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Abstract. The paper investigates a linear and a nonlinear operator problem for the identi-
fication of two parameter functions occurring in the Albedo operator in a special model of 
computerized tomography. It is shown that the linear inverse operator problem turns out to 
be well-posed, whereas the nonlinear problem under consideration becomes ill-posed. 
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1. Introduction 
The operator problem that will be considered in this paper describes mathematically a 
special problem in computerized tomography using backscattered photons. In contrast 
to the classical tomography (see [9, 11, 12]) using X-rays the idea here is to irradiate an 
object by light in the near infra-red region, using a laser for instance. Simultaneously, a 
detector on the surface of the considered object measures the intensity of the stream of 
reflected photons leaving the medium. For further details of the physical and medical 
background of this form of computerized tomography we refer to [3, 131. In our inves-
tigations we will concentrate on the once-scattered photons model that was deduced 
and investigated in [5]. The geometric correlations in the model are shown in the figure 
below.
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Under some supplementary reducing assumptions of physical nature (let the irradi-
ation be S-like and monochromatic and let the scattering be isotropic) we can describe 
the modeling process as follows: 

The photons are irradiated under a fixed angle y with a fixed intensity 'E at an 
emiter point E on the surface F. Some of these photons can be absorbed along the 
straight lines K' and K M . After an act of scattering in the point P E Q the stream 
of photons leaves the object and an intensity ID of this stream at the point D E F can 
be measured. 

The operator .4 in the following model that is called Albedo operator and that is 
dependent on the parameter functions o (parameter of scattering) and 07' (parameter 
of absorption) describes the interrelation between the conditions of irradiation (intensity 
of irradiation IE, angle of irradiation y) on the one hand and the measurable intensity 
ID on the other hand. Now, we can formulate our mathematical problem: 

(A(rY3 , CT) IE )(P) = ID (P)	(FE cI)	 (1.1) 

where the operator
A(o,oT) :	-+ L2 (f,z 2 )	 ( 1.2) 

is given by

exp (-
I	
UT(P')dS)	

(13) 
(A(U3,UT)IE)(P) = IE(P)1fl14.(2)	

\	K(P) 

o, E L2 l), UT E W(1) 

(I PD I = dist (P, D) being the distance between P and D), and where 

= {P(x,z) E JR2: (X, Z) E [0, L] x(O,ZJ} 

F={P(x,O)E1i2: xe[O,Lj}	 (1.4) 

fi = f2 u r. 

Owing to the practical background of the model (1.1)- (1.3) we will restrict the domains 
of U3 E L 2 (l), UT E W2 (Q) and IE E L <,(Q) to the sets 

Do = {fEwf(X+kLZ) (P(x,z)E,kE±W) 

	

f(P) 20 a.e. in , f(x,z)=	

} 

D 1 = { f E L2() 1(P) > 0 a.e. in ci} 

D2 { f E L(1)1 f(P) 2 c> 0 a.e. in 

that means U3 E D 1 , UT E D0 and IE E D2.
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Remark 1.1. (i) The requirements for the functions a3 and JE in D 1 and D2, 
respectively, are determined by their physical meaning, whereas the assumption that 
a' is in W' (Q) is founded by the mathematical technique in proofs essentially based 
on the Sobolev embedding theorem (Lemma 1.1). 

(ii) Although we consider the model (1.1) - (1.4) in the rectangular domain ci the 
functions a' belonging to D0 are defined as functions periodic referring to z. Such 
an assumption guarantees the existence of all function values aT(Q) along each of the 
possible curves K(P), P E Q. Therefore the model (1.1) - (1.4) is well-determined for 
all points P E Q. 

(iii) We have chosen for the sake of simplicity a rectangular domain. Hence, the 
geometric description of the investigated problem (especially of the curves K(P)) is 
possible in a simple way. 

(iv) If we move the emiter E along the surface I', then the intensity of irradiation 
IE can be a function of the location in most general case. This possibility is described 
by the dependency IE(P). In many interesting cases IE(P) will be a constant. 

In the form of representation of the operator A by A(c,, aT) we will suggest that a5 
and ai' are interpreted as parameter functions. By E ( X E, O ) € .1R2 and D ( X D,O) E JR2 
we describe in the model (1.1) - (1.4) two points on the boundary r, which are uniquely 
defined only by the point P(x, z) E ci and the a- priori chosen fixed angle y € (0, ) in 
the following manner: 

X E XbZ	and	XD=x+bz	(b=tan7). 

Therefore, it holds 

IPDI = ((x - XD )2 + z2)1/2 = z(1 + tan 2 y) 1/2 = 1 Z.	(1.5)
Cos -/ 

Using this we can transform the operator (1.3) into the form 

(A(a3,aT)IE)(P)=IE(P) exp 
a3(P)	

(_JK(P)aT')ds).	
(1.3k)
8irz sin 

Furthermore we define by

K(P) = K(1) (P) U K(2) (P)	 (1.6)


the union of the curves 

KW(P) = {Q(xw,zw) € nj P) .= x + b(z( ' ) - z), € [0,z]} 

K2(P) = {Q(x(2),z(2)) E fi l X (2) x - b(z 2 - z), [0,z}}

where P = P(x,z) and b = tan -t . We consider the separable Hilbert space L2(ci,z2) 
with the scalar product 

(f,g)L2(o,z2) = i
n

z2 f(P)g(P)dci	(f, g E L2(ci,z2)). 
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The symbol L2 (9, z 2 ) denotes the space of quadratically integrable functions f = f(P) 
using the integral weighted by z2 , that means 

L2 (12,z 2 ) = I f E L2(	in z2 If(P) 1 2d11 < +00, P = P(xz)}. 

The problem (1.1) - (1.4) is well-defined under the above assumptions. To prove this, 
we have at first to show the existence of the curve integral fK(P) cYT(P') ds in (1.3).. 

Lemma 1.1. A function OrT € W(f) is equivalent to a function &T E L2(QH), 
where QH is the interjection of fZ E JR2 with a one-dimensional hyperplane H E JR2. It 
holds

Ik'TIIL2(H) < CIIo7'IIwi() 

where C < 00 $3 a constant independent of 07'. 

Proof. Because of the special form of Q E JR2 in (1.4) our domain is star-shaped 
with regard to any point P € Q. Then the statement is an immediate conclusion of a 
well-known embedding theorem (see [1: p. 144]) I 

The embedding operator £ : W(l) - L2 (cl ff ) is completely continuous. Due 
to Lemma 1.1 by setting clH = K(P) the existence and finiteness of the curve integral 
JK(P) cTT(P') ds is shown for an arbitrary curve K(P) corresponding (1.6). 

Another problem consists in the choise of the image space L2 (, z2 ) for the Albedo 
operator A. In the following investigations we denote by R(2) C Hz the range of an 
operator I mapping between two Hilbert spaces H1 and H2 and by.R(I, B) C H2 the 
range of I under consideration of a restricted domain B C H1. 

Lemma 1.2. For the range R(A) of the Albedo operator A in problem (1.1)— (1.4) 
the inclusion R(A) C L2 (, z 2 ) holds. 

Proof. Because of the equivalence of the forms (1.3) and (1.3*) we investigate the 
integral

2 

fIn	8lrzsln7 	(— I 	aT(
K(P)

) exp .Z2
IE(P o,(P) 

	Pt)ds) dQ 

1 

	

ji,I(8sin7)2	 1E a 9 (P)exp (_ J T(aP')dsd. 
k	 K(P) 

In view of the inclusion 07' € D0 , it is possible to estimate the term 

2 
exp(_f aT(P')ds 

\	K(P) 

in the following way: 

o < exp (7- 1 CT( PI)ds) = exp (_2J	UT(P')dS) :51.	(1.7) 
K(P)	 K(P)
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Using this estimate and the Holder inequality we can continue our estimation as 

1	 J IE( P )a3( P ) exP(_I
K
 UT(P1)dS)d 

(87r sin 7)2 fl	 (P) 
1 

- (87r sin 7)2 l IE IIL,o1) llJlIL2(fl) 

where ll IElloo = ess SUppE(lIE(P)l. Therefore 

II IDIIL2(0,z 2 ) = II A( (78, 0T)IEllL2(fl,	
1 <	 Il 2 )	 llIEllL(t1)	sllL2(fl) - 87r sin 

and the statement is proven U 

Our aim in this work is not immediately the detailed examination of the problem 
(1.1) - (1.4) but the exposition of some peculiarities in the reconstruction problems 
for the parameter functions o, and 07' in the model (1.1) - (1.4) from well-known or 
measured values of IE, 7 and ID. Consequently we deal with two inverse problems. For 
the general definition of an inverse problem see, for example, [6, 8, 9, 14]. 

Problem (P1). Given a function lD E R(Fi ,D i ), find a function a 3 ED1 C L2 (f2) 
such that the linear equation 

(F1(T,IE,7)0s)(P) = ID(P) (P E ),	.T1 : D1 - L2 (cl,z2 )	( 1.8) 

with
(771 ( UT, 'E, 7)o,)(P) = 91 (P) a, (P) 

and

91(P)=IE(P)
1	exp(_J	CT(P')ds 

8irz sin y	\	K(P) 

is satisfied, where 0 T E D0 , JE E D2 and 7 E (0, ) are known. 

Problem (P2). Given a function ID E R(F2 , D0 ), find a function a' E D0 C 
W() such that the nonlinear equation 

(,F2( 0 s, IE,7)aT)(P) = ID( P) (P E cl),	.F2 : D0 -  L2(11, Z2)	(1.9) 

with

(12(s,IE,7)T)(P) = 92 (P) exp (-j	aT(P')ds 

	

\	K(P) 

and
92 (P) = IE(P)

87rz Slfl 7 

is satisfied, where o E D 1 , JE E D2 and 7 E (0, fl are known.
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2. The well-posedness of problem (P1) 

The aim of this section is the investigation of essential properties of the operator problem 
(P1). In the following the principal objective will be the proof of the following assertion: 

The problem (P1) with the linear operator F : D 1 C L2 (Q) -' R(.F1 ,D 1 ) C L2 (cl, z2 ) is well-posed in the sense of Hadamard's definition. 

To show this assertion wc have at first to prove the uniqueness of the solution of 
problem (P1) for any given right-hand side function ID E R( 1 , D1). 

Lemma 2.1. If cITe D0 C W21 (Q) is a given function, then there exists a constant 
M(a) > 0 such that

M(cIT) 91 (P)	for all P E ci 

where y C (0, f) and 'E C D2 are fixed. 

Proof. Let P e ci be an arbitrary, but fixed point. Then we know from Lemma 
1.1 that UT e D0 C W2 (Q) is equivalent to a non-negative function 07' E L2(K(P)). 
Using the Holder inequality it further holds 

JK(P) CiT(P')dS 
= J K(P) 

(JK(P-)
\1/2 

< 
	 J 
IUT(P')12ds	(measK(P))V2 

Due to Lemma 1.1 and the property measK(P) measci =: M1 < +00 we can 
conclude that

f
CYT(P') dS M 2 CII cIT IIwi (fl) <+00. K(P) 

Therfore it. holds 

exp (_j	aT(P1 )ds) exp (M2I cITIIw;)) M(CT) 
\ K(P) 

for any point P E ci with M2 := M1112 C. Owing to the requirements in the lemma it is 
easy to see that

IE(P)	c•
	M3 > 0 8ir sin 'y	87rs1n7 

and finally
gi(P) > exp (M2 II0`T II W I (0) )M3z' = M(aT)z > 0 

holds I
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Theorem 2.1. For given functions op E D 0 , IE E D2 and angle 7 E (0, ) problem 
(P1) is uniquely solvable for any data function ID E R(F1 , D1). 

Proof. We consider two functions 4 ) e R(11 ,D 1 ) and 1(2) E R(F1 ,D 1 ) with the 
property 'D

(1) 
(P) = 'D(2) (F) a.e. in Q, where 

JW(p) = gi(P)aW(F) D	 (Pefl). 
'b2 () = gi(F)a2(P) 

Therefore we can conclude 
= g'() - (.2)(p) = gi(P) .(i)(p) - 

a.e. in 91. Because of Lemma 2.1 it holds g 1 (P) > 0 a.e. in Q and o(P) = o2)(P) 
a.e.inl I 

After the proof for the injectivity of the operator i we now turn to the investigation 
of the continuity of the inverse operator 1. That means, we have to make a statement 
on the kind of dependence of the solution 0 3 E D 1 from small uncertainties in ID E 
R(F1 , D 1 ) arising, for instance, from errors of measurements. This property will be 
described in the next theorem. 

Theorem 2.2. Under the assumptions of Theorem 2.1, there exists a constant 
M < +, independent of ID, such that

<M

	

L	ID L2(fl,z2) 
holds, where

	

Ig)(p) = (F1)(P)	
(P ET). 

jg)(p) = (.Fio2)(P) 

Proof. Due to the assumptions in Theorem 2.1 and the validity of Lemma 2.1 we 
can easily determine the inverse operator 17 1. Applying this, the difference of solutions 

(1)	(2) 
0 3 (P) - c,, (F) can be written in the form 

	

(P) - o 2 (P) = (j(Ig._ I)) (P) = ii 1
(P) (,(1

)
(P) - ig (P)).	(2.1) 

Using this we investigate the norm	- 2)IIL(fl): 

- (2) 2	

= J a( i )(p) - a(2)(p)2 dfz 
L 2 (tl)	ç

1	12* 2 

9i J (P) Ig(P)—I(P) 
(2  

Taking iv) , I E D2 and the boundness of the inverse operator .F (see Lemma 2.1) 
into account we obtain 

- 
(2)M2	

(M(T))2 L z2 j(i) (p) - 
ID (P)r dcl 

=M2 j(i)j(2) 2 
L2(tl,z2) 

and the statement is proven 0
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If we summerize the results of the Theorems 2.1 and 2.2, then we can conclude the 
following: 

The problem (P1) for the identification of the function a, E D 1 C L2(Q) from the 
given function ID € R(.T1 ,D 1 ) C L2 (fZ,z2 ), where CT € Do, IE E D2 and -y € (01 f) 
are known, is a well-posed problem. For any function ID € R(11 , D 1 ) there exists an 
unique solution a, € D 1 and this solution continuously depends on small perturbations 
in the data function ID € R(.F1). 

3. The ill-posedness of problem (P2 
From a general point of view the inverse problem of identification of aT € D0 seems 
to involve large difficulties because of the necessary "differentiation" of the integral 
operator. The following investigations show the correctness of this hypothesis. Hence 
we will investigate in this section properties of the operator 12 in the problem (1.9) 
which can create instabilities in the solution of the inverse problem for identification of 
the function a' E D0 . Before we can devote to the main property we have to formulate 
some statements being essential in the following. 

Lemma 3.1. For all functions 4	Do C W21 (Qand a € Do C W(l) the

estimate

exp (-J 41) (PI )ds) —exp (J 42)(P)ds) 
K(P)	 K(P)	

(3.1) 

< 
JK(P) (4')(P')_4(P'))ds	(PE1l) 

holds. 

Proof. Setting 

	

• m(P)= min {f	a(P')ds, JK(P) a?)(P')dsK(P)  

	

M(P)= max {J	a(P')ds, JK( P) 
a?)(P1)dsK(P)   

and using the Taylor expansion of the function exp(—x) for x E [m(P), M(P)) it is clear 
that a value (P) E [m(P), M(P)] with 

ex(_f 41)(P)d$) _ex(_f 4 
(P)	

2 )(P?)ds)

K	 K(P)	

(3.2)


= I exp(—(P)) fK(P) 4(p') - 42)(P1))ds 

exists. From the non-negativity of the functions a ( l ) and a	it follows that 0 
rn(P) <_ M(P) and therefore 0 <e(P) for all P E Q. So it holds I exp(—(P))I 1 for 
all (P) € [m(P),M(P)]. Using this in (3.2) we obtain inequality (3.1) 1
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Theorem 3.1. The operator 12 D0 C W(fl) -p L2 (Q,z2 ) defined in (1.8) is 
Fréchet differentiable in any point a(o) 

ES 	with the Fréchet derivative 

	

(72(a)h)(P) = —g2(P)exp (_J	a(P1)ds 

	

K	) J h(P')ds (P)	K(P) 
E £(W(cz),L2(9,z2)). 

This derivative 1' 2(a) , a compact linear operator. 

Proof. Let a E intDo be an arbitrary function and B 6 (4?) = {aT E D0 
(911w	 .	 ( 0)	.	(0) 

I	- UT	 21 (cfl 6} a neighbourhood of UT . For any function T E Bo(CT ) we 
consider the difference 

(l2 crT)(P) - (124)(P) 

= 92 (P) exp, _ f UT(P')ds) - exp (- f UP1)ds) }. K(P)	K(P) 
Introducing

m(P)= min JK(P) cJT(P')ds, fK(P) 4(P')ds 

M(P)=max L(P) o1'(P')ds, f	a(P')ds K(P) 
it is clear that there exists a value (P) E frn(P), M(P)] such that for the Taylor 
expansion of exp(—x) in [m(P), M(P)1 there holds 

exp (-
7T(P')ds) —exp (-J a(P1)ds f	 ) K(P)	K(P) 

—exp (-J c4(P1)ds) L(P) (
2 

cT(P')—c4?(P'))ds K(P) 
+ exp(—(P)) (j UT(P') -4)(P'))ds 

2	 \K(P) 
and

(12 or)(P) - (12U)(P) 

= —92(P)exp (- J	01(o)(P')ds JK(P) UT(P' ) - a(P'))ds K(P) 
2 

+ 92(P)exp(—(P)) (JK(P)(UT(P') - U(P'))ds 
2 
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for all P E Q. Because of the non-negativity of the functions aT and c ( 0) in D0 we 
conclude that I exp( — e(P)) 1 a.e. in ft On the other hand the properties of a 3 and 
IE belonging to D 1 and D2 , respectively, guarantee the boundness of 92(P) a.e. in 0, 
that means 

92 (P)I !^ Ki	where K1 = Ki(II IEIIL (n),	measSl, 'y). 

Using the Holder inequality and Lemma 1.1 the integral fK(p)(aT(P')-4°(P'))ds can 
be estimated by 

JK (P) 
aT( p1) - ?P')ds 

< f aT(P' ) - c(P')ds 
 

< K"2	(0)
L2(K(P)) '7T-7TI I 

<KCH °)" 
-	 T 

where K2 = meas Q, and therefore we obtain the result 

(0) 	
(o)) 

(P) + ° 
(11 

(F2cYT)(P) - (12 4° ))(P) 
= 1 T ) T - a	 a - a 

with

,	(0) 	(o)\ 
12(aT )y7T —UT )(P) 

= —92(P)exp (- f	a(P 1 )ds) JK ( P) (a(P') - a(P'))ds 
K(P)  

and 1(a) E £(W(Q),L2(cl,z2)) for all a	E intD0 . The idea of the proof of 
,  compactness of the derivative 12 (aT(0) 

) is the same as in the proof of Theorem 3.2 U 

By some additional investigations we also can show that for any function a	e

mtD0 and for an arbitrary value p> 0 there exists a neighbourhood B(4°) = {aT E 

(0) D0 : haT - a7. hhwffl) :5 p } and 'a constant qp > 0 such that 

(0) 

	

V2T) - 12(aT
(0) ) - 1a)(aT -	0 L2(C,z2)	 (33) 

qp1(0')(a' .- a (0) 
OL2(Q,z2)' 

Theorem 3.2. The nonlinear operator 12: D 0 C W() -p R(,':'2 , Do) C L2(1,z2) 
in equation (1.9) is compact. 

Proof. To show the property of compactness we choose an arbitrary bounded set 
B of functions a' E D0 C W(f): 

B {CT E D0 C W(l) hI aThhw(cl) <M <



On Two Parameter Identification Problems	655 

It is clear that B as a subset of the Hubert space W2'() is weakly compact in W21(cl). 
Therefore we can select an infinite subsequence { j}kEJN from any infinite subset 
{i7}n E Irv C B tending to a function 4) E W(l) for k - 00 in a weak sense. 

(na) (1) From the weak convergence of { aT }kE,v C B it follows that 
(0) (nk) 

Ik'T IIW 1 (t1) <limSUpIICTT IIW(1) <M < + 00 
k-. oo 

holds (see [7: p. 332]). 
(2) Owing to the compactness of the embedding operator E: W () - L2() and 

the property that the
-
 -image of a weak convergent sequence applying a compact operator 

is a strong converget sequence in the operator range (see [2: p. 236]) we obtain that 
(a (n

(n,. )
T }tiN C W2 (Q) is a strong convergent subsequence in L 2(). Following the 

theorem in [10: p.185], there exists a subsequence of {4}kEJN almost everywhere


	

converging to 4 ) . From the non-negativity of the functions	we can conclude that 
O0) 2 0 almost everywhere holds. 

The statements (1) and (2) prove that 4) E B. If we describe by I" and i° 
the image of 4" and a, respectively, then by application of Lemma 3.1 for any real 
e > 0 there exists an index ko(P) such that 

(0) 
D	

2(PexP J aP1)ds) —exp (J 4)(P1)ds) 
K(P)	 K(P) 

192(P)I J	(c4(P') - 
K(P) 

1 92 (P)Ie	for all k 2 k0(P). 

Therefore the subsequence {I"}kEJr.J is convergent to I( 0) almost everywhere in Q. 
The index k0 (P) of course depends on the selected point P. Under consideration of the 

(flk)	 .	 (n,)	. notation 'D for the function 'D (P) = z 'D (P) we investigate in the following the 
norm 2	-	(0) 2 

D	D L2(fl,z2) - D - D L2(Q)	
2	 (3.4)


= j i(P) -ib0)(P) dci. 

Obviously we can give the estimation 

- C(P)	(ik(P) + 

almost everywhere in Q. From the validity of (1.7) for	E B as well as for 4) E B

we conclude

Ig(P)I 5 192 (P)I	and	Ii(P)I :5 192 (P)I	a.e. in ci
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and therefore it follows 

	

l, (P) — ID (P) <4 192(P) 1 2 =: F(P)	for all k E E1.	(3.5) 

If we take into account the integrability of the functions IE and a, in Problem (P2), 
then it is easy to derive that the majorant F(P) is a function summable in Q Owing 
to (3.4), the integrability of F(P) and the pointwise convergence i nk)	(0) 

'D (P)	I (F) 
for k — cc the assumptions of the Lebesgue theorem (see [10: p.1661) are fulfilled. The 
use of this theorem proves that, for any e > 0, there exists an index k0 > 0 such that 

	

2	
(P)_1(P)II2 -	 = II(nk) 

D 

	

I L 2 (fl,z 2 )	 II L2(1l) 

for all k > k0 . Therefore we have defined a convergent subsequence { I(nk)
} k EJN in an 

arbitrary subset	in the range R( 2 ,B) C L 2 (0,z2 ) of a bounded subset 

BC D0 , that means, R(F2 ,B) is compact in L2(, z2 ) and the theorem is proven U 

Theorem 3.3. The operator .F2 : D0 C W(l) —i L2 (f2,z2 ) is weakly closed. 

Proof. Let {4 }E C Do be a sequence weakly convergent to a function a 
(n)	 .	 ( II)	(0)	(it) and let .F2( UT ) tend weakly to a function Yo, that means 0 T — T and .F2(T ) 

Yo for n —* cc. If we take into account statement (2) in the proof of Theorem 3.2, 
then we can conclude the inclusion a( 0 ) E D0 . Moreover we can estimate the norm 
II'2( c4) - .T2 ()IJ L 2 (n z 2 ) as follows: 

(0) 
V2(4) — .F2(aT 

II L2(jj,z2) 
(it) (it)	(0) II F2(	) — 2(4) — 2 (4)(T	T	 (3.6)


L2(1i,z2) 

	

(0)	(n)	(0) 

	

+ F 2(aT )(T — a	IIL2((j2) 

Because of the weak convergence o41) or we find a constant M such that 

(n)
 T IIW(fl) M	 I for all n	and	aT(°) IIW(o) M. 

Applying inequality (3.3) for the ball B2M the estimation (3.6) can be continued by 

,	(0)	(it)	(0) II fr2(4) — 2(a	 (1	 )(	-	II 

	

L 2 (11,z2)	
+ q2M)	

L2(IZ,z2) 

From the compactness of the linear operator 177'2 (a (0) ) and the weak convergence 
it follows that T2(4') - F2(4) in the strong sense and therefore I/o = 

2(4) u
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Due to Theorems 3.1 - 3.3 the assumptions of Proposition A.3 in the Appendix of 
paper [4) are fulfilled. That proposition characterizes the compactness, the continuity 
and the weak closedness of a nonlinear operator as sufficient conditions for ill-posedness 
of this nonlinear problem. It provides the following conclusion: 

The problem of identifying the function UT from the given function ID using the 
operator problem (P2) is an ill-posed problem in the pair of sets (D 0 , R(.12 , Do)) in the 
sense that the stability property in the definition of a well-posed problem is injured. 

Consequently small perturbations in the right-hand side of equation (1.9) can cause 
very large perturbations in the corresponding solution and can make the numerical 
solution process unstable. 
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