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The Carathéodory-Féjer Interpolation Problem
in Hardy Classes

D. Alpay and V. Bolotnikov

Abstract. In this paper we study the Carathéodory-Féjer interpolation problem in the Hardy
spaces H; of the unit disk. The results are presented within a framework which slightly
generalizes the H; spaces, and allow to consider in a unified way Hardy spaces of the unit disk
and of a half plane.
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1. Introduction

We denote by H; the Hardy spaces of functions analytic in the open unit disk D (see
{9, 10]). The Carathéodory-Féjer problem for H; functions consists of the following:

Given w € D and hy,...,hny € C, find necessary and sufficient conditions for a
function h € H; to exist such that

@) b, €1 and (i) APW) = ke (k=0,...,N).

Since H, is a réproducing kernel Hilbert space, this problem is easily solved using
reproducing kernel Hilbert space methods, as we now briefly recall. We set k(z,w) =
7= to be the reproducing kernel of H; and let

2k

(")(z) —k(z w) (—ZC))—k+T

Then, since _
(frelm, = FP (W),

it is readily checked that the set of all functions k2 € H, for which property (ii) holds
can be written as .

2w

A(2) = hmin(2) + (1_‘ )" o
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with

ho
hmin(z) = (‘p(O)(Z)"P(l)(z)a' .. »W(N)(Z)) P_l ( ) ]
. ' . hn
P being the matrix with ij-entry
9t

i j |
P‘j = ('rot(n)a‘roc(j))ﬁz = 927001 k(z’w)l‘=u

and u being a free parameter in H.
Furthermore,

IBlIE, = lAminllE, + llulf,

ho
”hmin"i[, = (’_10,-'- )’_"N)P—l ( ’ ) .
. hn

with

This allows to take care of constraint (i). There is a solution h of the Carathéodory-
Féjer problem with ||k|jg, < 1 if and only if ||hmin|lg, < 1. Then, all solutions of the
problem are given by

| R
) = () + (555 ) (1= Mhasa ) w2

with |ju||lug, < 1.

The purpose of this paper is to study a matrix-valued version of this problem. We
denote by €P*? the space of p-rows, ¢-columns matrices with complex entries, by I, the
identity of €7%79 and write CP for CP*!. We set H5™? to be the space of C?*9-valued

functions with entries in' H,. On the space H}*? we define the inner product

2r
(F,G) = 2%/’1& {G(e)" F(e™)} dt
0
and the matrix-valued Hermitian form
2r .
[F,G] = — / G(e™) Fe't) dt
o 2T ’
0.

When p = ¢ = 1, then (F,G) = [F,G], but the conditions (F,F) < 1 and [F, F} < I,
are in general not equivalent for ¢ > 1 or p> 1.

A matrix valued version of the Carathéodory-Féjer problem for H; functions is the
following
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Problem 1.1: Given matrices co,...,cn € C™*P and dy,...,d, € C"*7 and given
w € ID describe the set of all functions H € HE™? such that

(ki)
(H,H| < I, and Zc.H W) _ 4, (k=0,...,n).

=0

To solve this problem we use a characterization of elements H € H5*? for which
[H, H) < I, in terms of Schur functions and apply the Fundamental Matnx Inequa.hty ‘
method (FMI) developed by I. Kovalishina and V. Potapov (see (11 - 13]).

We will solve a problem more general than Problem 1.1, set in a framework devel-
oped in the papers (3 - 5] and which, in particular, allows to treat in a unified way the
case of Hardy spaces of the unit disk and of a half plane.

The outline of the paper is as follows.

The paper consists of four sections. This introduction is the first one. In Section 2,
we review the above mentioned framework and prove a number of results of [2] in this
context. The general problem to be solved is then described. In Section 3 we give a
necessary and sufficient condition for the problem to be solvable, in terms of a matrix
inequality. In Section 4 we give an explicit description in terms of a linear fractional
transformation.

2. The spaces H;’xq(Iq)
Let a,b be a pair of functions which are analytic in an open subset 2 C C. -Let
pu(X) = a(Na(w)" — HA(w)" 1)
and let the subsets ‘ ‘
Q+={AGQ: p,\(/\)>0} and Q_={A€Q: PA(/\)<0}

be non-empty. Then there exists a point g such that |a(u)| = [b(u)| # 0 and hence, the
subset

% ={re0: p(1)=0}

is non-empty.
The kernel p,(A)~! is non-negative in Q4: for every choice of integer k € IN and

of points wy,...,ws in 4, the k x k& Hermitian matrix with ij-entry po,(w;)”! is
non-negative. Therefore, there exists a reproducing kernel Hilbert space H, with the
reproducing kernel p,(A)~!. The following direct characterization of the space H, is

gwen in (4: pp. 127 - 128].

_ Theorem 2.1: The space H, cansuts offuncttona f which are analytic on Q+ and
admit a representation of the form

: 1 & n . o
f(x)=m§c5a(4) | @y
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with

=)
£, =Y leal® < 00
n=0

and where b()

We refer to the papers (3 - 5] for further properties of the spaces H, and for various
examples of p. Here we mention that the representation (2.1) is essentially unique, i.e.
if pu(A) = ¢(A)e(w)* — d(A)d(w)* is another representation of p, then (a()),b())) =
(¢(A),d(A))M where M is a (; ° )-unitary matrix.

Besides the case a(A) = 1 and b(A) = X (for which 4 = ID and Qy is the unit circle

T') the following two cases are of interest: :
a(A)=1-:22 and bA)=1+41:) {(2.4)

and | . .
a(A) =A+iA2+1) -and  b(A) = A—i(A%+1). (2.5)

In the first case, p,(A) = —i(A — @). Then, 24 = C4 (the open upper half plane)
and 29 = IR. In the second case, p,()) = —i(A — @)1 — A\®),Q = RUT and
Q =(DNC4)U(ENC-) (where we have denoted by IE the complementary of the
closed unit disk and by €_ the open lower half plane). Note that, in this case, 2 is
not connected. o

We denote by H5*? the space of p x ¢ matrices with entries in H,. Thus, an element
in HE*9 can be written as

HQ\) = ﬁ S Hao(A) (26)

with H, € CP*?. On H2*? we define

(H, G)H:Xq =Tr (i G;HH) (27)

n=0
and . ,

[H,Glygsxe = Y GrHa. o (2.8)

n=0
The representation (2.6) of H depends on the given representation (2.1) of p, but (2.7)
and (2.8) are independent of the choice of @ and b defining p. Indeed, we first consider
the case ¢ = 1 and denote HP*! by H?. The space H} is the reproducing kernel Hilbert
space of €C?-valued functions with reproducing kernel I,/p,,(A). Since there is only one
such Hilbert space, definition (2.7) is independent of the choice of @ and b when g = 1.
To study the case ¢ > 1, take H € H2*9 of the form (2.6) and ¢ € €9. Then Hc € H?
and so, for every ¢, 3 7 | ¢*H Hyc is independent of the given realization of p. Hence
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(2.8), and therefore (2.7), are independent of the given realizations of p. We denote by
HE*9(1,) the space of functions H € H2*? for which [H, H]H;xq <.I, and now give two

characterizations of its elements. We first define SPX? to be the set of all C?*?-valued
functions S for which the kernel

I, - S(A)S(w)"
Pw(A)

is non-negative on . Equivaiently, the operator of multiplication by S is a contraction
from HY into H? (see [4: p. 128, Theorem 3.1]).

Theorem 2.2: Let H be a CP*9-valued function defined in Q4. Then H belongs
to the space HEX(I,) (and is in particular analytic in Q4 ) if and only if the kernel

Ky(hw) =

( Y (2.9)

is non-negative in Q4.

The Proof follows from that given in (2] for p,(A) = 1 — A& and relies on the fact
that [H,H ]prq < I, if and only if the multiplication operator c — Hc is a contraction

from C? into H?. Let us remark that in the scalar case p=¢ =1 the result above has
been proved by D Sarason [14 - 16).

Theorem 2.3: Let H be a CP*%-valued function analyt:c in Q4. It:-belongs to the
space HEX9(1y) if and only if it can be written as :

H(A)=S,(,\v)(a(,\)Iq—'b(/\)Sg(/\))—l | (210
where | |

S= (g;) € S{praxa, (2.11)

The proof which will be given below follows the case a(A) = 1 and b(A) = A which
was considered in [2]. We need for the proof the following lemma.

Lemma 2.4: Let U be an open subset of ID and let H be a CP*9-valued function
defined on U and such that the function

Ku(z,v) =

- )JH(v)*
is non-negative in U. Then H is the restriction of a (unique) function He HE™(1,).
In particular, H is analytic in U.

Proof: Let k,(2) =1/ (1 - zu) a.nd let us introduce a densely defined relation T' on

the space HS by
T(kyc) = H(v)"c (v e U, ceCP).
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Since K H(z,v) is positive, T is in fact a contraction operator and therefore extends to
a contraction from C? into HS. For v € U and ¢,d € CP we have

M (T*d)(v) = (T*d,k,)usz = (d, H(v)"c)cr = c*H(v)d

and thus H is the restriction to U of the function # € HE™? defined by H (v)d =
(T*d)(v). To conclude, it remains to check that the kernel K i(2,w) is non-negative
in ID, but this follows from the fact that T* is a contraction and from the formula
ciKy(z,v)er = (I — T*T){kuc1, kzc2)uz for elements ¢;,c, € CP B

Proof of Theorem 2.3: Let us first assume that H is of the form (2.11). Then,

Kl w) = agh) { 2= S0SEL ] 4

with A(A) = (Ip, AH(})) and therefore, Kp(A,w) is non-negative in ;. To study the
converse, we note that by (2.6) the function H can be written as H()) = a(A) "' ¢(a(A))
where ¢ € HY*?. From the non-negativity of the kernel K H(A,w) it follows that the

function ]

' ooy ~ ¢(0(’\))¢(U(9’))'

is hdn-negative in 4. Thus, the function (1 — z0)~! — §(2)¢(v)* is non-negative in a
subset of ID and, by Lemma 2.1, in all of ID. We apply the result of [2] to obtain that
¢ admits a representation ¢(z) = s,(2)(I — 2s2(2))~" where s = (:;) € S(P+a)xe We

now set S(A) =-s(o())). Then, S € Sﬁ,’”q)xq and (2.11) holds B
To conclude this section we define the following interpolation problem.
Problem 2.5: Given matrices ¢; € C™P and d; € C™<9 (i=0,...,n) and given
point Ao € Q4 such that
§=a (Ao)b(Ao)— b (Ao)a(ho) # 0 (2.12)

find necessary ‘and sufficient condition to insure the ezistence of a function

HO) = 3 (A= o)  ew)

=0

in the space HEX9(1,) such that

k

ZC;H,‘_,‘ =d; (k =0,...,n) (2.14)

i=0 : ' s ’

and describe the set of all such functions when this condition is met. .
Using Theorem 2.3 we reduce the initial problem I(H2*9(I;)) to an interpolation

problem I(S(P+9%9) ip the Schur class S(pp+°)xq.
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To every €™ *™-valued function V(A) = "2, Vi(A— A)* analytic at Ao we associate
the lower triangular Toeplitz block matrices

Vo 0 ... 0

Li(V) = ‘f’ (k=0,1,...). . (2.15)
: . .0
| 7 (R 7

The following aux1ha.ry results can be checked by a direct computation.

Lemma 2.6: Let V and U be matrzz valued funct:om analytic at Ao and let Li(V)
and Ly(U) be associated matrices éeﬁned by (2. 15) Then

(i) Le(UV) = Ly(U)Le(V)

(i) Li(U + V) = Ly(U) + La(V)
(i) Le(U) = Lx(V) if and only if U; = Vi (i = 0,..., k).
(iv) det Lx(V) # 0 if and only sf det Vo = det V(Xo) #0.

-Lemma 2.7: Let.H and S be the functions defined by (2.11) which belong to the

spaces HE*9(I;) and Ss,”“)xq, respectively. Then H satisfies condition (2.14) if and
only if S satisfies the interpolation conditions

R . ,
Z(Ci,bod.‘ +bhdig+... + bido)sk—i =apdi + a1dg—y + ...+ ardo (2.16)

=0

where a; and b; are coefficients from the Taylor ezpansions

a()) = f:a,-(,\_ “h)  and b)) = DoB(A = do)’ (2.17)

of a and b, respectively, in a neighbourhood of Ag.

Proof: Let us introduce the matrix polynomials

n

cy=Y c(A-x) ad D)= Z":d.'(,\ - o) (2.18)

=0 =0

built from the interpolation data c; and d;, respectively. Using triangular matrices L
from (2.15) one can rewrite the interpolation conditions (2.14) and (2.16) as

La(CH) = Lo(D) ' (2.19)

and

La((C,bD)S) = La(aD), - (2.20)
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respectively. It follows from (2.11) by Lemma 2.7 that -
Lo(H)Ln(al, — bS,) = Ln(Sy). (2.21)

Let (2.19) hold. Multiplying (2.21) by the matrix L,(C) on the left and using (2.19) we
obtain L,(D)Ln(al; — bS;) = La(CS)) which in view of Lemma 2.7 can be rewritten
as

La(CS) + bDS,) = La(aD) (2.22)

and is equivalent to (2.20) due to the decomposition (2.11) of S.
Let, conversely, (2.20) (or, equivalently, (2.22)) hold. Multiplying (2. 21) by L 2(C)
on the left and comparing the obtained equality with (2.22) we get

Lo(CH)Ln(al, — bSy) = Ln(D)La(al, — bSz)

which in view of the non-degeneracy of the matrix Ln(al, — bS2) is equivalent to (2.19).

We thus have to solve an interpolation problem I(S5*?) in the Schur class S5*? and
with the interpolation conditions (2.16). A special version of this problem was solved in
[3] using the reproducing kernel method, and the arguments of [3] can be easily adapted
for the present situation. For completeness we present the independent solution based
on the Potapov method of the fundamental matrix inequality (see [8: pp. 252 - 267)
and [11 - 13)).

3. The fundamental matrix inequality

We begin with the analogue of the Schwartz-Pick mequa.hty for functions of the class

S(pﬂ')xq (which is well known for the classical case pw(/\) = 1 — Aw and was proved in
the paper [1]). - :

Lemma 3.1: Let S € Sﬁ,p+q)xq and let for points wy,...,w, € Q4

beidaw;) # alwblw;) G #7). (3.1)
Then the kernel '
T o eom (S
Ts(Aw) = L w (3.2)
(S@) L) M6y —%((W
13 non-negative on Q, where
Ipvg - S(wo) ‘ '
M= 3 and  J= (If’(;“q N ) (3.3)
Liyg  S(wa) . !

G = (314 7a(A)z‘a)fﬂl (3.4)
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A = diag (a(w.')I,,ﬂ)i:O and B = diag (b(w,-)I,,.,.q)';:o ' (3.5)
and T is the block matriz defined by

T = Toyq — 5(“’-’)5(“’:’)'
! Puw; (wi)
Remark 3.2: The matrices M,J, A, B and T defined by (3.3), (3.5) and (3.6)
satisfy the identity ‘

G,j=1,...,n). ‘ (3.6)

ATA* - BTB* = MJM* (3.7)
which can be checked by a direct computation.

To describe the set of all solutions to the problem I (SS,P +Q)x°) in terms of a matrix
inequality, we recall an auxiliary lemma from [7].

Lemma 3.3: Let wo,...,wn be different posnts in € and let @, pbe the lower tri-
angular matriz with block entries

’ -1 . .
By ) =4 Pilwi) T p for 12 )
(®up)ij {0 for i3 (3.8)
where

e =[[r-w)  G=0,...,n).

=0 .
Let u(A) be a €P*9-valued analytic function with the ezpansion u(/\) S o ui(A= o)’

at \o € C. Then
u(wo) ug
im ®,,| : |=]: (3.9)

w,-.xo

1=0,1, 1L(wn) Up
and, moreover,
( ) 0 Ug 0 0
u(wp )
lim ®.,[ -~ . F=|™" lim &,,F
wi—2Xo : : . .. "’-""0
1=0,1,...,n 0 u(w") u. . y - l? 1=0,1,
. noo--- 1 0
(3.10)

for every choice of the matriz F.

Theorem 3.4: Let S = 32 Si(A — Ao)* be a CPTD*9.yalued function, let A €
Q4 be a point satisfying condition (2.12) and let p,()) be of the form (2.1) with a and

b given by (2.17). Then S is a solution to the problem I(S("+q)xq) if and only if the
kernel , :

K G(A)MJ 5(’\)
= S(w) S(f\)
pu(X)

Ks(\,w) = (3.1i)

(S@)"s 1)TM* Glw)"



592 D: Alpay and V. Bolotnikov

is non-negative on 4, where .

() = (604 —an)B) ™ O @12)
aol, 0 boI, 0 '
A=( : ) and B=( : e ) . (3.13)
anl, ... aol, bul, ... bol, '
M =(c,Bd, Ad) (3.14)
with - .
Co do
c=<) -and d=(f) (3.15)
Cn dn/
and ‘ '
K= /(zA — B)"'MJM*(zA* — B*)"'dz ' (3.16)
vy

where 7y 1s a simple closed contour in the unit disk around the point b(Ao)/a( o).

Proof: Let S be a solution to problem I(S?*9*9) and let wy,...,wn € 4 be
points from the neighborhood of A satisfying condition (3.1). By Lemma 3.1 the kernel
Ts(A,w) defined by (3.2) is non-negative on Q. Let ‘M and ., , be matrices given by

(3.3) and (3.8) and let
Co X 0 . . .
C= ( Do ) , (3:17)

Setting in formula (3.9) u()A) = (Ip+4,S())) and taking into account all the furmulas
(3.3), (3.13) - (3.15), (2.14) and (2.18), we obtain

lim C&,,M=M. (3.18)

Furthermore, setting in (3.10) u(A) = a(A)I, and u(X) = 5(A)I, and using formuals
(3.5), (3.13) and (3.17) we receive respectively

lim C®,,AF = AC lim @, (3.19)
wi=—2Ag wi=—Ao
ino,l,.l.,n i=0,1,...,n )
and i v :
lim C®,,,BF = BC lim &, ,F (3.20)
wi—Xg wi—23g

=0,1,...,n i=0,1,...,n

for arbitrary matrix F. Setting in the two last equalities ' = M and using (3.18) we
come to the relations .

lim C®,,AM =AM  and | lim C®,,BM = BM. (3.21)
wi—2ig wi—=2ig
io0,1,..., n i=0,1,...,n
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Note that, in view of (3.4), (3.12) and (3.21),

lim  C®.,G(AM = GOM. : (3.22)

i=0,1,...,n

Multiplying the non-negative kernel Ts(A,w) from (3.2) by the matrix (C‘bo“’-’ 1‘1 ) on
the left and by its adjoint on the right we set w; = Ag (i =0,...,n). In view of (3.18)
we obtain the non-negativity of the kernel Kg(),w) defined by (3.11) with the block K
given by ’

K= lim C%, »T®, ,C*. (3.23)

wi—Ag
i=0,1,...n

To finish the necessity of theorem we have to show that matrices defined by (3.16) and
(3.23) coincide. Indeed, multiplying the identity (3.7) by C®, , on the left, by ®, ,C*
on the right and setting w; — Ao (¢ = 0,...,n) we obtain in view of (3.18) - (3.20)

AKA®* — BKB* = MJM". (3.24)
Since |bo| < |ao|, the matrix K given by (3.23) is the unique solution of the Stein
equation (3.24) and (see [6: Appendix]) admits a representation (3.16).
To prove the sufficiency of theorem we recall the following two lemmas.

Lemma 3.5 (see [7]): Let a and b be analytic functions with ezpansions (2. 17)
at Ao, let A and B be associated Toeplitz matrices given by (3.13) and let the matriz
A € €N x(n+1)r be defined by '

I, 0 ... 0
a=|. T | (3.25)
e .0 :
0 . I Xl
Then
b(A\)A —a(M)B = (M — A)Q(N) (3.26)
where X i
Q(A) = AB(A) — BA()) (3.27)
and A()\) and B()) are matriz-valued functions given by
a (M1, 0 oo
AN = ; : with &;(3) =Y aj4i(A = o)’
Gna1( N .o @A, , =0
1) ™ 525)
(M), 0
B()) = : with bj()) = Zb,+.(,\ ,\o)

bar (M ... BN, i=0
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Remark 3.6: It follows from (3.27) - (3.28) that (1) is a lower triangular Toeplitz
block-matrix with diagonal elements equal to aob; (1) — bod; (1). So, Q(A) is invertible if
and only if agby(A) # bo@1(A). In particular, the diagonal elements of the matrix (Xo)
are equal to 6 (see (2.12)) and hence,

det Q()\g) # 0. ' (3.29)

Lemma 3.7 (see [7]): Let u(X) = 32, ui(A — Ao)* be a CP*™.valued function, let
Wo, . ..,n be arbitrary r x p-matrices and let A be the mairiz defined by (3.25). Then,
for A = X,

WoUp

(AL — A)™! ( : ) w(My=(AI—A)1 | Tw’"" +0(1).  (3.30)

Wn
Woly + ... + Waug

(AL - A)_"( : ) u(A)

. :
nguk_g =0 (k=0,...,n). ) (3.31)
—t

If, moreover, the function

18 analytic at Ao, then

Let now S be an analytic CP*9*%_valued function such that the kernel Ks(\,w)
defined by (3.11) is non-negative on Q. Then the kernel (I, — S(1)*S(©))/po(]) is also

non-negative on {2, and hence, S € SE,” *99_ It remains to show that the function S
satisfies the interpolation conditions (2.16). Since the kernel Ks(A,w) is non-negative,

the function G(A\)M J ( s};\)) is bounded (and therefore analytic) in compact neighbour-
hoods of Ag. Using the factorization (3.26) and taking into account (3.29) we conclude
that the function (A — A)“MJ(SE:)) is analytic at Ag. Applying Lemma 3.7 for

k k
u(A) = (Sg\)) and wg = <ck, Zbidlf—i, - gagdk_g)

=0

we obtain (see (3.32))

k i
Z { (c,-,ijd.*_j) Sk_,‘—a,'dk._,'} =0 (k=0,...,n)

=0

which coincides with (2.16) ®
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4. Description of all solutions

In this section we parametrize the set of all solutions to the problem I(HEX9(1,)) in
terms of the linear fractional transformation under the hypothesis that its informative
matrix K is strictly positive. Let us consider the €(P+29)x(P+29).yalyed function ©
defined by

O(N) = Iprag + pu(M* (a(N)4" = 0)B°) " K~ (a(u)* A~ b(u)'B) MJ (4.1)

where matrices A, B, M are defined by (3.13) and (3.14) and where u is an arbitrary
point in g such that |a(u)| = |b(u)| # 0. Due to the identity (3.24) (see [1: pp. 223 -
224]) the function © is J-inner in 4 and moreover,

O())~*JO(w) — J = pu(A\)JM*G(w)* K~ G(\)MJ. (4.2)

Since K is invertible, the non-negativity of the kernel Kg(A, w) given by (3.11) is equiv-
alent to the non-negativity of the kernel

f(s(z\,w) - (S(:\)‘,Iq){‘%(,\) _ JM'(;(,'\)Q{"G(C;)MJ} (551;?)>

which in view of (4.2) can be rewritten as -

Rs()w) = (SO, 1,)9% (52)) . (43)

The set of all functions S such that the corresponding kernel K s(),w) is non-negative on

Q4 (or, equivalently, the set of all solutions to the problem I(S¥*?9*7)) was described
in (3].

Theorem 4.1: Let

o (fu B2 (CPH\ _ (P
T \b 62 )° C’ C1?
be the block decomposition of the function © given by (4.1). Then the linear fra.ctwnal
transformation

S = (Bu(Ne()) + bn(x)) (0 (N)o(3) +22(%)) - (4.4)

Sf,’ﬂ)xq)

gives the parametrization of all solutions to the problem I( when the parameter

. - +q) x
o varies in SE,” Nxe,

Combining Theorem 2.3 and Theorem 4.1 we obtain a similar description for the
solutions to the problem I(HE*9(I,)).
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Theorem 4.2: Let : :
p+q P
v=(m v (%)~ (&)
be the block decomposition of the CP+9)x(P+20) yqlyed function
Y= (IJ -b((j\)Iq a(AO)zq)
+pu(N) <C‘ (a(A)A’ d—‘ b(A)B‘) - ) K- (a(y)‘A - b(;t)‘B)-XMJ

where A, B, M, ¢ and d are matrices given by (3.13)—(3.15). Then the linear fractional
transformation -

(4.5)

-1
HO) = (#1(00(0) + ¥12(0)) ($21(N)e() + $22(3)) (4.6)
gives a parametrization of all solutions to the problem I(HE*9(1,)) when the parameter
o varies in S(p+Q)xq

Proof: By Theorem 2.3 and Lemma 2.7, H isa solutlon to the problem I(H"""(I ))
if and only if it admits a representation (2.10) for some solution S to the problem

I(Sfop“)xq). By Theorem 4.1, S solves problem I(Sf,p“)xq) if and only if it is of the
form (4.4) for some o € S99 It follows from (2.11) that
51(2) = (Ip, Opxg)S(z)  and  Sz(z) = (Ogxp, I3)S(2). (4.7)
Substituting (4.4) into (4.7) and (4.7) into (2.10), we obtain
H() = (I, Opxg) (8:1(N)o(3) + 612(1))
x { [a(x)en(x) = b(A)(Ogxp I )911(/\)] o(3)
+a(A)62(3) — BN Ogp, )iV}

= (o) + 2(0) (B (W) + ()

_ [ ¥u(d) 1/112(/\)) _ (I 0 . o0 )
= (t/m(A) ean) ) =0 b1, a1, ) OO (4.8)
Substituting (4.1) into (4 8) and using (3.14) we come to (4. 5) which ends the proof of
the theorem @&

Remark 4.3: The description (4.6) follows directly from the result that the func-
tion H is a solution to problem I(H5*9(I,)) if and only if the kernel

where

K K (a(w)a® - b(w)B')_.MJV(w)‘
H\AW) = -1 w)*
, V)IM* (a(n)a” - b(,\)B‘) %(—)

is non-negative on Q, where V() = (I,,b(/\)H(/\),a(/\)H(/\)) and A, B and M are
matrices given by (3.13) and (3.14). This fact can be proved similarly to Theorem 3.4.
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