if € H9(I1). 
In particular, H is analytic in U. 

Proof: Let k(z) = 1/(1 - zD) and let us introduce a densely defined relation T on 
the space HP by

T(kc) = H(v)c	(v € U, c € C").
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Since KH(z, ii) is positive, T is in fact a contraction operator and therefore extends to 
a contraction from C' into H. For ii E U and c, d E C" we have 

c*(T*d)(v) = (T'd, kp)H P = (d, H(u)*c)cp cH(v)d 

and thus H is the restriction to U of the function H E PXq defined by H(v)d = 
(Td)(v). To conclude, it remains to check that the kernel KR(z ,w) is non-negative 
in JD, but this follows from the fact that T' is a contraction and from the formula 
cK,(z,v)c2 = (I - T'T)(kvc],kz c2 ) HP for elements C I, C2 E C" I 

Proof of Theorem 2.3: Let us first assume that H is of the form (2.11). Then, 

KH(A,) = A(A) I 'p+g - S(A)S(w)* } A(w) 
p-(A) 

with A(A) = (I,AH(A)) and therefore, Kjq(A,w) is non-negative in . To study the 
converse, we note that by (2.6) the function H can be written as H(A) = a(A) 1 q(o(A)) 
where 0 E 11" From the non-negativity of the kernel KH(A,W) it follows that the 
function

	

-	
- 1 —o(A)a(w)* 

is non-negative in Q.. Thus, the function (1 - zi' - 4(z)(u) is non-negative in a 

subset of 1D and, by Lemma 2.1, in all of D. We apply the result of [2] to obtain that


admits a representation (z) = s i (z)(I - zs2 (z))' where s = () e (P+q)xq• We 
now set S(A) ='s(cA)). Then, Se S' and (2.11) holds I 

To conclude this section we define the following interpolation problem. 
Problem 2.5: Given matrices c 1 E C" and d, E crxq (i = 0,... ,n) and given 

point A0 E + such that

	

5 = a' o)b(Ao)— b' (Ao)a(Ao) 310	 (2.12)


find nece3sarlj 'and sufficient condition to insure the existence of a function 

H(A) =H(A - A)i	 (2.13) 

in the space H"p (Iq ) such that 

	

cH	= dk	(k = 0,... ,n)	 (2.14) 

and describe the set of all such functions when this condition is met. 

Using Theorem 2.3 we reduce the initial problem I(H(Iq)) to an interpolation 
problem I(S(P+)x) in the Schur class (P+)xq
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To every C' m -valued function V(A) =	V,(X—A0)' analytic at A0 we associate

the lower triangular Toeplitz block matrices 

V0	0...	0 

Lk(V) =.
	

(k = 0, 1,. . .).	 (2.15) 
0 

Vt ... V1 V0 

The following auxiliary results can be checked by a direct computation. 
Lemma 2.6: Let V and U be matrix-valued functions analytic at A O and let Lt(V) 

and Lk(U) be associated matrices defined by (2.15). Then 

(i) Lt(UV) = Lt(U)Lt(V) 

(ii) Lk(U + V) = Lt(U) + Lk(V) 

(iii) Lk(U) = Lt(V) if and only if U; = V (i = 0,... , k). 

(iv) det Lk (V), 0 0 if and only if det V0 det V(Ao) 54 0. 

Lemma 2.7: Let .H and S be the function., defined by (2.11) which belong to the 
spaces H 9 (Iq) and respectively. Then H satisfies condition (2.14) if and 
only if S satisfies the interpolation conditions 

(bd + b1 d_ 1 +... + bdo)Sk_ = aodt + ai dt_ i + ... + atdo	(2.16) 

where ai and b, are coefficients from the Taylor expansions 

00	 00 

a(A) =a,(A - A0 )'	and	b(A) =	b,(A - Ao)'	(2.17) 

of a and b, respectively, in a neighbourhood of A0. 

Proof: Let us introduce the matrix polynomials 

C(A) =	c 1 (A - A 0 )'	and	D(A) = 1: di (A - A0 )'	(2.18) 

built from the interpolation data c, and d,, respectively. Using triangular matrices Lt 
from (2.15) one can rewrite the interpolation conditions (2.14) and (2.16) as 

L(CH) = L(D)	 (2.19) 

and
L((C, bD)S) = L(aD),	 (2.20)
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respectively. It follows from (2.11) by Lemma 2.7 that 

Ln(H)Ln(alq - bS2 ) = L(S1 ).	 (2.21) 

Let (2.19) hold. Multiplying (2.21) by the matrix L(C) on the left and using (2.19) we 
obtain Ln(D)Ln(alq - bS2 ) = L(CSI ) which in view of Lemma 2.7 can be rewritten 
as

	

L(CS1 + bDS2 ) = L(aD)	 (2.22) 
and is equivalent to (2.20) due to the decomposition (2.11) of S. 

Let, conversely, (2.20) (or, equivalently, (2.22)) hold. Multiplying (2.21) by L(C) 
on the left and comparing the obtained equality with (2.22) we get 

Ln(CH)Ln(alq - b52 ) = Ln(D)Ln(alq - bS2) 

which in view of the non-degeneracy of the matrix Ln(alq - b52 ) is equivalent to (2.19). 
We thus have to solve an interpolation problem I(S) in the Schur class and 

with the interpolation conditions (2.16). A special version of this problem was solved in 
[3] using the reproducing kernel method, and the arguments of [3] can be easily adapted 
for the present situation. For completeness, we present the independent solution based 
on the Potapov method of the fundamental matrix inequality (see [8: pp. 252 - 2671 
and [11 - 13]). 

3. The fundamental matrix inequality 

We begin with the analogue of the Schwartz-Pick inequality for functions of the class 
p+)x (which is well known for the classical case p\) = 1 - A) and was proved in 

the paper [11). 

Lemma 3.1: Let S E and let for points w0 ,. . .	E Q+ 

	

a(w 1 )b(w,)	(i 54 j). 

Then the kernel 

T(,w) = ((S(w)*	(w) 

T	 O(A)J (?
q )

)


	

,Iq)JM*G*	
-

pw\)

(3.1) 

(3.2) 

t3 non-negative on ci+, where 

(1p+q 

M=I
Ipq	S(w)

and	j _fIp+ q 0 \ 
0 —iq)

(3.3) 

= (b(A)A -_a(A)E.)	 (14)
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A = diag (a(wi)Ip+q)"	and	= diag (b(w1)I+9)"	(3.5)


and T is the block matrix defined by 

	

Tij- 'p+q - S()S( j )*	- 
—	,. • 	1,... ,n).	 (3.6) p&Jj"wI) 

Remark 3.2: The matrices fcf,J,A,.a and T defined by (3.3), (3.5) and (3.6) 
satisfy the identity

	

ATA' - BTB = MJM'	 (3.7) 

which can be checked by a direct computation. 

To describe the set of all solutions to the problem J(S') in terms of a matrix 
inequality, we recall an auxiliary lemma from [7]. 

Lemma 3.3: Let wO ,. . . ,w,, be different points in C and let	the lower tri-




angular matrix with block entries

	

= { co(wI for i > i	 (3.8) 

where

= [J(A —wi )	(j = 0,... ,n). 

Let u(J) be a Cplq 	analytic function with the expansion u(A) =	u(A—.Xo)'

at Ao E C. Then

	

fu(wo)\	fuo\ 

	

lim -t" I	I = (	1	(3.9) 

	

\u(w)J	\u/


and, moreover,

	

u0	0	...	0 

Ul 
fu(wo)	0 \ 

I .
	 F= 	f',j,qF 
\ 0	u(w)J	.	.	0 

	

tin	...	U1	UQ

(3.10) 
for every choice of the matrix F. 

Theorem 3.4: Let S =' J S1(A - )C o)' be a	 function, let Ao €

+ be a point satisfying condition (2.12) and let p(A) be of the form (2.1) with a and 

b given by (2.17). Then S is a solution to the problem I(S"") if and only if the 
kernel	 . I	K	 G(A)MJ(5)\ 

K5c7. , w ) = I	 - s	I	 (3.11) 

	

q	('j	( ) 
PC.)
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is non-negative on ci, where

G(A) = (b(A)A - \)B) 
1	

(3.12) 

1a0 1,.	0	 fb0Ir	0 
A= (	.	 and	B= 	(3.13) 

\aI,. ... aol,-J	 b. I, ... boIrJ 

	

M = (c,Bd,Ad)	 (3.14) 
with

fco\ do 
c= (	)	and	d= (	)	 (3.15) 

\cJ	 \dJ 
and

K = f (,A - B)MJM*(zA* - B*)_ldz	 (3.16) 

where -y is a simple closed contour in the unit disk around the point b(Ao)/a(Ao). 

Proof: Let S be a solution to problem I(S P ) and let w0 ,... ,w, e l+ be 
points from the neighborhood of .Ao satisfying condition (3.1). By Lemma 3.1 the kernel 
T(A,w) defined by (3.2) is non-negative on Let '.M and be matrices given by 
(3.3) and (3.8) and let

/co	0\ 
c=(	

..•	).	 (3.17) 
\c	... col 

Setting in formula (3.9) u()) = (Ipq , S(A)) and taking into account all the furmulas 
(3.3), (3.13) - (3.15), (2.14) and (2.18), we obtain 

	

lim C&,,PAI = M.	 (3.18) 

Furthermore, setting in (3.10) u(A)	a())I and u(A) = b(.\)I and using formuals

(3.5), (3.13) and (3.17) we receive respectively 

lim C C ,, PAF = AC	 (3.19) 

and

	

BC Jim	 (3.20) 

for arbitrary matrix F. Setting in the two last equalities F = M and using (3.18) we 
come to the relations 

lim C ,9AA! = AM	and	Him C4?, , 1! = BM.	(3.21)
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Note that, in view of (3.4), (3.12) and (3.21), 

119 C,G(A)M = G(A)M.	 (3.22) 

Multiplying the non-negative kernel T(A,w) from (3.2) by the matrix	O) 

the left and by its adjoint on the right we set w, - ) o (i = 0,... ,n). In view of (3.18) 
we obtain the non-negativity of the kernel Ks(A,w) defined by (3.11) with the block K 
given by

K = lim C J, T'E,C.	 (3.23) 

To finish the necessity of theorem we have to show that matrices defined by (3.16) and 
(3.23) coincide Indeed, multiplying the identity (3.7) by on the left, by 4C* 

on the right and setting w i - Ao (z = 0,... ,ri) we obtain in view of (3.18) - (3.20) 

AKA - BKB' = MJM* .	 (3.24) 

Since lbo I < lao, the matrix K given by (3.23) is the unique solution of the Stein 
equation (3.24) and (see [6: Appendix]) admits a representation (3.16). 

To prove the sufficiency of theorem we recall the following two lemmas. 

Lemma 3.5 (see [7]): Let a and b be analytic functions with expansions (2.17) 
at AO , let A and B be associated Toeplitz matrices given by (3.13) and let the matrix 
A E	 be defined by

.XoI	0	...	0

I. (3.25) 
1
\	0	•..	Jr )'olr 

Then
b(A)A - a(A)B =	- A)(.X) (3.26) 

where
= AB(A) - BA(A) (3.27) 

and A(A) and .(A) are matrix-valued functions given by 

/	& i (.\)Ir 0	\ 
A(.\)zr ••.	 with 

\ân+ i (A)Ir ...	&(.\)IrJ
'° (328 

0 

()= I ..	 with 

\ 1 n+it7t)Ir ...	())IrJ
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Remark 3.6: It follows from (3.27) - (3.28) that (A) is a lower triangular Toeplitz 
block-matrix with diagonal elements equal to aob, (A) - b0 à, (A). So, (A) is invertible if 
and only if aob,(A) 0 boa, (A). In particular, the diagonal elements of the matrix cl(A0) 
are equal to 6 (see (2.12)) and hence, 

det S2(A6) 54 0.	 (3.29) 
Lemma 3.7 (see [71): Let u(A) =	u1(A - A0 ) be a C" Xm -valued function, let 


w,, be arbitrary r x p-matrices and let A be the matrix defined by (3.25). Then, 
for A - A0,

(WOUn 

w0 u 0	\ 
/ \ 

(Al - A)'	
) 

u(A) = (Al - A)1	
°' + W1U0	

+0(l).	(3.30) 
Wo

+  + 

If, moreover, the function

	

(Al - A)'(
	

) u(A) 
\ w,, / 

is analytic at A0 , then

= 0	(k = 0,... ,n).	 (3.31) 

Let now S be an analytic	 function such that the kernel K(A,w) 

defined by (3.11) is non-negative on Q. Then the kernel (Iq - S(A)*S(D))/p(A) is also 

	

non-negative on ci+ and hence, S e Xq	remains to show that the function S

satisfies the interpolation conditions (2.16). Since the kernel K(A,w) is non-negative, 
the function G(A)MJ(s)) is bounded (and therefore analytic) in compact neighbour-
hoods of A0 . Using the factorization (3.26) and taking into account (3.29) we conclude 
that the function (Al - A)'MJ( ) ) is analytic at A 0 . Applying Lemma 3.7 for 

u(A) = (S(A))	and

Iq  

we obtain (see (3.32))

= (ckbidk_i_aidki) 

ciEii) Sk - ai dki} = 0	(k = 0,... ,n) I (  
which coincides with (2.16) 0
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4. Description of all solutions 

In this section we parametrize the set of all solutions to the problem I(H(Iq)) fl 

terms of the linear fractional transformation under the hypothesis that its informative 
matrix K is strictly positive. Let us consider the (P+2q) x(p+2q) valued function 0 
defined by 

0(A) 'p+2q + p(A)M' (a(A)A - b(A)B-) ' K' (a(p)*A - b(p)*B) -' MJ (4.1) 

where matrices A, B, M are defined by (3.13) and (3.14) and where z is an arbitrary 
point in Q0 such that Ia(,L)I = Ib(/.L)I	0. Due to the identity (3.24) (see [1: pp. 223 - 
224]) the function 0 is J-inner in	and moreover, 

0(A)'J®(w) - J = pA)JMG(ci)K'G(A)MJ. (4.2) 

Since K is invertible, the non-negativity of the kernel K(A, w) given by (3.11) is equiv-
alent to the non-negativity of the kernel 

= (S()*Iq){J _JM*G()*K_1G()MJ}	
'q ) 

which in view of (4.2) can be rewritten as 

= (S(), II,) 
0Pt) J0(w) (S(A) 

'q
\ 

)	
(4.3) 

The set of all functions S such that the corresponding kernel Ks(A, w) is non-negative on 
+ (or, equivalently, the set of all solutions to the problem i(S,')) was described 

in [3). 

Theorem 4.1: Let 

	

o (' 912\ I CP+ q \	P+ 

921 922)	)	f cq ) 

be the block decomposition of the function 0 given by (4.1). Then the linear fractional 
transformation

S(A) = (911 (A)(A) + 912 (A)) (921 (A)a(A) +922 (A))	 (4.4) 

gives the parametrization of all solutions to the problem I(S'") when the parameter 
(p+q)xq a varies in S 

Combining Theorem 2.3 and Theorem 4.1 we obtain a similar description for the 
solutions to the problem I(H(Iq)).
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Theorem 4.2: Let

	

('ii 02\ (CP+q\	fc\ 
021 1b22)	)(c)


be the block decomposition of the iC(p+q)x(p+2q) -valued function 

tIi(A)	(%	°	° 
=	_b(A)Iq a(A)Iq)

—1  
± p) (c*(a(A)A* - b(A)B') ) K' (a()

i A - b(p)*B)'MJ (4.5) 
d* 

where A, B, M, c and d are matrices given by (3.13)—(3.15). Then the linear fractional 
transformation

H(A) = (ii(i(A) + 12 (A)) ( 21 (A)) +	 (4.6) 

gives a parametrization of all solutions to the problem I(H(I q )) when the parameter 
a varies in 

Proof: By Theorem 2.3 and Lemma 2.7, H is a solution to the problem I(H<(Iq)) 
if and only if it admits a representation (2.10) for some solution S to the problem 
J(,P+Q)x) By Theorem 4.1, S solves problem I(S<) if and only if it is of the 
form (4.4) for some a E (P+)x It follows from (2.11) that 

Si(z) = (I,,, Opxq)S(z)	and	S2 (z) = (Ogxp, Iq )S(z).	(4.7) 
Substituting (4.4) into (4.7) and (4.7) into (2.10), we obtain 

H(A) = (Ip , Opxq) (9ii (A)a(A) + 812(\)) 

x { [a(A)921 () - b(A)(Oqxp,Iq)Oii(A)Ja() 

+ a()922 (A) - b(A)(Oqxp,Ig)912(A)} 

= ( ii (A)a(A) + 12 (A)) ( 21 (A)a() + 22(A)) 

where
- 7I'ii(A) 1112(.X)\ - (I	0	0	

48 ( 
- 021 (A) 022 (A) 	k 0 _b(A)Iq a(A)Iq) O(A).. ' 

Substituting (4.1) into (4.8) and using (3.14) we come to (4.5) which ends the proof of 
the theorem U 

Remark 4.3: The description (4.6) follows directly from the result that the func-
tion H is a solution to problem I(H(Iq)) if and only if the kernel 

	

(	 K	 (a(w)A* - b(w)B*)MJV(w)* 

	

K H( \ , W ) = I	 —1 
- b(	

V(A)JV(w
b(A)B') 

is non-negative on Q, where V() = (Ip,b()H(),a()H()) and A, B and M are 
matrices given by (3.13) and (3.14). This fact can be proved similarly to Theorem 3.4.
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