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The Comparison of Two Error Estimates 
for Approximate Solutions of the Poisson Equation 

G. Lüttgens 

Abstract. The purpose of the present paper is to discuss different error estimates for the 
numerical solution of a Dirichlet problem for the Poisson equation, calculated via the five 
point (discrete) Laplacian. Whereas the first error bound, a sum of ordinary L°°-moduli, is 
deduced from the usual stability inequality, use is made of some properties of the discrete 
Green function to verify another stability inequality in terms of l'-norms, which then implies 
the second estimate via r-moduli multiplied by a logarithm factor. In the following we will show 
that it depends on the solution of the boundary value problem which measure of smoothness 
or rather which error estimate delivers the correct rate of convergence. The paper concludes 
with some remarks illustrating relations to the well-known logarithm factor in connection with 
finite element approximation. 
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1. Introduction 

Consider the Dirichiet problem for the Poisson equation 

52	 52 

iu(x,y)	—u(x,y) + -u(x,y) = tp(x,y)	((X, Y) E )	(1) 
u(x,y) = 74'(x,y)	

((x,y) E ) 

on the open unit square S2 := {(z , y) 0 < x,y < 11 C JR2 (with JR being the real 
axis) and r := OI, the boundary of S1. Throughout it will be assumed that W and t/ 

are continuous, real-valued functions on l and I', respectively. Furthermore, we will 
restrict the following treatment to those problems (1) for which the solution u exists

	

and belongs to the Banach space C2 (n) of all real-valued functions u on	U r 
which possess continuous partial derivatives ()'())u(x,y) for 0 < i	i +j	2

ay 

such that the norm

' 

R 13\ L(fl)
—) u

O 
IluIIC2(()	>1	 i)  <i<i+j^2  

G. .Lüttgens: Rhein.-Westf. Techn. Hochschule, Lehrstuhl A für Mathematik, D - 52056 
Aachen 

ISSN 0232-2064 / $ 2.50 ® Heldermann Verlag Berlin



660	G. Lüttgens 

is finite. Here C(l) is the space of all continuous functions equipped with the usual 
sup-norm II u IIC() := sup{u(x,y)I : (x, Y) E l}. 

Let h	with n E .W, the set of natural numbers. An approximate solution uh,
defined on the uniform grid 

f2 h := {(x,Y):x= -
 
and y= - (Oi,j <n)} 

h:=clhfl Q	and	rh:=Tlhnr 

is obtained as the unique solution of the discrete counterpart to problem (1) 

	

L h u (x , y ) = ço(x,y)	((x,y) E	
(2) 

	

u(x,y) = t&(x,y)	((x,y) E ['h). 

Thereby the five point Laplacian Lh (cf. [8 : p. 45] and [12 p. 49]) is given by 

V2 L h U h(X ,y) + L h U h( X,y) := 

i.e., the partial derivatives of the Laplacian L are now replaced by symmetric differ-
ences L ° uh(x, y) := tLh(x + h, y) - 2U h(x , y) + u h(x - h, y) and &, 2u h(x , y), defined 
analogously. 

The aim of this paper is to discuss and to compare two different estimates for the, 
approximation error

Il u - UhIIç :=	sup Iu(x,y) - U h(X , y ) I	 (3)
(z,y)Eflh 

given in terms of moduli of smoothness for partial derivatives of the exact solution u 
(cf. (6) and (11)). Besides the ordinary L°°-modulus 

w2O(, u)	sup 11 i'°u(x, y)	hi <S and (x ± h, y) e 

(u E C(); uo , 2(5, u) analogously) we want to study a new kind of measure of smooth-
ness, the so-called r-modulus, introduced by P. P. Korovkin and Bi. Sendov indepen-
dently around 1968, which has turned out to be a powerful tool for various applications 
in approximation theory and numerical analysis (see [14]). This L 1 -modulus is defined 
as the integral (e.g.) 

7-2,0( b, U ) := Jw2,0 (6,u;(x,))d(x,)	(u E C(l))

over the local modulus of continuity 

-2,0 (b, u; (x, y)) := sup {	'°u(± 

(±h,)e (IX —S,x+S] x [—S,y+S])fl}. 

For similar (comparison) considerations in-connection with quadrature formulas or or-
dinary differential equations we refer to [2, 3, 14].
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2. The error estimates 

Using the well-known stability inequality (cf. [10: p. 464)) 

1 

	

PI VhII(I h < HIh VhIIflh + II vhIIr	 (4) 

in l°°-norms (cf. (3)) for vh = u - u, and the representation of the truncation error 

Th U ( X ,y) :=	tih)(X,Y)
 (5) 

.j-

 
I h

 
(h - s) {i'°uxx(x, y) + A O,	)] ds 

in terms of the solution u of problem (1), one obtains (cf. [1)) 

lu - U hII h <w(h,u) := [w2 ,o(h,u) +wo 2 (h,u)J	(u E C2()).	(6) 

Thereby and in the following let u, be the solution of the discrete problem (2) corre-
sponding to the data (x, y) = zu(x,y) and tl'(x,y) = u(x,y) for (x, y) E Q and 1', 
respectively. The fact that the estimate (6) is sharp with regard to the rate of con-
vergence has been established in connection with general Lipschitz classes, determined 
by abstract moduli of continuity, i.e., by functions w (e.g., w(t) = t, 0 < a < 1), 
continuous on [0,co) and with 

	

0 = w(0) <w(s) w(s + t) u(s) + w(t)	(s, t > 0). 

Indeed, for every abstract modulus of continuity there exists a counterexample u, E 
C2 (l) such that

	

w*(S,u) = Q(,(52))	 (7) 

thus II u - Uw,hIIh = O(w(h2 )), but on the other hand 

- U,hII(	o(w(h2 )).	 (8) 

A proof of (7) and (8) is given in [1] via an application of a quantitative extension of the 
uniform boundedness principle (cf. [5) and the literature cited there). Additionally use 
is made of some properties of the discrete Green function Gh(,t7) on (,tj) E fl i, X 
defined for fixed 77 E fZh as the unique solution of the problem 

=
 {

h 2 if e = 
0	ife?7 

= 0	 (C E rh). 

In particular the Green function is non-positive for all (, i) E f2h X f2h, and there holds 
true the identity (cf. [8: p 58]) 

= h2	Gh(,)hvh(I?)	( E 1h)	 (9) 
TiEOh
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for grid functions vh (i.e., real-valued functions defined on the grid lh) which fulfill the 
condition with V h( r'h) = {o}. 

Let us now develop the second error estimate announced. In view of equation (9) 
there follows a further stability inequality (vh a grid function with vh(rh) = {o}) 

iivhiiO !^ ii GhIi h xI h h2 E i L h Vh( 77)1	 (10) 

t7E1 

with an 1 1 -norm at the right-hand side, similar to that used for ordinary differential 
equations in, e.g., [2, 61. In this connection it is of great importance to estimate the 
l°°-norm of the Green function ii GhIIx h := sup {IGh (i,7j )i : (C, ?7) E Q h X 

Lemma 1: Let ,j := (, ) and n = E IV be even. Then there exist constants 
MI , M2 > 0 such that 

Mi i log hi	_Gh(11*,1i*)	MGhii(lhxclh <M2 I log hl.

The last inequality holds true for odd n 2, too. 

In [9] the lower estimate is proved for a similar discretisation with the help of ortho-
gonal eigenfunctions of the operator inverse to Lh. In [11: p. 125] the present situation 
is dealt with. For the upper bound see also [8: p. 591. 

Lemma 2: Let n = 3 ^ 2	a nd vh be a grid function with vh(I'h) = {0}. 
(a) There holds the stability inequality (M3 < oo) 

VhiIh	M3 I log hl( h2 E Ihvhi) 

(b) The factor I log hi on the right-hand side cannot be improved to o(l log hi). 

Proof: The first assertion follows by (10) and Lemma 1. Choosing vh() := 

Gh(e, 7?) for 7* = (' ) and n. even one obtains 

ii Gh( .	)	> G(7 * , 77*)I > M I log hih2 E iEO,, i/: h G h (Tl,rl-)i - 

which already completes the proof U 

Replacing the 1' -norm by an integral there results the following estimate in terms 
of the r-modulus (cf. (6)): 

7(5, u) := 7-20(6, u) + 7-0,2(S, u)	(u E C2 (), 5 > 0). 

Theorem 3: Let u be the solution of problem (1) satisfying u E C2( 0). Then for 
the solution u h of the discrete problem (2) the estimate 

ii u - Uhii(2h	M4 i log hi T(h,u)	 (11)
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hold.., true (n	^ 2). 

Proof: For 77= ( 771, 172) E 11 h and (x, y) E A :=[,71, 'i + h] X [7)2,7)2 + h] ma one 
has	

h22,0(h,	)	fAh W2,0 (2h, u; (x, y)) d(x, y) 

since [7) 1 —h, 7)1 +h) x [772 —h,7)2 +h] c [z-2h,x+2h] x[y-2h,y+2h] for all (x, Y) E AT,. 
In view of Lemma 2 and (5) it follows 

iIU_Uhiih 
^M3i log hi(h2	

ThU(7))) 
tlEIlh 

M3 log hI(h2	(w2,0(h, u; ) + o ,2 (h, u; 77))) 

M3 I log h f ((w2,0 (2h, u; (x, y)) + wo ,2 (2h, u; (x, v))) d(x, y). 

Finally the inequality 7-2,0 (2h, ur) <c r2,o(h, u) (cf. [14: p. 81 for the one-dimensional 
case or [11: p. 32]) delivers the assertion I 

Notice that the inequality (11) is sharp in an "asymptotic" sense. Due to Theorem 
4c) there exist g E C 2 (0) with 

	

log hIr(h,g) = O(I log hih2)	
(12) 

ll g - 9n , h iih	o(i log hi h2). 

A result analogous to (12) follows for the error estimate (6) in terms of w, if one 
chooses g = loghh2 f/w(h2 ) with f in accordance with (7) and (8) for a fixed 
abstract modulus w. 

3. The èomparison 

For problems, similar to (1) and (2) but in connection with quadrature formulas or 
ordinary differential equations, there are well-known error estimates in terms of W -

 moduli as well as r-moduli (cf. [2, 3, 14]). Contrary to the considerations there in the 
present situation none of the error bounds (6) and (11) majorizes the other one, since 
indeed on the one hand there holds true 

w'(, u)	(u E C2()). 

and for some special functions one even has r(8, u) 6w*(S, u) (cf. [71). But on 
the other hand the inequality (11) additionally contains a logarithm factor. Really 
conferring the two estimates one gets the following result.
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Theorem 4: Depending on the solution u of problem (1) each of the error bounds 
(6) and (11) partly yields the true rate of convergence. 

a) For z(x, y) := x4 E C2 (fz) there holds true (5 

w * (6,z)=2452 
(2462-3263)I log SI 

li z - Zhiih	o(h2), 

i.e., the correct rate of convergence is only obtained via (6). 

b) Let f0 (x,y) := x 2 /((a + 1)(a + 2)) for 0 < a < 1. Then it follows 

> (2— 2)6' 
log 6ir(5,f,,)	336' log 5. 

In other words, using the inequality (11) instead of (6) the rate of convergence has been 
improved considerably. 

c) There exists a sequence (gn)i C C2 (Z) with (h = 

o(1) 
= Q(i log hlh2) 

Ii g - g fl,hiIcZ,, 96 o(I log hi h2). 

Therefore (11) delivers the correct "asymptotic" rate of convergence. 

Proof: Via elementary calculations one has w0,2 (6, z; (x, y)) 0 and 

124(l

24x2for x E [0,6) 
w2,o(5,z;(x,y)) =	246	forx E [5;1 —6]	(yE [0,1 

—x )2. for xE(1—,1] 

hence r(6, z) = 2452 - 326. For the other two assertions of part a) see [1]. The 
statements in b) immediately follow from analogous one-dimensional results in [7]. 

Concerning statement c), for the infinitely continuously differentiable function 

exp(-1/(1 - x 2 )) for xl < 1 
F(x) 	

1 0	 for IxI > 1 

and , = (, ) consider

1F(12F(e22	(=(e1,e2)E) 
En ) \ e, ) 

with e :=	and n E .ITSJ even. Obviously, the sequence (gn)°=i is uniformly bounded 
in C2 (fl), and for the support of g n one has the inclusion 

2 
suppgc 

1-2 cn+en] .	S	 (13)
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-	1 Furthermore, there holds true g ( * ) - 	g,,(1') = {o} and 

ig() - { 1 for e = 

	

- 0 for e	( E nh) .	 (14) 

It follows that for the discrete approximate solution 9n,h one indeed has g() 
h2 Gh(e07).s0 that by Lemma 1 (n = k even) 

Ign - gfl,hIIfl 2 Ig fl h( 77 
)j - g(*) 2 M1 I log h I h2 -	0(1 log h1h2), 

i.e. the last inequality of part c). Since (cf. (14)) 

w(hg) 2 .i2,o(h,gn,) 2 I 09n,zz ( 17 )I = 1 i4 0(1) 

there only remains to establish the estimate of the r-modulus. In view of (13) we obtain 
w2,o(h,g,;(x, y)) = wo2(h,g,;(x,y)) = 0 if Ix - I 2 h + e, or	- I ^ h + c
and therefore

r(h,g) < (h +en ) 2 w*(h , gn ) < ch2 igii	= 0(h2) 

Thus the proof of Theorem 4 is complete U 

Let us conclude with some remarks to finite element methods based upon piecewise 
linear functions. Considering the case 0 and denoting the approximate solution by 
ü 11 , the rate of convergence of the error estimate (cf. [4: p. 1721 and [13]; W2'(1) the 
Sobolev space)

	

Il u - U hIIc() = 0(I log hIh2 )	(u E W2 °°(Z))	 (15) 

cannot be improved to o(Ilog hIh2). This assertion is established in [9] and in connection 
with general Lipschitz classes in [11: p. 1851, each time with the help of the lower 
estimate for the norm of the Green function (cf. Lemma 1). Since the finite element 
approach is equivalent to the finite difference problem (cf. [4: p. 1911 and [8: p. 1601 
for various triangulations) 

	

1 h tL h(X ,y) = Mh(o,(x,y))	((x,y) E Q,) 
tL h(X ,y)	0	 ((X1 Y) E rh) 

with some typical (averaging) integral operator Mh, it is not astonishing that the sharp-
ness of the inequalities (11) and (15) each time depends on the same properties of 
Gh(e, ,). In other words, both logarithm factors originate form the unboundedness of 
the discrete Green function in the 1-norm.
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