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On the Existence of Solution 
of a System of Partial Differential Equations 

A. A. Andrian 

Abstract. Let H = it 1 0 < arg t <a) for a < ir and denote by M the class of rn-dimensional 
vector functions u = u(x,t)ofC°°(IR" x fl.) analytic in t E Ha and having polynomial growth 
in (X, t). Let A() (C E lie) be a square matrix of order m with polynomial elements. In the 
paper we define regularity and strictly regularity of the system 21 = A(D)u + I and prove 
its solvability in M for all f E M. 
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1. Introduction 

In the following let JT'T be the set of natural numbers, NO = .1W U {0}, II a complex plane 
and, for 0 <a < it, 

n a ={)o<arg.A<a}	and 

Let A() (C E .1W') be a square matrix of order m with polynomial elements such 
that, for all C E IR", the roots .X ' (e),.. . , )tm(i) (some of them can coincide) of the 
characteristic equation det(AEm - A()) = 0 satisfy the conditions 

Ar+i(e),...,Am(e) ECH :=ll\fl
	 (ii) 

where Em is the unit matrix of order m. The class M is defined as the set of vector 
functions

u(x,t)= (U I(_ 	,Um(X,t)) of C°°(1R" x H0) 

analytic in t E H0 and satisfying the inequality 

IDDu(x, t)I ^ c,k(1 + I x I)( 1 + t I)	(hi, k E No)	 (1.2) 

for all (x, t) E IR" x H , where 

j=(j1,...,j),	IiI=ii +...+jn 
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and
(•5\ii	(O\' 

x1)	'\s82n 
Here i = -../i, D	denotes the complex analysis differentiation, c jk are non-



negative constants and , E R. 
If in (1.2) -y is fixed, then the corresponding class we shall denote by M7 C M, and 

if u(x, t) u(t), then we have the classes N or N. 
In the paper the problem of solvability of the system 

Ou(x, t)
=A(D)u(x,t)+f(x,t)	((x,t)E1R' xH0 )	(1.3) 

with unknown u E M and given 1 E' M is considered. 
The system (1.3) satisfying condition (1.1) will be called Strictly regular and the 

number r will be àalled its order of regularity. When the condition (1.1) is violated only 
in a finite number of points, then the system (1.3) is said to be regular. 

The main result of the paper looks as follows. 
Theorem 1.1. Consider the system (1.8). We have the following statements: 

a) The system (1.3) (regular or strictly regular) admits a solution u E M for all 
fEM.

b) If the system (1.8) is strictly regular and f E M, then for its solution u the 
inclusion u E M7 is true. 

c) If the system (1.8) is regular and f € M., then there exists '	y such that for 
its solution u the inclusion u E M. 1 is true. 

Boundary value problems for system (1.3) with f 0, t € + = Itl t > O} are 
studied in [2, 3] and for t € Ha in [1]. It slould be noted that the operators which are 
not regular in the senceof [2, 3] can become regular in our case (t € H0 ). Par example 
the Helmholtz operator + k2 with k > 0, where z =	+ j is the Laplacéan. 
Indeed, we have A1,2(e) = - k2 which implies r = 2 for lI k and r = 1 for 
Ifl > k. Now, by taking t€H0 (0<o< ) one can see that r=1 for all L±k. 
Another motivation for taking I € H 0 is the fact that the solutions of many boundary 
value problems in reality, can be extended analytically with respect to t to some angle;. 
Par example the solutiori 1u = u(x,t) of the Dirichiet problem u(x,0) = f(x) in the half 
plane in x 1R+ for the Laplace operator is analytic in t from the set It I I argt < 

2. Some auxiliary propositions 
Denote by Fe (p) the Laplace transform of a function f(t) from the class,N when arg t = 
9, i.e.

F9(p) = Jef(ret8)dr. 

We have the following statement.
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Lemma 2.1. The function Fo(p) being analytic in the half plane Rep > 0 extends 
analytically to the domain CII. 

Proof. From Cauchy integral theorem there follows 

Je"f(t)dt = o	(argp = _)	 (2.1) 
r0ur. 

where rp denotes the ray argt = /3, 0 <fJ a. Rewrite (2.1) in the form 

F0 (p) = eFa (pe')	(argp 

The functions F0 (p) and F0(pè") being the Laplace transforms of functions of polyno-
mial growth are analytic in Rep> 0 and Re(pe* a ) > 0, respectively. So the function 

ID(p)  
JFO (J)	if Rep >0 

- 1 e b0 Fo (pe 0) if Re(pe'°) > () 

is analytic in CH, I 

	

From the representation	 - 

	

1(t) = P. (t) + g(t)	with P,(t) = 1(0) + tf'(0) ... + jf(8)(0)	(2.2) 

for any function f E N and number s e N we deduce that g E N and g (1) (0) = 0 for 
anyjs. Let /3ENbe such that 

Df(t)I + Dg(t)	c,(1 + t I)	(t E H0 ).	 (2.3) 

Introduce the function 

q(t) = g(t)(1 + t) 2	(q"(0)	0 for all j	s).	(2.4) 

Now, if Q(p) is the Laplace transform of q(t) (t E 1R)1 then thanks to the relations 
(2.3) and (2.4) we have

IQ()l	c(1 + II)	(p E CtI).	 (25) 

Let -y,= yo + Ee_ c '2 , where o is the boundary of IT,*,and e > 0. Using the estimation 
(2.5) it is easy to get

£+i00 

q(t) 
= _- J e1

tQ(p)dp=_Je 1 Q(p)dp	(t E 11?). 
e—ioo 

Evidently this function j(t) is analytic in ll and bounded in tI,. 'Finally we obtain 
the following
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Lemma 2.2. Every function] € N can be presented in the form 

	

1(t) = P5 (t) + (1 ±t)
	I CP 'Q(p)dp	(t € 11.).2irz  

70 

Now let us consider the differential equation 

au(t)
- Au(t) = 1(t)	(i e 11 0 )	 (2.6) Olt 

where A € H, I E N is given and u e N is the unknown function. When t € li+ , then 
the solution of equation (2.6) can be written immediately in function of sign(Re A). In 
our case the form of the solution depends not only of A € fl or A E CII, but also of 
a position of A € CH. For applications we prefer to obtain a unique form of solution. 

At first, if 1(t) = P, (t)  (see (2.2)), then evidently equation (2.6) admits a polynomial 
solution uo. So it remains to consider equation (2.6) with f = g and A 54 0. It is clear 
that the function

ui(t) =	fePtf.i.dp	(t€fl0 )	 (2.7) 

where is such that A and 0 are placed on different sides of Yc in the case of A € CII, 
is a solution of equation (2.6) satisfying the estimate Iui(t)I 15 ce 1I (t E Ha). Let us 
show that u 1 € N. Since f E N and u 1 satisfies equation (2.6) it is sufficient to verify 
inequality (1.2) only for k = 0. From (2.4) we have G(p) = (1 - 42Q(p). Then by 
integrating by parts we get	 . 

	

1 1 et	d ),1+2
Q(p)dp 

1 +2 

=	
Q(p) (1 + d 

	() dp
	 (2.8) 

= >1 i3Jqj(P)Q(p)9tdp	(tEEL) 
70 

where the functions q3 (p) are well-defined and bounded, i.e. u 1 (t) is of polynomial 
growth. Hence the following lemma is proved. 

Lemma 2.3. The equation (2.6) admit., a solution u E N for all functions 1 e N: 

Now, if we have a system 

at
Au(t) =f(t) .	(t E flu) 

where A is a constant matrix of order m, I € N is a given vector function and u € N is 
the unknown vector function, we can solve it by transforming the matrix A into Jordan 
form and using Lemma 2.3.
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3. Construction of a solution of system (1.3) 

Strictly regular case. Let the system (1.3) be strictly regular. Introduce the following 
polynoms in A:

r	 r 
Q(, A) = H(A - A()) = A + 

j=1	 j=1 
m-r	 m-r 

R(, A) = [J (A - Ar+j()) = A m- c + 
j=1	 j=1 

It is well known (see [4: Lemma 3.1/p. 194]) that 

c,(l + II)',	a3 € C(1R) 

I Daj(e)I <C(l + I)fl1k	( l k I € so).	
(3.1) 

Let v(, t) be a solution of the Cauchy problem 

	

Q (c , )
	

.- orv(et) 
+	a, 

r	Or_Jv(,t) = 
0	(t € H)	(3.2) -	 ()  

j= 1 
Dv(, 0) b, (e) (0 j r - 1) . (3.3) 

where b3 € C(1RT ) satisfies inequality (3.1) and v(e,t) is analytic in t € Ha . Rewrite 
(3.2), (3.3) in matrix form

c 
Ow(,i) -

B(e)w(e, t) (t € Ha) 
Ot - 

w(,0)	b() 

where

	

w= (V	 and	b()= (b0(),...,bri()) 

and B() is a well-defined square matrix of order r with eigenvalues A l(e),.. . , Ar() 
all belonging to H. We have w(,t) = e)tb() , whence by using the well-known 
estimate

IIe)uII 15 C	ene(A1Wt)1 + I t IY' (1 + e1)8 

(see [2: p. 222, item 2]) we shall get the estimate 

D'Dv(C, t)	c,k( l + lCl) m1 (1 + ltl) fi k .	 (3.4) 

For beginning we take f(x, t) = t'q(x) E M. Every function u(x, t) € M can be 
considered as a distribution from S'(1R) depending on parameter t € H0 and satisfying 
the inequality

:5 c,(l + l t l)llll3	(W € S(1R'))
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where S(1R'1 ) and S'(1R) are the pair of Schwartz spaces and 

	

IIç°lIs = sup(l + 1x1 2 )3/2	ID(x)I	(sE W0). 
IoI<s 

Let u(e, t ) = F(u(x,t)) denote the generalized Fourier transform of u E M (F— ' will 
denote the inverse Fourier transform). The Fourier image of system (1.3) has the form 

	

oil(e,t) = A()ü(,t) + t (e) .	 (3.5) 

As a solution of system (3.5) we consider 

	

= j! f (AE - A())' A''e"d.\(e)	 (3.6) 
27ri  

where -y — () is a closed contour containing only the roots A, (C),.. .\,.() E II ,', and the 
point A = 0. Introduce the matrix 

v(e,t) = I f	- A())' Aj 1 eAtdA	(t E flu). 
27ri  

Lemma 3.1. The elements v,3(e,t) of the matrix V(e,t) satisfy the inequality (8.4). 

Proof. We have

	

j! 
j	

a(,A)	
dA V(e, o) =	

Ai+1Q(e,A)R(,A) 

with
a(e, A) = (aErn - A())' IAEm - A(e)I. 

Since the polynomials A'Q(e,A) and R(e,A) are coprime, then 

1 =	A)A'1Q(e, A) + q(, A)R(, A)	 (3.7) 

where r(e, A) and q(, A are polynomials in A with coefficients satisfying the inequality 
(3.1). The matrix V(,0) can be rewritten in the form 

	

V(,0) =! I	 (3.8) 

Since the contour -y — () encloses all roots of denominator Ai Q(, A), then com-
puting (3.8) with help of the residue theorem at the point A = oo we immediately 
get

DDvj3(,0)	c,,(l + IeI)vki	( I k I,j E .o).

Now notice that the function v,8 (, t) satisfies the differential equation 
aj+1 
&j+1 Q 

(
C l P vj3 (, t) = 0 

the characteristic roots of which belong to the set ll. Therefore it satisfies the estimate 
(3.4) (see (3.2) and (3.3)) 0
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Lemma 3.2. The inclusion F'(v,3(,t)(e)) E M is true, where the vector func-
tion q(x) = (qj(x),... ,qm (x)) is an element of M. 

Proof. We have IDqj (x)I ( Ck( 1 + I x I) (see (1.2)). Let k0 >> 1 be such that the 
function 

wj (x,t) = F' ((1 + IlYkov,s(,t)) =
	

1 
 (2) 

f(l + II2)°v,,t)ede 
Inn 

satisfies the estimate

wi3 (x, t)I	c(1 + xI) fl ' I1 ' 1 (1 + t I) tm0.	 (3.9) 

And if i = L V,n j=I 8 , then we have 

F(v:(e,t)4(e)) = w, 3 (x,t) * (1— x)koq(x) 

where the operation * is taken in relation to the variable x, and according to the Peetre 
inequalities

(1 + Ix - 1)H7l	(1 + I x I)( 1 + II) 

and
(1 + Ix - I) ,	( 1 + I x I)( 1 + II) 

when y < 0 or y > 0, respectively, we get 

F 1 (v,3(e, t)())	c(1 + I x I)( 1 + II)m° P + I y I)
—
	' ( l + IyI)dy 

C IO + I x I)( 1 + ItI)tm0. 

The derivatives can be estimated similarly U 

Thus, if f(x,t) = t'q(x), then the solution u of system (1.3) is constructed, namely 

u(x,t	
j! 

) = F'	f (AE _A(e))1)1eAtdA.)). (  

So, using the representation

t9f	 t'ô'f 
f(x,t) = f(x,0)+t-(x,0)+ ... + 

with an arbitrary 1 E liv, we can reduce our problem to 

au(x, t)
= A(D1 )u(x, t) + g(x, t)	 (3.10)
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where g E M . and Dg(x,0) = 0 for all j 1. In (1.2) assume 0 E EV. Introduce the 
vector function (see (2.4))

q(x,t) = g(x,t)(1 +	 (3.11)

As Fourier image of a solution of system (3.10) we consider the expression 

=f (AEm - A(e))' O(,A)eAtdA	 (3.12) 
7. W 

where -y, = -yo +e()e"2,e(e) >0, is such that the roots Ar+i(),... ,Am(e) E Cfla 
and the point A = 0 are on different sides of it (see (2.7)) and G(, A) is the Laplace-
Fourier transform of g(x,t) ((X, t) e 1W1 x 1fl+). 

A formula analogous to (3.7) permits us to rewrite (3.12) in the form 

	

ü(, t) =	
f 27rz	Q(t, A)	

(3.13) 

	

+ 1 f
r(eA)a(eA)a(eA)eAidA	(t E He). R(, A) 

The integrals here are convergent because of Dg(x, 0) = 0 for any	I with 1 >> 1
taken in advance. 

Let 10 be such that

q(, A)a(e, A) 1 < c(e)1	(IAI > 1). A'oQ(, A)	- 

Introduce the matrix

1	1 q(, A)a(e, A) At. 

	

k(,t) = -- J	A'oQ(,A) e dA 

with -y() defined in (3.6). The first integral in (3.13) will take the form 

t)= /
	

( 10) (C, t - r)dr	(I E He). 

As it was shown above (see Lemma 3.1) the elements k 1 (,t) of the matrix k(,t) 
satisfy the estimation (3.4), hence we can easily regularize the inverse transform u j (x, t) 
of ü i ( , t) (see Lemma 3.2) and have the inclusion u 1 E M. 

Now let us examine the second term ü 2 (,i) in (3.13). At first as 

	

O(,t)= (1_
	)112 (,A)
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(see (3.11)), where	)) satisfies an inequality like (2.5), integrating by parts we can
reduce ü2(C,0 to the form

1 
11 2 (4,0 = - 

27ri	 (t € IL) 
.vo 

where
/	d 

fl+2 
r(C, .A)a(C, .\)e' 

dA	
(i)=	

R() 

As consequence of the inequality 

	

R(e,A)I ^! c(i + 11
2 ) 3
	((e, A) E JR" x yo)	 (3.14)

(see [1: Lemma 1.2)) we get the estimation 

D '(e, A , i )I	c,(i + leI) rnk (1 + l.Al) k (i + ItI) 2	(3.15) 

for all (e, A , t ) E IR" x	x H. Now it is clear that by the same way 

u 2 (x,i) = F' (ü2 (C,t)) = 1
—F. (f	eM. 
2irt 

Theorem 1 for strictly regularity of system (1.3) is proved. 

2. Regular case. In the considerations made above the condition (1.1) (condition of 
strictly regularity) was very essential (see estimation (3.1) and others). Assuming that 
the condition (1.1) is violated only at the point = 0 (this does not loss the generality) 
we can show (see [i: Lemmas 1.2 and 1.3]) that in all inequalities crucial (i.e. in (3.1), 
(3.14) and (3.15)) we shall have the factor with sk <0 and this circumstance adds 
new difficulties (the estimation (3.9) was established thanks to smoothness of v13(C, t) 
in C E R"). 

Let us demonstrate how we can surmount this obstacle. First, consider the equation 
Lu(x,t) = f(x,t), where A. is the Laplacean, f€ M is a given function and u E M 
is the unknown function, and let us prove its solvability. If n = 1, i.e. E = y, then 
obviously this equation admits a solution from M. Now we are going to show how the 
case n > 2 can be reduced to the case n -, 1. For this purpose we replace f(x, t) with (i)vIf(x,t) and consider the expression IeL 2 e h f(e,t). With an appropriate choice 
of natural v1 we can reach any smothness order in JR" of the function ICl 2e' 1 . By 
taking a natural k>> 1 we can readly establish the inclusion 

uo(x,t) =	(lel_2e1 + 1eI 2 )(' + 112)kj(C,i))

= F' (IeI_2e1(1 + IC1 2)) * (1 - 

E 
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where the operation * is taken in relation to the variable x and &uo = (i _)vi f . Find 
U1 E M in a way that (j...)viUI = uo. Then we get 

5
(zui - 1) = 0 

axi 
or, by integrating with respect to x1, 

Lu 1 = I +a(x, t)x,	x' = (x2 1 .. . , 
j<V11 

where aj (x',t) E M are well-defined functions. Introducing w = u  - u we shall get 

	

a,(x',t)x.	 (3.16) 
j<_v i - 1 

Let us seek w(x,t) in the form

w(x,t) = >	cj(x',t)x
)<Vi-1 

with unknown c(x',t) E M. Substituting w(x,t) into equation (3.16) and making use 
of linearly independence of the.functions 1, x i ,... , x' 1, we obtain 

.c,_ i (x', t) = a1-(x, t) 

/.'c(x',t) = B (cj+i(x' ,t),... ,c,_i(x',t)) + b(x',t) 
j=vi-2,...,0 

where B( .. ) is a linear expression and b,(x',t) € M are certain functions. Thus the 
desired reduction is realized. Hence we have proved the following 

Lemma 3.3. The equation Au =f is always solvable in M. 

The solvability of the system (1.3) can be established in the same way: first in (1.3) 
we put /.f(x, i) instead of f(x, t) and with an appropriate choice of natural v we get 
solvability of the system

au 
= A(D)u + if.	 .	(3.17) 

Further, let vO denote a solution of system (3.17). Then according to Lemma 3.3 we 
can find u 1 E M in a way that zu 1 uo. Now we put Uo in (3.17)and get 

AV (aul - 
A(D)u I -1) = 0.	 (3.18) 

With the help of Fourier transformation from (3.18) we deduce 

OU -
A(D)u i +f+>	a,(t)x' 

at  
IiI<2v-1



On the Solution of Partial Differential Equations	613

with certain coefficients aj E M. Now consider the system 

aw = 
A(D)w + E a,(i)x'	 (3.19) 

at
liI:52v-1 

and let us seek w E M in the form 

W =	c3(t)z' 

IiI:52v-1 

with unknown coefficients c3 E N. Substituting w into (3.19) and taking account of 
linearly independence of polynoins {x'I Ij i = 0,..., 2v - 1} we get the system 

Oc,(t) 

i9t 
=A(0)c(t)+a,(t)	(IiI=2v-1) 

which is solvable (see the system (2.9)). The rest c3 (Iii 2v - 2) can be determined 
in the same manner. Evidently u 1 - w is the desired solution of system (1.3). Theorem 
1 is completely proved. 

References 

[1) Andrian, A. A.: A general boundary value problem in dihedral domain for systems of 
partial differential equations (in Russian). Izvestiya Akademii Nauk Armenii, Matematika 
28 (1993)2, 1 - 18. 

(2) Shilov, G. E.: Mathematical Analysis. Second Special Course (in Russian). Moscow: 
Nauka 1965. 

[3] Tovmasian, N. E.: Correct boundary value problems in half-space for a system of partial 
differential equations in a class of functions with polynomial growth. Izvestiya Akademii 
Nauk Arm. SSR, Matematika 23 (1988), 309 - 324. 

[4] Treves, F.: Introduction to Pseudodifferential and Fourier Integral Operators. Vol. I. New 
York and London: Plenum Press 1980. 

Received 13.08.1992; in revised form 11.04.1994


