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Nonlinear Elliptic Equations 
Involving Critical Sobolev Exponents:

Asymptotic Analysis 
via Methods of Epi-Convergence 
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Abstract. We study the minimizers of two functionals involving critical Sobolev exponents, 
and whose Euler equations lead to nonlinear boundary value problems. We first employ classical 
methods to obtain estimates. We then rephrase the problems in a more abstract functional 
analytical setting. We use epi-convergence arguments in order to describe the behaviour of the 
minimizers. 
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1. Introduction 
Consider the variational problem 

(P1)	inf	I Vu I 2dx =: C2.
uEK() jr, 

where 11 is a bounded, smooth and open subset of RN (N > 3), K(fl) is defined as 

K(1l) = u E H(Q) 
in 

IU12dx = 1 }.
	

(1) 

and 2* denotes the critical Sobolev exponent 2 = 2N/(N - 2). It is well known (see, 
for example, [51) that the minimum value C2. is never achieved. Moreover, C2. is 
independent of Q and has the constant value 

	

C2 . =	 r(N12) 
N(N —2) F(N) 

)2/N (  

According to a result of P. L. Lions [12: Lemma 1.11, every minimizing sequence of 
problem (P1) contains a subsequence (uk)k which concentrates at some point x 0 E Q, 
that is the sequence (lVukI)k converges to b., weakly in the sense of measures. 
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Besides of the problem (P1), we shall consider two perturbations, the behaviour of 
which differs considerably from that of problem (P1). The first one is 

(P2) e	mi J Vu I 2 dx =: C2(f2) 
uEK.(fl) 

where e > 0 and the set Ke(1l) is defined 

= {u EH(cl) in Iu 2 dx 
1 }. 

Since, for every e > 0, the embedding H(Z) '-.+ L2 (1l) is compact, there exists at 
least one solution ue2 of problem (P2). It can be proved by standard arguments that 
U ,2, which can be chosen to be positive in S1, is the solution of the problem 

— Lu2 =  U IVue2 I 2 dx) u;-1	in ç
(2) 

f u 2 2 dz = 1	(t2 E H(cZ)). 

The second perturbed problem considered in this study is 

(P3)	
uEIl) (in Vu I 2dx — ef u2dz) =: CO(Q) 

where K(l) again is defined in (1). According to [5: Lemma 1.61 (see also [16: Lemma 
2.2/p. 159]) and the result of P.L. Lions mentioned above, C,3(Q) is attained if and 
only if Ce 3 (fZ) < C2 .. As it is shown in [5: Theorems 1.1 and 1.2], this is the case if 

(i) N > 4 and e e (0, .\), where A, is the first eigenvalue of -A in Q 

(ii) N = 3 and E (A) 1 ), for some positive ) depending on the domain [3]. 

Inthese cases, the minimizers u 3 of problem (P3), which can always be taken to be 
positive, belong to K(l) and satisfy 

=	 +Eu3	in a 
If there is no minimizer of problem (P3), we consider a minimizing sequence and denote 
by ue3 a member of this sequence such that 

in
lVu e3 I 2dx_eJ0 h1 3 thr <Ce3(cl)+oe 

J for every e>0
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where o satisfies lim....o oe = 0. In the sequel, Ue3 will be called an o.-minimizer. We 
shall also use the notation o, for every quantity converging to 0 when e —' 0. 

The main purpose of this paper is to study the asymptotic behaviour of the sequences. 
(ue2)e and (u 3 ), as e - 0. We start with a discussion of the quantities C2(11) and 
C3(Q). It is well known that C(Q) - C2. as e —40. We shall estimate the rate of 
convergence of these sequences in terms of the geometry of S1. We then translate our 
results into the language of epi-convergence. This requires that the variational problems 
(P2) and (P3) are put in an appropriate abstract setting. In the last section, we use 
the epi-convergence in order to determine the asymptotic shape of (u 2 ) and (u3). 

2. Qualitative properties of the minimizing sequences 

2.1 Qualitative properties of the quantities C 2 (fl) and C 3 (0). The goal of this 
section is to describe some properties of the quantities C,2(Q) and Ce3(,Q), in particular 
their behaviour as e —* 0. For the reader's convenience we recall the following 

Lemma 2.1: For every bounded subset Q of li, we have 

(1) lim.....o C 2 (c1) = C2 .	 .	 S 

(ii) lim.....o C 3 (cl) = C2..	 - 

Proof: (1) Let (U5)6 C K(l) be a minimizing sequence for problem (P1), that-is. 

IVu 6 I 2 dx < C2. + 05. 

with limo.... 0 00 . = 0. Set U16 = u 6/1I u6IIL2•_.. Then u.6 .belongs to K(l) and satisfies 

	

C2() 
< j 

Vu öI2dx = (Cr + o6)/II usIl2. .	.	S 

Letting e —' 0 and using Lebesgue's dominated convergence theorem, we get the esti-
mation limsup.....o C 2 (l) <C2. + o. 

Consider now a minimizer Ue2 of problem (P2). Then U C2/II U C2IIL2• belongs to 
K() and satisfies	 S	

.	 :	 ,. . 

Ilttc2II2.Cr <'1 Vu 2 f 2 dx = C2(Q). 
Jo 

Holder's inequality implies that

/	\ (2 —e)/2 / 
1=] udx< (J u;dx)	(J [dx) 

Whence  
C2' <Ce2(1l)(measl)2(2_2. 

Finally
C2. liminfC2(Q) <_ liM sup C,2(Q) <C2. + o. 

e—.O
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Since 06 is an arbitrary small number, this establishes the first assertion. 

(ii) Let (u) C K(Q) be as before. Using u 6 as trial function for problem (P3), 
we get

C3(SI)< C2. +o _ejudx. 

Moreover, by Holder's inequality, we have for every u in K() 

C2. ^ I IVuI 2dx—e I u2dx+e(meas1)(2_2)/2 

	

Jfl	 ff1 

whence
C2 5C€3 (1l) + e(measl)(2_2)/2 

This implies
C2. liminfC 3(l) lim SUP C 3(1l) C2• + O. 

The proof is now obvious U 

Remark 2.2: Lemma 2.1 implies that if u 2 is a minimizer of problem (P2), 
the function We = uC2/II u t2IIL 2• (f1) is an o,-minimizer of problem (P3). Indeed, the 
sequence (u2) is bounded in Hl) and,lim....o fn IVwI 2 dx = C2.. Hence 

iimsup(j IVwI2dx _ e )o wdx) < c2.. 

	

e-0	
E

In constrast to C2., the quantities C 2() and C 3 (l) depend on the geometry of 
Q. Let us list some monotonicity properties of these quantities, which are immediate 
consequences of their definition: 

(i) C 2 (Q 1 ) < C 2 (920 ) and C 3 (l 1 ) < C 3 (1l0) for ci0 c 

(ii) C'3 (fl) 2 C.3(Q)	 for 0 < ' < e. 

With the help of rearrangement techniques, we can compare the functionals in Q to the 
corresponding ones in the ball l = B(O,R') := {IxI <R*} of the same volume as ft 
Indeed, we have [2: Chapter 2, Sections 1.1 and 1.2] 

(iii) C 2 (0) > C.2 (*) and C 3 (1l) 2 C3(V). 

Next, we use the techniques of harmonic transplantation [2: Chapter 3, Section 4.1] to 
estimate the quantities C 2 (Q) and C 3 (f2) from above. For this purpose, we consider 
the Green function of the Laplace operator in Q, vanishing at the boundary 8Q. It can 
be represented as

G(x,y) (N 
—2) 7N ( -	- H(x,Y))
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where UN is the area of the unit sphere of IRN (o w = r(N/2)) and H(-, y) is a harmonic 
function. The quantity 

R = max H'" 2 (x,z) = H112(xo,x0) zEO 

is called the harmonic radju,, of Q. Denote by !^ the ball B(O, R). Now let ue2 be 
a minimizer for Ce 2 (Il). By a rearrangement argument, we can always assume that 
Ue2 = u2(W) > 0. Hence the level surfaces of uC2(I x I) and G(x,O) coincide and we 
can set

uC2(IxI) = üe2(Go(x,0)). 

Let U,2 (X ) = Ii 2 (Go (x,x0 )) be its transplantation into Il. Then [2: Chapter 3, Section 
4.1]

	

jVu22dx 
= f VU 2 2dx and	J u2dx j Udx (P 

Consequently, IIUe242_(fl) = 1 implies II Ue2IIL_ . (fl) ^! 1, whence 

C 2 (l) < II Ue2I . _. (0)
in
 VUe2 2 dx < I VUe2 2 dX =  Jo 

In summary 

(iv) C2(92) <C2(1l). 

Similarly, we prove 

(v) C0( Q) <C3(l). 

These observations lead to the following 

Lemma 2.3: Put /3= R/R. Then 

(I) C2(cl) :5 C 2(Z) Ce2(fs)fl2_N+2N1(2_e). 

(ii) C,3(Q) <Ce3(1l) < C(fl2e)3(V)/32N+2u/2. 

Proof: (i) Let Ue2 bea minimizer of problem (P2) € in W, and set v 2(z ) = tL204 
We have

	

IIVe2II2..(fl) = J u	e (13x)dx = 

Taking Ve2 / II ve2 II -.	as a trial function for the variational characterization of C,2(a) 
we obtain	 - 

C 2 (fZ) ( IIte2IIL._.(fl) f IV 2 I 2d = Ce2(Q*)/32_N+2N/(2_. 

The same argument shows that the inequality with the reversed sign is also true. This 
together with statements (iv) and (iii) completes the proof of the first assertion.
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(ii) Let Ug3 be an o,-minimizer of problem (P3) € in the ball W. Then W,3(X) 
fi N/2 u 3 ([3x) belongs to K(Z) and W3 can be taken as trial function for problem (P3). 
in 11, with y := 32 Hence 

C.,3 (^) :S I IVw 3 I 2 dx — y [w3dx Jci 
< 2—N+2N/2	 Vu32dx — t#—N+2N/2 I udx L. 
< $2_PQ +2N/2 (C 3(11*) + oe). 

Since oe is an arbitrary small number, C. 3 (!^) 5fl2_N+2N/2 Ce3 (11*) . This completes 
the proof U 

2.2 Qualitative properties of the minimizing sequences ( 11 2) and (ue 3 )e. We 
start with the following result which will be proved for the sake of completeness. 

Lemma 2.4: Suppose that ue 2 is a solution of the minimization problem (P2). 
Then the sequence (ue2)e converges to 0 in the weak topology of H(11). 

Proof: In view of Lemma 2.11(i), the sequence (u 2 ) possesses at least one limit 
point u t in the weak topology of H (11). We write 

fVtc22d 
= f l Vu ' 1

2dz + in PV(u 2 - 

+ 2f Vu*V(u 2 — u*)dx. 

By the Sobolev inequality, 

in n

2/2 
Vu 2 2 dx > c2. (I lu*1 2 dx )

)   I 
(3) 

+ C2(11) (in 1Ue2 — u * l 2_edx)
	

+ 0'.- 

We recall the following result established in [4]: 

Assume that a sequence(fk ) k converges to f in the weak topology of L(1l) (q E 
[1,+oo)) and almost everywhere in Q. Then 

lim "1IfkIqdx - I Ilk - fldx) 
= j fpdr 

k +ooJ	 in 

which can be extended in the present case in the following way (see [6]): 

Assume that a sequence (f) converges in the weak topology of H(11). Then, up 
to subsequences,

& ( IfeIdx - In ll - lI2*dx) j If 1 2 dx.	 (4)
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In the present case, fe= Ue2 and f = u. Hence, there exists an o such that 

IUe2 -U* 1 2 *dx 
 = j 

lu2I2dx - 
in 

I u l2dx + oe 

rr 1— f (u')2 dx + oe. 

From (3), we derive

2/2 I Vtte2 2 dx > C2 (I lu*12dx) 
in

2/2*. 

	

+C2	- in (u*)2dx
\ 	

+)+Oe 

and, letting e - 0, we obtain

2 2/2	 /2 

	

2 • 2 2• " 
fro, I 

U * 1 2 dx)	+ c2 . ( i - 
in 

(U*)2 * dx)	 (5) 

We then use the inequality

+ /32/2 2 (c + fl)2/2	2 0)	 (6) 

and notice that it is strict unless a = 0 or 6 = 0. The lower-semicontinuity of the norm 
of L2 (Il), with respect to the weak topology of H (Q) implies that the norm llu* II L 2 (0) 
is smaller or equal to 1. Hence from (5) and (6) we infer 

2/2	 2/2 

	

C2- = C2. (jI u*12 dx)	+ 
C2. ( —.j

 u*12dx) 

By the previous remark f0 I u 1 2 dx is equal to 0 or 1.' If lu lIL2(n) were equal to 1, u 
would be a minimizer of problem (P1). This is impossible, which proves that u = 0, 
almost everywhere in S1 I	 S 

Similarly (see [6]) one has	 S 

Lemma 2.5: Suppose that ue3 is a minimizer or an o,-minimizer of problem (P3). 
Then the sequence (ue3)e converges. to 0 in the weak topology ofH(Q). 

Remark 2.6: Given any point y E Q, we can always find a minimizing sequence 
for problem (P1) which concentrates in y.
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3. Epi-convergence of sequences of functionals and applications 

Let us first recall the definition of this variational convergence in an abstract setting. 

Definition 3.1 (see [1: Proposition 1.14]): Let F and F be functions defined on a 
metric space (X, r), with values in 1RU {+oo}. Then the sequence (F) epi- converges 
to F in the topology r if the two following assertions are satisfied: 

(El) urn sup F(x°) F(x) for all x E X and some sequence x'--Tx. 

(E2) liminfF(x) 2 F(x) for all x E X and all sequences e. —0 

This epi-convergence is a special case of the r-convergence introduced by De Giorgi 
in [9] and is well-fitted to the study of minimization problems, even in the case of 
non-existence of minimizers. 

Definition 3.2: Let (oJ be a family of positive numbers such that lim. 0 o = 0. 
A function u is an o, -minimizer of the functional F defined on X if it satisfies F(u) < 
infcx F(u) + oe. 

Then, we have 

Theorem 3.3 (see El: Theorem 1.10]): Assume that 
(1) the sequence (F) cps-converges to F in the topology r 
(2) there exists an o, -minimizer u of F such that the-sequence (u) is r-relatively 

compact. 
Then every limit point u of the sequence(ue)e ( such that the subsequence (uCk)Ck 

converges to u in the topology r.) is a minimizer of  and limk_+ FCk(uEk) = F(u); 

Epi-convergence is stable with respect to continuous perturbations, since the fol-
lowing statement is true. 

Proposition 3.4 [1: Theorem 2.151: Suppose that the sequence (F) epi-converges 
to F in the topology r and that G is r-continuous on X. Then the sequence (F + G) 
epi-converges to F + C in this topology r. 

In the present case of nonlinear elliptic equations, we shall apply this variational 
convergence to the functionals F 2 and F 3 associated to the problems (P2) and (P3), 
respectively. Notice that these functionals F 2 and F 3 can be defined on the whole 
space H(1l) by

- f 
f6 IVU12 dx	 .	if U E K(Q) 

•1+00	.,	 Hol  

F3(u) 
= 1+00 

Vu 2 dz - c f u 2dx if u E K() 

 ifuEH'(cl)\K(Q). 

Our main result in this paragraph is the following
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Theorem 3.5: The sequences (Fk)e (k 2,3) epi-converge in the weak topology 
of H(Q) to F0 defined on this space by 

Fo(u) =
fn IVuI 2 d + C2 . ( 1'— f- IUI 2* dx) 21'2	if u E H'(cZ) fl B2. 

1+00	 Hol  

where B2. = { u E L2(Z)I fo IuI 2 1 < l} is the unit closed ball of L2(ul). 

Proof: Let us first verify assertion (El) for the sequence (Fe2)e: 

limsup_ 0 Fe 2(v) Fo(v) for all v E H1 () and some sequence 

where r represents the weak topology of the Hubert space H (Il) (notice that r can be 
regarded as a metric on the bounded subsets of this space). 

For every V E Hol 	fl B2 ., we define

1/2* 
13Ue2	 vi2 V	

v - 
= liv - PUe2iiL2.ffl)	

with	
= ( - j	dx) 

where u 2 is a minimizer of C 2 (Q). Lemma 2.4 and (4) imply that the sequence 
(v) converges to v in the weak topology of H(Q). Indeed, since the sequence (U2) 
converges to 0 in the weak topology of this space, we deduce from (4) 

J iv - Pu2l2dx - #2* —c	
Iu212'dx = .L 1v12dx + 

which implies

iimj lv - Pu 2l2dx = 1 - 
in 

I v I 2dx + fo v 2 dx = 

and then that the sequence (v converges to v in the weak topology of Hol 	Lemma 
2.4 implies that

lirnsupF2(v) 
in 

Vv i2dx + Cr132 
j 

iVvl2dx 

2/2 
+ c2 . (i_f 1vI2 dx) 

= Fo(v). 

Finally, since the embedding H(l) '-+ L2 (fl) is continuous, we deduce that every 
element v E H(1l) such that Il V llL2• ( fl ) > 1 cannot be the limit, in the weak topology 
of H(l),of a sequence (v) of functions belonging to H(l) fl Ba.. This proves that 
Fo(v) = +00 for every v E H(l) such that Ii v ilL 2• ( Q ) > 1. 

Let us verify assertion (E2) for the sequence (F 2 ), i.e. that
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liminfF 2 (v) > Fo(v) for every v E H(1l) and every sequence ve_!.,v. 
e —.0 

We may assume that v E B2 . and that v E Sr_c for every C. Indeed, otherwise 
assertion (E2) is trivially satisfied. By (3) and (4), we obtain 

liminff I vvei2dx 
> in Vv 2 dx + C2 . (i - f Iv1 2 dx)	= Fo(v). 

This completes the proof for the sequence (Fz). 

Let us now give the main ideas of the proof of the corresponding result for the 
sequence (F,3),- We introduce the functional F defined on Ho' (Q) by 

F(u) =  
1+00 

Vu 2dx if u E K(fl) 

 if U E H(Q) \ K(1l) 

	

and notice that F 3 is equal to F(.) —	From the compact embedding Hd (Q) '-
one easily infers that (F 3 ) epi-converges to some F0 in the weak topology of 

H' (Q) if and only if the constant sequence the members of which are F, epi-converges 
to the same F0 , in the weak topology of H(). The main modification for proving 
assertion (El) in this case consists in the introduction of the test function 

=	V - /9Uc3 

	

li v - PUE3IIL2.(o)	
with	= ( — L lvi2dx

where u 3 is a minimizer or an o,-minimizer of C 3() (see [6] for the detailed proof) I 

Remark 3.6: Because of Proposition 3.4, one can replace in Theorem 3.5 the 
functionals F 2 and F 3 by 

	

F2() — fn G(x, .)d±	and	F3(.)— in G(x, .)dx, 

	

respectively, where the functional u	f1 G(x, u) dx is continuous with respect to the 
weak topology of H(Q). This leads to the following perturbation result. 

Corollary 3.7: Assume that u fo G(x,u)dx is continuous for the weak topology 
of H01 (cZ). Them the sequences 

(Fk — j G(x,.)dx)	(k = 2,3) 

epi- converge in the weak topology of H0' (Il) to. the functional F0 — fo G(x, .)dx.
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4. Further results concerning the behaviour of 
(u2) minimizers of problem (P2). 

The purpose of this section is to study, by means of epi-convergence methods, the 
behaviour of the sequence (u2), where Ue2 is the solution of the variational problem 
(P2), when e - 0. 

From the classical regularity theory for the solutions of elliptic equations, one 
deduces that the minimizer U2 of problem (P2) or the solution of (2), belongs to 
C'(ci) fl C2 (Q). Hence, there exists x E ci such that Ue2 achieves its maximum in x. 
Applying the methods of [8) and [10), one proves that z stays away from the boundary 
9ci of ci (see [11J):

dist(x,Ocl) > 6 for some 6>0 and all e >0.	 (7), 

Han has proved in [11) that u 2 "blow's up in x e ", when e -* 0, that is 

	

lim II ue2IIL co (1) = lim u 2 (x) = + 00	 (7)2 

(see also [15: Prop. 2)). The next result shows how this function u 2 blows up in the 
Ho' -norm. 

Theorem 4.1: Let aN,.LLN,Le and w be defined 03 

(c,N)2	N12r(N/2) 

	

f(N) '	
AN = (N)_2/_2) 

ILN	
1 Ge

	

fL	(N-2)/2

2/(N-2)	 e(y) =	 _
IIUc2IIL()	 +I_x012)	

(yE	N) 

with lim—o x = x0 . Then

V(Qu2 — w ) I 2dy - 0	as e —* 0 

where Q denotes the extension operator (by 0) from H'(fZ) into H01 (1R''). 

Proof: Let us first remark the following change of scale suggested in [11): 

(2_e)/N(ci - Xe) = IIUe2IlL(n) 

Vc2(Y) =	
1	

e2( 
II Ue2IIL)	11U,2 .

11
 L — (fl)	)	

(y E ci2).	
(8) 

+ X 

Notice that (7) implies that this open set ci 2 increases to RN, when e -* 0. Moreover, 
Ve2 is the solution of the minimization problem associated to the functional F2 defined 
on H(ci2) by

fr2(v) 
= { 

f0 3 VvIdy if V E K(cl2) 

+00	if V E H(1l 2 )\ K(ci2).
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A straightforward computation (cf. Section 1) yields 

- Ve2 = (L.. 
IVv 2 I 2 dy) ve 

22 —e-1	in 1e2 

I v 2 I 2 dy = 1	(ye2 > 0 in f2,2, Ve2 E H(c42)) 
JcL2 

and ye2 satisfies 0 < v.2(y) < 1, 71 2(0) = 1 ! 

The behaviour of the sequence (v2) when c -, 0 will be derived from the following 

Lemma 4.2: The behaviour of the functionals F 2 and their minimizers as C —* 0 
is described as follows. 

(i) The sequence (F 2 ) epi-converges in the strong topology of H(1R") to the 
functional F0 defined by 

P0 (V)
f fffN Vv I2dy if v E K(IR") 

=c

	

1+oo	if v E H(1RI)\K(1RN) 

(ii) Let Q be the extension operator from H(0 2 ) into H0'(IR"). Then the se-
quence (Q^ Vc2)z converges in the strong topology of H 01 (RN ) to V, defined by 

V()=---J MN 

+ IyI) 

(iii) One has 

liM	
1f IIUe2IILoo(fZ) =	 RN 

VVI 2 dy = 1. 

Proof: (i) For every v E K( 1R'), we consider the solution vo of the problem 

veo(y) = —v(y)	for all y E Q 2 ,	Vo E 

We can prove that the sequence (Qvo) converges to v in the strong topology of 
H(1R'). Hence the sequence (II veoIIL 2._ (0. 2 )) converges to II V IJL2 ( J7N ) = 1. This 
implies that the sequence

veo 

	

\	\11Ve011L2*—.(c12)JJ 

converges to v in the strong topology of H0' (IR") and 

limsup F 2 (ii v 0 II • _. (fl )vCo) = urn sup lI v o	—. (fl.2) fIRN 
IVQvo 2dx 

=
 fI

Vv I 2dy = Po (v). 
RN
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Let the sequence (v) converge to v in the strong topology of H (IRN). We may assume 
that, for every e, II VEIIL 2._. (n) is equal to 1. Then 

liminfEca(Qeve) = limsuPJ VQeVeI2dy 
= JIRN 

IVvI2dy. 

(ii) From Theorem 3.3, one infers that the sequence (QeVe2)c converges in the 
strong topology of H (1W'4 ) to the minimizer V of F0 , which satisfies 0 < V(y) 1 and 
V(0) = 1, since the sequence (Qv2) converges to V uniformly on compact subsets of 
IRN . This minimizer is unique [7: Corollary 8.2] and is given by the expression indicated 
in (ii).

(iii) Let us compute

IVve2I2d	
e(2—N)/N I 

in.2
1/ = IUe2IjL(n)	/ Vu22dx. 

By Lemma 4.21(u) and (4), we have 

urn hUe2 e(2—N)/N - 1 lim	i V Q v 21 2dy =	
LN 

hVV1 2 dy = 1. 
e-0	II	 I LOO(n)	- CrC—.OJJ,IN 

This result is similar to Corollary 1 of [11] I 

Let us now end the 

Proof of Theorem 4.1: Lemma 4.21(u) has established that 

lim
JRN

IV(Q e ve a - V )I 2dy = 0. 
€—'O 

Lemma 4.2/(iii) and the change of scale, 

(2—e)/N 
Y = 1U211	(a: - x) 

associated to (8), in the preceding integral imply 

	

liM	
—e(N-2)/N 

hhUe2hIL(n)	
JIR 

IV(QtLe2 -w)h2dy = 0. 
N 

This, together with Lemma 4.2/(iii), concludes the proof I 

Remark 4.3: 1. The sequence (x) being bounded converges to some a: E S2. It 
is known from [11: Theorem 1] and [15: Theorem 41 that this a: is a critical point of 
H(x, a:). 2. Notice that from Theorem 4.1 we can recover Han's convergence results. 
3. The same arguments apply to the sequence (u 3 )€ corresponding to problem (P3).
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