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On the Uniqueness and Asymptotic Behaviour 

of Plasma Corners 

M. Kunze 

Abstract. In [2] the existence of solutions to a certain free boundary problem describing a 
plasma-vacuum interface in plane geometry was shown. This paper is a supplement to the 
investigation of R. Kaiser and D. Lortz in [2]: We shall first remark that the existence of 
such solutions (so-called plasma corners) can be proved by using a more general approach. 
Then we shall show uniqueness for small parameters, and finally we shall derive exact formulas 
describing the asymptotic behaviour of solutions at the corner. 
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1. Introduction 
The purpose of this paper is to investigate properties of solutions to the nonlinear 
integral equation 

X 2 (t) - t2 + ?i_ / k(t;s, z(t), x(s)) ds	0	(1 E [Ø • 1])	(1) 

where J > 0 is a parameter, and the kernel k is defined as 

= x in (((x - u) 2 + (s - i)2) (x + u)2 + (s - 1)2)) 

(x2 + s2)2 

+ y in 
((x+Y)2+(s_t)2) 

(x—y)2+(s—i)2	
(2) 

+2(s -	arctan	 - t)(	
x—y + arctan x+y - 2 arctan x) 
s — i	s — t	 S 

Note that equation (1) is a non-standard nonlinear integral equation, because the kernel 
k is y = x(t)-dependent in a non-trivial way. 

We shall start by giving a short outline of the physics which motivate the study of 
equation (1). Following [6] or [2] (see also [1] and [8] for additional remarks), consider 
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a two-dimensional plasma in plane (t, y)-geometry. The plasma is supposed to fill the 
domain D C JR2 and to satisfy 

Lb + J =0 

=0 

on -an 
4 ,bext

in DP 

in D 

on aDP	 (3) 

on 

as I(t,y)I -oo. 
Here D = JR2 \ D,, denotes the domain filled by vacuum, 0 = t(t, y) and = ( t, y) 
are the flux functions in D and D, respectively, and tbex t is a prescribed external field. 
Furthermore, the parameter J > 0 denotes the constant (torodial) current density, and 
JL an indicates differentiation in the direction of the exterior normal n to the boundary 
OD,, of the domain D. Now solving the free boundary problem (3) is tantamount to 
finding the functions 0 and , the parameter J > 0, and the boundary OD = 
such that equations (3) are satisfied. 

For simplification it is reasonable to choose bext of the form 
ext(t,y) = 00 + ,b 1 t + - Y 2	 (4) 

with Oo, 01 E R. We also assume that D,, is a symmetric set which satisfies (in suitably 
chosen coordinates) (0,0) E 5D, D C [0,00) x 11?, and (t, Y) E D if and only if 
(t, —y) E D, for (t, y) E [0, oo) x R. Furthermore, we suppose that the upper part of 
the boundary OD,, can be described by a continuous function x : [0, od) - [0, ). Then 
3D,, fl ([0, oo) x (-, 0)) is given by the function —x. Because we are mainly interested 
in understanding the local behaviour of the plasma in a neighbourhood of the origin, 
we restrict ourselves to considering x lEon - Therefore we have to impose the additional 
boundary conditions	 -

on(0D)i 

a	a	 (5) 
-=--	on(OD,,a)i 
an an 

where we define D,, = {(t,y) EDP : t < 1} and (3D;)1 = D,,fl({1} x JR). The following 
picture which is taken from [2: p. 1661 may serve as an illustration. 

Fig. 1. Qualitative sketch of the domain
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If we think, e.g., of cleaning the plasma, it sometimes can be useful to have a 
stagnation point (a so-called plasma corner) at the origin. Then 

	

V(0,0) =0	 (6)

has to be satisfied. To solve (3), (5), and (6), we make the ansatz 

I') } = bext(t, y) + J	G(i, s, y, 

Here
G(t,s, y, x) = __ In ((x - y)' + (s - 1)2) 

denotes the Green function for the Laplacian in .1R2 (see [2] from equation (2.10)). Since 
1	z(s) 

f G(t,s,y,z)dsdx = f ds f 
D;	 0	—z(s) 

we obtain a formula for which allows us to express 00 and 0 1 in (4) by means of 
'(0,0) = 0 and (6). Using ??'(i,x(t)) = T4'(i,x(i)) 0 fort € [0, 1), we finally arrive 

at the nonlinear integral equation (1) for the continuous function x : [0, 1] —* [0, no) 
describing the upper part of the plasma's boundary cut off at t = 1 (see Figure 1). 
Therefore the free boundary problem was reduced to determining x. 

Now we turn to the description of the contents of this paper. When investigating 
(classical) free boundary problems, results on the uniqueness of solutions in the case 
of a small parameter were obtained, too (see [7], [9], and many other papers). Since 
x(i) = I (I € [0, 1]) is the only continuous non-negative solution of equation (1) for 
J = 0, and since the solutions of equation (1) are to be interpreted as describing the free 
boundary, it is therefore natural to ask whether or not such results on the uniqueness 
of solutions also hold for equation (1). In Section 2 we will show that this question 
may be answered positively in that there is one and only one continuous non-negative 
solution of equation (1) for parameters J > 0 sufficiently small. Next, in Section 3 we 
shall derive exact formulas describing the asymptotic behaviour of solutions x = x(t) 
of equation (1) as I — 0+ . In particular, these formulas will prove that these solutions 
form an angle of 7r/4 with the t-axis. Therefore one can speak of a plasma corner. 

To avoid technicalities, we added an Appendix where all properties of the kernel k 
are collected which were used in Sections 2 and 3. 

Before turning to the main topics of this paper, let us note that a proof for the 
existence of solutions to equation (1) being more elegant than the one given in [2] can be 
obtained by using a general theorem on the existence of zeros of so-called semicondensing 
maps (cf. [5]). Generally speaking, this theorem may be applied when dealing with 
nonlinear integral equations of the type 

(t, x(t)) + 
/ 

10 (t, s, x(t), s)) ds = 0	(1 € [0, 1]) 

in case that the equation shows a certain monotonicity in y = x(t) (note that Op /c > 0 
in (1), cf. Lemma A.1 in the Appendix) and a certain compactness in x = x(s).
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2. On the uniqueness of solutions 

Let us define the sets of continuous functions 

C([0 1 1]) = {X e C([0, 1]) 1 x(t) 2 0 for all t E [0, i]} 

and, for C € (0, 1], 

	

C ( [0 , 1]) = {x E C([0, 1]) (i	x(t) 5 t for all i E [0, i]}. 

Then, by [2], there is a number J1 > 0 such that equation (1) has a solution x € 
C([0, 1]) whenever J € [0, J1 ]. We are going to show the following 

Theorem 2.1: There is a number J > 0 such that for all parameters J E [0, L) 
there exists a unique solution of equation (1) in C([0, 1]). 

The proof of that theorem will be divided into several lemmas. 

Lemma 2.2: Let x E C+([0 , 1]) be a solution of equation (1) for some parameter 
J 2 0. Then the following statements are true: 

a) x € C0([0,1]).

r	 \ 
b) (t2 —x2(t)) 

(I + 
 

j

	

	i(s) ds 

J i+2(s)) 

= J.  

	

81r ( j IR t )
 t22 

dC	
1:401 0 + I dIds(1 - 

s)2oI,(t),)) 

for t E (0, 11, where (r) = for r€ (0, 1] 

C) x € C([0, 11) if J	Jo, where Jo = Jo(() > 0 is a number existing for every 
(€(0,1). 

Proof: a) For fixed t the function 

 (t , Y) = y2 t 2 +	
/ 

k(t,s,y,x(s)) ds	(y € [0, oo)) 

is differentiable with oWx(t,y) 2 2y (see Lemma A.1 of the Appendix). Furthermore, 
Lemma A.3/c) of the Appendix and the fact that x is a solution of equation (1) yield 
Wx(t,t) 2 0 a well as I1x (t,x(t)) = 0 on [0, 11, and therefore the claim. 

b) Using statement a) we see that x € C0 ([0, 1]), hence 0 <i(r ) ( 1 for r € (0, 11. 
Let t € (0, 11 be fixed. Lemma A.3/i) of the Appendix shows that both integrals on



On the Uniqueness of Plasma Corners	633, 

the right-hand side of the claimed equality do exist. By means of Lemma A.3/b) and 
Lemma A.2/e) of the Appendix we obtain 

0 = x 2 (t) - t 2 + L J k(t, s, x(t), x(s)) ds 4ir
0

'00 

	

= x 2 (t) - j2 +	t 2 (1	+ 4ir
1 

co 

	

X2(t) - t 2 +	j2 I d1 
••
4ir J

C3 
(i G) , i 

(t 

J /	\ + —t2J	 (i/)	2 2(1_2(t)) 
i+ 2 (t/)) 47r	C3

+e ]ds(1 -S)2&43C^ I 
(i	

S')

00 

(x2(t) - t2) 
(1 

±	
d (t/e)	+ --i t2  f	( ..) =	

f1+2(t/)) 

1	1 

+ 
J
—t2 Jde Jds(i -S)2&C3C'j(.i ( t ) :i 

(01 S^ 8ir
i	0 

Using the transformation .s = and 41 = - in the first integral completes the proof 
of statement b). 

c) Fix ( E (0, 1) and let Ci denote the constant from Lemma A.3/i) of the Appendix. 
We define Jo(() 

= 
If x E C+ Q0, 1]) is a solution of equation (1) corresponding to 

the parameter J < Jo, then part a) implies x(0) = 0 and (r) E [0 1 1] on (0, 11. Hence 
statement b) and Lemma A.3/i) of the Appendix yield 

/	1
\ 

0 < t2 - z 2 (t) < (t 2 - x2(t))	
i(s) ds 

(i t 27r 11+ 2 (s) 7) 
00 

2 d 1( /t\ = —t J	i(t)) 

	

1	1 

-–t  f d J ds (1 - s)2OI(1 () , i ( t ), Sc). 87r
t	0 

<2C1 Jt2	. 

for tE (0, 11. Consequently, x2(t)>(1-2C1J)t2 > ( 2 t2 , and therefore  E C([O,1]) 0
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The next preparatory lemma already contains some information about the asymp-
totic behaviour of solutions for t	O. 

Lemma 2.3: There is a constant C > 0 such that 

	

(t2 - x2 (t)) (1— In t)	C-	(t E (0,11) 

for all ( E (0, 11 and solutions x E Cc([0, 1]) of equation (1) corresponding to some 
parametcr J > 0. 

Proof: Let again C1 denote the constant from Lemma A.3/i) of the Appendix and 
let C = 1 +8irCi . If x is a solution of equation (1) for J = 0, then the claimed estimate 
is obvious. In the case J > 0 we obtain 

(1
I

2 - x2 ( t )) (—In t)	(t2 - x2(t))	ds 
 - 

1  

(t 2 - x2(t))	
i(s) 1 1+ 2(s) s 

<-__(i	x (t)) (
	J f i(s) ds 

(J	
\ 2_ 2	

l+2(s)s) — 

47r	
8irC1 - y < 2Ci	

( 

for I E (0, 11, by the estimate (7). Furthermore, (t2 - x2 (t)) < (1 - (2)t2 <	because 
of z(t) 2 ( on [0, 1]. Adding these two estimates completes the proof of the lemma U 

To show uniqueness, we need to compare solutions of equation (1). This will be 
done in the next 

Lemma 2.4: There is a constant C > 0 such that for all solutions x,y E C1 ([0, 1]) 
of equation (1) corresponding to the same parameter J 2 0 

1 ds 
CJ ( 0 (t) + 1— In  

i	 I 

1	 t	
ds	

Ids ln(1 —s)	t s	I — 

	

+ .JL.o(s)h&).	_J .9 

holds on (0, 1]. Here we let i. 0 (t) = I 2 (t) 2 (t)l fort € (0,1] and h()	+I ln(1—e)21 
for CE [0,00)\{1}. 

Proof: Let x,y e C1 ([0, 1]) be as in the lemma. Note that 

Lo(T) 2 I(r) - (r)I	 (8)
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because of 1(r), (r) > 1 on (0, 1). Furthermore, for s E (0, 11 we obtain the estimate 

i(s)	v(s)	- I1(s)(1 + 92(s)) - (s)(1 + 12(s)) I 
1+1 2 (s)	1 +ü2 (s )	(1 +12 (s))(1 ±2(s)) 

	

(1 - 1(s)(s)) P(S) -	 (9)


< I(s) - 
:5 so(s) 

and Lemma 2.3 implies the existence of a constant C > 0, independent of x, y and J, 
such that

(1 - 1 2 (t)) <	
C
	 (t E (0,11).	 (10) 

1 -mi 

For C > 1 we have I( - ,-, C) E C'([0,1] 2 ) by Lemma A.2 of the Appendix. Hence, 
applying Lemma A.3/d) and e) of the Appendix it follows that, for all I E (0, 11 and 

> 1,

I(1(),1(t),) _I(),t), 

C(I()g(' ) (11) 

C (Ao(t) h2(C) + Lo(t) h3()) 

holds with a constant C > 0 independent of x, y, and J, and h2 (9) 9 + I ln(1 - 9)2 

on [0,00) \ {1}, hence (9 -	e Li([1,00)). Analogously, for I E (0, 11, s E [0, 11,

and eEfo,1)wehave 

8&4 1 (i (i:) ,1(t),	
-	

i@(:) , (t), g)

1 

15C Gi ( 0 -G) + Igo _(t)I) (1 
sC)3

(12) 

•1 
C (A0 ( -t ) + A0 (t)) (1— 

se)3 

by Lemma A.3/g) and h) (cf. Lemma A.2/d)) of the Appendix, for some constant 
C > 0, again independent of x, y, and J. By means of Lemma 2.2/b), (10), (9), (11),
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and (12) we obtain

/	I 

< ((i -	- (1— 2(j)) (1 +	
J

p(s) ds 
+	

\ 
I	2ir	12(s)s) 

< --(i_(t)) 
rI i(s)	i(s)	I ds 

- 27r	I i+ 2 (s) - 1+2(s) S 

/ 

1	
I 

I	
JJ 

±(s) ds'\ 
(+—	()) 2ir	1+x 2 

/	 1 p(s) ds 

7

I 2()) (i+j
1+2(s)s) 

CJ	1 
 —lntJ 

1 
f d

(g G  - 

+
I 

Id - s)2	I(()i(t)se)	
) 

(— 'mt
 ^ A^ (s) ds 

+ 

f dl (A. () h 2() + Lo(i)h3(e)) 

+ f
 
d J ds(1 - s)2 (o ( t ) + 0 (t)) (1— s3) 

whenever t E (D,1. Now

=C<oo 
Li([I,00)) 

and

S)2	7r2

(t E [0,1]),
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hence
ds 

A0( t )	 + 1 —1lnt ]o(s) 

00	 1
(13) 

+fio () h2(e)+J dJ ds ((11	
;3Eo (i)) 

for all t E (0, 11 with a constant C > 0 independent of x, y, and J. Substituting s = 
and = -	yields 

Jo () 
h2() = Io h2 () sds,	 (14) 

and we have

1	1	 1	1 

Jdefds Lo() <JdJds1 
1 

- (1—s)3
	A,,(') 

°	 t	0	 (15) 

= _f ln(1e)zo (i). 

The claim follows from (13), (14), and (15) I 

Now we are ready to carry out the 

Proof of Theorem 2.1: Let J0 () be chosen in accordance with Lemma 2.2/c), 
let C denote the constant from Lemma 2.4, recall that J1 > 0 was a constant such 
that equation (1) has a solution in C([0, 1]) for all parameters J e [0, J1 ], and let 

= 1 + IIL (I' )) + 7r2 /6 > 1 with the function h from Lemma 2.4. We define 
J. min{Ji,Jo () ,(2C7)'}. Now let the parameter J E [0, J.) be fixed and 8 = 
2CyJ < 1. Note that (because of J < J. < J1 ) we already know that a solution 
x E C+([0, 1]) does exist, and we only have to prove its uniqueness. For let y E C+([0, 1]) 
be another solution of equation (1) corresponding to the parameter J < J S Jo (b). 
Lemma 2.2/c) yields x, y E C1 ([0, 1]). Retaining the notations of Lemma 2.4, we obtain 

= 2Lo(t)	2(1 CJ)L0(t)

ds 
15 2CJ (1 — 1 mt	 (16) 

1	 ( t	 ds
	fln(1 + J o(s)h	 s)Ao 

(;) )5) *	 S 
0	 1
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fort E(0,1J because of CJ< C <1 We define 2Cy - 2 

M= I E C( [0 , 1 1) : 0 A(t) 1 for ailtE [o,ij} 

and T: M -p C([0,l])by

1	ds 
2CJ (_  -mt 

(T)(t)= 

1 

1	
0


2C'yJz(0)

	

t ds	 t 
I — ln(i — s) 

	

J S	 (5,

)

for i E (0, 11 

for t = 0. 

Then M C C([0, 1J) is closed and therefore complete. Furthermore, Lemma A.4/a), c) 
and e) of the Appendix tell us that T is well-defined, in that TA E C([0, 1]) for Lt E M. 
Since h() ^! 0 o [O,00) \ {1} as well as —ln(1 - s) > 0 on [0, 1), T is positive, i.e. 
(Tt)(t) (T _)(t) on [0,1] whenever i.,A e M are such that L(t) A(t) on [0, 1]. 
Recalling the definition of -y, Lemma A.4/b), d) andf) of the Appendix imply 

TL - Thl< 2C7JIL - Al =	- Al	 (17) 

for A,A E M, hence in particular JAI < O l IN < 0 < 1 for i. E M, and therefore 
TM C M. Using the Banach fixed-point theorem and (17), we obtain the unique 
fixed-point A. = 0 of T in M and the convergence T' -i A. = 0 as n - co in 
C([0, 1]) for every L E M. Now, by Lemma 2.3, limj_.o 2 (t) = lim t _..o+ p2 (t) = 1. 
Therefore L 0 = - 11 (0, 1] - [0, oo) can be assumed to be continuous on [0, 1]. 
Since 2 (t), 2 (t) e [0,1] on (0, 1], we have i0(t) E [0,11 on [0, 1], hence Ao E M. 
Consequentl, 

0 < i 0 (t) <(Tio)(t) <(T2 L)(t)< .. ;< (T'.o)(t) .- A(t) = 0 

as n— 00 forte (0,1] by (16). This implies Lo(t)	0on (0, 11, hence x(t) = y(t) on

[0, 11 by, the estimate (8). The proof of Theorem 2.1 is therefore complete. 

3. On the asymptotic behaviour of solutions 

The following theorem investigates the asymptotic behaviour of solutions as t 0+ . In 
particular, we obtain the result that solutions of equation (1) form an' angle of 7r/4 with 
the t-axis. 

Theorem 3.1: Let ( E (0,1) and. let x E C([0, 1]) be a solution of equation (1) 
corresponding to some parameter J > 0. Then the following formulas hold. 

a) lirn:(1_	
) (1	

(S) . ds 2	 ) = ir.
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b)	- 4(r)	
81nr' 

Here (r, (r)) are the polar coordinates of x in (t, x)-geometry, i.e. r(t, x) = v" + x2 
as well as 4I)(t, x) = arctan-, and 1(r) g(r) if and only if	- i	r - 0+. 

Proof: a) Let ( E (0, 1) and a solution x E CC ([0, 1]) of equation (1) for some 
parameter J > 0 be given. Then

x(t) 
urn -= urn i(t) 1	 (18) 

t—.o+ t	g__.o+ 

by Lemma 2.3. Therefore i = x/id : (0, 11 - [(, 11 in fact is continuous in t = 0 with 
i(0) = 1. To prove statement a), it is enough to show 

urn (( 1
i(s) ds\	3
i2(t))J

	

+ i2 (s) S) = 4	
(19) 

because of
1•	 1 

J

x(s)	
ds =
	

i(s)	ds	
(t E (0, 1]).	 (20)


	

+ x 2 (s)	1 + i2 (s)
2  
t	 i 

For a fixed > 1 we have I(., -, ) e C([0, 1]2) (see Lemma A.2 of the Appendix). This 
yields

I (i (0, -i(t),J(1,1,) 

and the dominated convergence theorem together with Lemma A.3/i) and j) of the 
Appendix implies

co	 00


lim 

	

t—.o+J 3 (i G) ,t) , ) = f	t(1,1,) = 7r+1n2.	(21) 
I	 1 

Analogously,
-	1	1 

lirn fd.Jds(1 _5)2oI((),±(t),S) 
t—o+ J 

1	0 

	

1	1	 S	 (22) 
= / de/ ds( 1 —s) 2 OI(1,1,SC)	 S 

=7r - 21n2
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by Lemma A.3/i) and k) of the Appendix. Finally, Lemma 2.2/b), (18), (21), and (22) 
show

lim (1	 t i(s) ds\ 

( - 

2(t))j + 2(s) 7). 
27r urn

1+ ((1 - 2(i))	J ( i(s) ds 
( 

	

- J t-o+	 1 1± 2(s) ) - (1— 

2ir f J --1 — ( it +1n2)+ — (J
it - 21n2)) 

J\4ir	 8ir 
3 

= —it 4 
and that is (19). 

b) At first, using (20), Lemma A.4/a) of the Appendix and (18) we obtain 

1 ________	i(s) 
- in t2 + x2(t) fs2 

+ X2(S) 

-	I i(s)	

\)	
+ 

/	1+ln/1+2(t) \
In t (i 

	

-	+2(s) S	_lnt_lny1+2(t)) 
1 St-0±. 

Furthermore, from the mean-value theorem and (18) it follows that 

1—(t) 

arctan 1 - arctan (t) - 2 as t —+ 0 +. 
Therefore statement a), (23), and (24) imply 

7r/4 - 1(r) - (ir/4 — (r))( _ lnr) 
(37r)/(81nr 1 ) -	( 37r)/8 

(1— (t)) (j 3(3)ds) 

-	 (3ir)/8 
(arctan 1 - arctan 1(t)) (- in s,/t2 + X 2 _(t  

/1 

(1 - 1(i)) (	s2+z2() ds) 

—+1 ast-0+, 
so the proof is complete I 

According to [ 3], such an asymptotic behaviour in polar coordinates was to be 
expected. Finally we want to remark that this behaviour for t 0+ in particular is 
independent of the parameter J > 0 in equation (1), and that the plasma corner may 
be seen only on a logarithmic scale by Theorem 3.1/b).

(23) 

(24)
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Appendix 
In this appendix we shall first collect some essential properties of the kernel k in (2) 
and its transformed version I, see Lemma A.2. Afterwards we shall give another result 
of mainly technical nature which was used in the main part of this paper. For a de-
tailed proof of all these formulas and estimates, the interested reader is referred to the 
Appendix of [4]. 

Lemma A.1: Let Dk = { (t,s,y,x) E [0 , 1) 2 x [0, 00)'	s > 0 and s 0 t} and 
k : Dk - 1R be defined as in (2). Then for (t,s,y,x) E Dk 

f(x + y)2 + (s - t)2\ >0. ôk(t,s,y,x) = In jx - y)2 + (s - t)2 ) - 

Lemma A.2: Let Di = { ( j,t9,) E [0, 00)' :	1) and I: Di - R defined by 

I(i,	= ii in (
	

+ 9)2 + (1 - e) 2 ) ( (17 - 9)2 + (1 - 
(1 + 172)2 

((,i + t9)2 +(1_)2\ 
+ i9 In	- .3)2 + (1 - )2) 

+ 2(1 - ) (arctan 17 +e	 -	
). 

+arctan	—2arctan77 

Then the following statements are true. 

a) If ( ,7,,0) E 
[0, 00)2, then I(7,i9,0) = 0, and if e 0 1, then 

I(1,1,e) = (1 +)in(1+2)+(1in(1 e)2 

+2(1_)(arctan1	
_ \ .). 

b) If (77,i9,e) ED 1 , then

((q + 9)2 + (1 - 
= In	- 9)2 + (1— )2)17

-2 (arctan T1te; + arctan -
	- 2arctan?7) 

hence in particular c9I(i,i9,0) = 0 for ( 77, t9) E 
[0, 00)2. 

c) If (17,19,) EDi , then

(1 - (1 + t92))2 + 772 - (1 + 172)792 
= —47) ( 7)2 - 2,32)2 + (1 - ) 4 + 2(1 - )2(7)2 + e2192)' 

in particular 92" 
ôI(7),0,0) F —47 i +172)
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for (7,19) E [0 , ) 2 , and

(i—)(i+e2) 

for e5 1. 

d) If (7,'9,e) ED1 , then 

Ot3tj(77, t9, = 877 
(( ,72 - 262)2 + (1 - )4 +2(1 - e) 2 ( 2 + 

22)) 

( (1 - (1 + 192)) ((1 - e)2 + 22) 

x ((92 - 1)((1 -	
+ ( - 22)) + 4t92(1_ )) 

+ (1 —(1 +92))((i _)2	_2j92)),i2(1 +t92) 

+ (17 2 — (1 + 772)i92) 

x (_2(1 - (1 - )) (( - )2 + (2 - 

—4(2e - 1)2(l - 
C)) ) - 

e) If (7,19) E [0 ,00 ) 2 , and if E [0, 1), then by the Taylor formula 

\ 

= —2(1 9) ( 
17 

1 + 2) 2 +	J(j - s )2ô e I( r7, i9, ) ds. 
0 

Lemma A.3: The following statements are true. 

a) If (t,s,y,x) E Dk with t >0, then 

s k(t, s, y, x) = I(x/s, y/t, t/s).

z b) If y, x E C([0, 1)), then with (r) =	and (r) = -,( r--) for r E (0, 11, we have 

Jk(t,s,y(t), x(s)) ds = t2
1 7 , (

 
() 

, (t),	(t E (0,1]). 

c) For (t,s,x) € [0,1] with s >0 and s 0 t we have k(t,s,t,x) ^! 0. 
d) Let h2 : [0, oo) \ {1} — . f0, oo) be defined by h 2 (.)	+ I ln(1 - ) 2 I. Then there 

is a constant C > 0 such that 1,9,, 1(,7 , 9,	Ch2() for all (,, t9 , ) € [0 , 1) 2 x (1, oo). 

e) There is ajunction h 3 : [1,) - [0,00) such that ( ,+	) € Li([1,c,o)) and 
:!^ h 3 () for (?7,t9,) € [0 , 1) 2 x (1, 00).
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f) There is a constant C > 0 such that aI(tj,t9,e)I 5	C holds for (q, V) E 
[0, 1)2 and E [0, 1). 

g) There is a constant C > 0 such that ô 9 I(?7 ,9,e)I C	holds for (77, V) E 
[,1]2 andE [0, 1). 

h) There is a constant C > 0 such that Iô sI(ii,t9,)I	(1—)3 holds for (Y7, V) E 
(1, 11 2
i., 1) and E [0, 1). 

i) There is a constant C > 0 such that 

1 td. 
;J	I(((t)	<C 

and

	

1	1 

I
d Ids(1 -s)2	 < c


8lr 
  

hold for all t E (0, 11 and x, y E C([0, 1]) with (r) =L(r--) E [0,1) and (r) = 
[0,1] for r E (0, 1]. 

j) fI(1,1,e)=ir+1n2. 

k) fdefds(1—s)2OI(1,1,$)=ir-21n2. 

	

Lemma A.4: Let	E C([0,1]) and h() = +I 1n( 1— )2 I fore E [0,00)\{1}. 
Then the following statements are true. 

/	1 
a) 1im...o+ I i—In(t) f (s) 4 1 = I 

/	1 
b) sup j E Io l ] ( i_I(t) f Is(s) - (s)I)	— Al 

/	t 
C) lim t _o+ (t_2 fA(s)h (fl sds) =

h I	
oo))	

(0) 
'0 
/	t 

d) supE(o,1] (j_2 f	(s) - (s ) I h () s ds)	ILj((i,00))	- '0 
/	I 

e) limj ....o+ I — f	ln(1 — s)i (—t) 

/	1 

f) suptE [0 11 I-f 4 ln(i - s) I A (fl — A () ^ ck 
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